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Abstract: Selective and catalytic C-C bond cleavage of pentane-
dinitriles and 5-oxohexanenitriles can be performed in the presence
of iridium hydride complex IrHg(Pi-Pr3), (1). The key steps of this
reaction are a-C-H activation of the cyano or carbonyl group and
subsequent B-carbon elimination.
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The selective cataytic cleavage of C-C single bond by
transition metals under homogeneous conditions has re-
ceived much interest in recent years, because this type of
reaction enables us to perform a novel one-step transfor-
mation of molecular skeleton'? which cannot be achieved
by conventiona organic synthesis. Furthermore, this type
of C-C bond cleavage could form a key part of environ-
mentally friendly processes for recycling polymer to the
corresponding monomer.3#

Recent studies on transition-metal-catalyzed C-C single
bond cleavage® are roughly classified into two categories:
i) oxidative addition, and ii) B-carbon elimination. Direct
oxidative addition of transition metalsinto the C-C bonds
is generally driven by release of ring strain® or by chela-
tion assistance.” Transition metal-mediated B-carbon
elimination, well recognized as an important mechanism
for chain scission of polymer,® has a potent ability to
cleave unstrained inactive C-C single bonds. However,
except for a few examples,® strain release strategy has
been widely used for most B-carbon eliminations.’%!

Currently, we are investigating catalytic C-C single bond
cleavage of non-strained compounds via -carbon elimi-
nation. In this report, we describe iridium-catalyzed C-C
single bond cleavage of nitriles and ketones via 3-carbon
elimination. Our investigation was based on the following
concept (Scheme 1).

Both nitriles (X =-CN) and ketones (X = -COR) readily
react with metals to give nitrile- or ketone-coordinated
complex 2. Iridium hydride complexes have proven to be
effective catalysts for C-H bond activation of nitriles.*?
The activation of C-H bond adjacent to X would give an
akyliridium intermediate 3.3 The C-C bond B- to X
could be cleaved by B-carbon elimination to yield an ole-
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fin-coordinated iridium intermediate 4. Reductive elimi-
nation of iridium from 4 would produce R-H and olefin
with regeneration of the iridium catalyst.

In order to assess the catalytic activity of various iridium
complexes, a series of C-C bond cleavage reactions was
carried out by adding iridium catalysts to a solution of 2-
methyl-2-phenyl-pentanedinitrile (5) in toluene at 150 °C
(Scheme 2).%°
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Scheme 2 Catalytic activities of various iridium complexes for the
C-C bond cleavage of 1,3-dicyano-3-phenylbutane (5)

Heating the solution for five hours in the presence of 10
mol% of iridium complex catalysts gave the correspond-
ing 2-phenylpropionitrile (6). In this trial, the reaction
time was shortened in order to estimate the initial reaction
rate. The iridium-pentahydride complex, IrHg(Pi-Pr3), (1)
has proven to be the best catalyst. The hydride ligands
easily leave as molecular hydrogen from pentahydrideiri-
dium complexes to form coordinatively unsaturated ac-
tive species.’® The strong electron donating triisopropyl
phosphine ligand would also facilitate C-H activation.
Complexes such as IrH(CO)(PPhy),, IrCI(CO)(PPhs),,
Ir(CO),(acec), IrHCI,(PCys),, Ir(acac)s, IrCl,,
[IrCl,Cp*],, [IrCl(coe),], NaslrClg were not effective as
catalysts. Phosphine ligands such as Pi-Pr;, PCy;, and
PPh; & so showed no catalytic activity.
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Tablel C-C Bond Cleavage Reactions Catalyzed by IrHg(Pi-Prs),
)

Entry  Substrate Product Yield (%)
1 CN CN 49
Ph/‘\/\CN Ph
6
5
2 CN CN 98
S SN Ph/kPh
Ph
3 Cu\ CN 82
Ph CN Ph/K
4 CN CN 32
Ph W Ph)\
0
5 CN )C\N 50
Ph Ph” “Ph
6 CN CN 38
Ph \)ﬁ( Ph)\Ph
Ph o

Representative results of this reaction are shown in
Table 1.

In the presence of catalytic amounts of [rHg(Pi-Pr3), (0.10
mmol) (1), the B-selective C-C bond cleavage of nitriles
or ketones (1.0 mmol) proceeds to give the corresponding
product in good yields.'” The reaction of nitriles having
two phenyl groups at 2-position proceeds more effectively
than that of the nitrile with one phenyl group. For exam-
ple, 2,2-diphenyl-pentanedinitrile could react to produce
diphenylacetonitrile almost quantitatively (entry 2). Phe-
nyl group at 2-position is essentia for this reaction. It is
noteworthy that the iridium-catalyzed C-H activation
tolerates bulky substituents at a-position of the nitriles.
Typically, the reaction of 2,4-dimethyl-2- phenypentane-
dinitrile gave better yield than the reaction of 5 (entry 3).
Generally, ketones are less reactive than nitriles toward
a-C-H activation because of their poor coordination abil-
ity to metals. However, in the presence of catalyst 1, the
C-C bond cleavage of ketones can be performed as shown
in entries 4-6. A similar rate enhancement due to two
phenyl groups was also observed in the reaction of ketone
(entry 5).

A plausible mechanism of this reaction is shown in
Scheme 3. The catalytically active species seemsto beun-
saturated iridium complexes IrL,, (L =Pi-Pr; and H)
which would be formed by dissociation of molecular hy-
drogen from 1. Nitriles or ketones would coordinate to
theiridium active catalyst IrL, to giveintermediate 7. The
activation of C-H bond adjacent to X would provide inter-

Synlett 2004, No. 12, 2185-2187 © Thieme Stuttgart - New York

LETTER
CN |I'H5(Pi-PI’3)2 (l) CN H
1 1
R >H l R X
11 > IrLpy
NC T
CN
RY IrLpn M
R? )
10 RIL X—==IrL,
/ 7
H
Z>x NPH |
NC ~~ IrL
Rle!”-n<——/Y/$rn
i RY v‘s\ X
9 R? B
X 8
X = CN or COR

Scheme 3

mediate 8.® Subsequent B-carbon elimination from 8
would proceed to afford olefin-coordinated intermediate
9. Dissociation of the olefin (X =-CN; acrylonitrile, X =
-COR; methylvinylketone) from 9 would lead to akyliri-
dium intermediate 10. Reductive elimination of iridiumin
10 would yield product 11 with regeneration of the cata-
lyst. During this catalytic cycle, thermodynamic stability
of Ir-C bond® might contribute to generation of interme-
diates 8-10.
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General Procedurefor thelridium-Catalyzed C-C Bond
Cleavage of 2-M ethyl-2-phenyl-pentanedinitrile (5).
Ina25 mL sealed tube, iridium catalysts (0.1 mmol), 5

(2 mmol), and toluene (0.5 mL) were placed and stirred for
12 h at 150 °C under argon atmosphere. The yield of
2-phenylpropionitrile 6 was determined by NMR using
dibenzyl as an internal standard.

(a) Goldman, A. S.; Halpern, J. J. Am. Chem. Soc. 1987, 109,
7537. (b) Klabunde, U.; Parshall, G. W. J. Am. Chem. Soc.
1972, 94, 9081.

(17)

(18)

(19)

(20)

General Procedurefor thelridium-Catalyzed C-C Bond
Cleavage of Nitrilesand Ketones.

In a25mL of sealed tube, IrH5 (Pi-Pr3), (1, 0.2 mmal),
nitriles or ketones (1 mmol), and toluene (0.5 mL) were
placed and stirred for 12 h at 150 °C under argon
atmosphere. The yields of products were determined by
NMR using dibenzyl as an interna standard. All the
products were confirmed by *H NMR, $3C NMR, and
HRMS.

In the case of the reaction of 2-methyl-2- phenylhexane-
dinitrile (12), the formation of 2-amino-1-cyano-3-methyl-
3-phenylcyclopentene (13) was observed.’® The cyclization
would proceed via nucleophilic addition of alkyliridium
intermediate to the CN triple bond of nitriles (Scheme 4).
This cyclic product unequivocally supports the occurrence
of a-C-H bond activation and the formation of intermediate
8 (Scheme 4).

CN
CN HaN
cn 1 (20 molo)
Ph —— > Ph
12 13

toluene

150 °C 24%
1| C-H 24 h
activation
—IrLy
Ch
C nucleophilic \Ian CN
addition !
CN —— Ny
Ph 8- C
SHirL,, Ph

Scheme 4

Ina25mL of sealed tube, 2-methyl-2- phenylhexanedinitrile
(12, 200 mg, 1.0 mmol), IrH5 (Pi-Pr3), (1, 52 mg, 0.1 mmol),
and toluene (0.5 mL) were placed and stirred for 24 h at
150 °C under argon atmosphere. After removal of the
solvent, the mixture was purified by silicagel column
chromatography and by Kugelrohr distillation to give 2-
amino-1-cyano-3-methyl-3-phenyl cyclopentene (13, 1:0.8
diastereomer mixture) as a colorless oil (47 mg, 24%). H
NMR (270 MHz, CDCl,): $ = 1.54 (s, 3H,-CH3), 1.95-2.15
[m, 2 H, -CH,-C(Mg)(Ph)-], 2.48-2.53 [m, 2 H, -CH,-
C(CN)-1, 4.25 (br, 2 H, -NH,), 7.22-7.40 (m, 5 H, -C5H5).
13C NMR (68 MHz, CDCl): 6 = 167.2 (C-NH,), 144.1
(-CgHs), 128.4 (-C4H5), 126.7 (-C4Hs), 126.2 (-C¢Hs), 118.8
(-CN), 74.2 (C-CN), 53.0 (C-CH,), 41.5[-CH,-C(Me)(Ph)-],
28.1[-CH,-C(CN)-], 22.9 (-CHj). MS (El, 70 &V):

m/z (%) = 198, 183, 168, 166, 140, 129, 115, 105, 91, 77.
(8 Nolan, S. P.; Hoff, C. D.; Stoutland, P. O.; Newman, L.
J.; Buchanan, J. M.; Bergman, R. G.; Yang, G. K.; Peters, K.
S. J. Am. Chem. Soc. 1987, 109, 3143. (b) Simoes, J. A. M ;
Beauchamp, J. L. Chem. Rev. 1999, 90, 629.
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