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Abstract: Selective and catalytic C-C bond cleavage of pentane-
dinitriles and 5-oxohexanenitriles can be performed in the presence
of iridium hydride complex IrH5(Pi-Pr3)2 (1). The key steps of this
reaction are a-C-H activation of the cyano or carbonyl group and
subsequent b-carbon elimination.
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The selective catalytic cleavage of C-C single bond by
transition metals under homogeneous conditions has re-
ceived much interest in recent years, because this type of
reaction enables us to perform a novel one-step transfor-
mation of molecular skeleton1,2 which cannot be achieved
by conventional organic synthesis. Furthermore, this type
of C-C bond cleavage could form a key part of environ-
mentally friendly processes for recycling polymer to the
corresponding monomer.3,4

Recent studies on transition-metal-catalyzed C-C single
bond cleavage5 are roughly classified into two categories:
i) oxidative addition, and ii) b-carbon elimination. Direct
oxidative addition of transition metals into the C-C bonds
is generally driven by release of ring strain6 or by chela-
tion assistance.7 Transition metal-mediated b-carbon
elimination, well recognized as an important mechanism
for chain scission of polymer,8 has a potent ability to
cleave unstrained inactive C-C single bonds. However,
except for a few examples,9 strain release strategy has
been widely used for most b-carbon eliminations.10,11

Currently, we are investigating catalytic C-C single bond
cleavage of non-strained compounds via b-carbon elimi-
nation. In this report, we describe iridium-catalyzed C-C
single bond cleavage of nitriles and ketones via b-carbon
elimination. Our investigation was based on the following
concept (Scheme 1).

Both nitriles (X = -CN) and ketones (X = -COR) readily
react with metals to give nitrile- or ketone-coordinated
complex 2. Iridium hydride complexes have proven to be
effective catalysts for C-H bond activation of nitriles.12

The activation of C-H bond adjacent to X would give an
alkyliridium intermediate 3.13,14 The C-C bond b- to X
could be cleaved by b-carbon elimination to yield an ole-

fin-coordinated iridium intermediate 4. Reductive elimi-
nation of iridium from 4 would produce R-H and olefin
with regeneration of the iridium catalyst.

In order to assess the catalytic activity of various iridium
complexes, a series of C-C bond cleavage reactions was
carried out by adding iridium catalysts to a solution of 2-
methyl-2-phenyl-pentanedinitrile (5) in toluene at 150 °C
(Scheme 2).15

Scheme 2 Catalytic activities of various iridium complexes for the
C-C bond cleavage of 1,3-dicyano-3-phenylbutane (5)

Heating the solution for five hours in the presence of 10
mol% of iridium complex catalysts gave the correspond-
ing 2-phenylpropionitrile (6). In this trial, the reaction
time was shortened in order to estimate the initial reaction
rate. The iridium-pentahydride complex, IrH5(Pi-Pr3)2 (1)
has proven to be the best catalyst. The hydride ligands
easily leave as molecular hydrogen from pentahydride iri-
dium complexes to form coordinatively unsaturated ac-
tive species.16 The strong electron donating triisopropyl
phosphine ligand would also facilitate C-H activation.
Complexes such as IrH(CO)(PPh3)2, IrCl(CO)(PPh3)2,
Ir(CO)2(acac), IrHCl2(PCy3)2, Ir(acac)3, IrCl3,
[IrCl2Cp*]2, [IrCl(coe)2]2, Na3IrCl6 were not effective as
catalysts. Phosphine ligands such as Pi-Pr3, PCy3, and
PPh3 also showed no catalytic activity.
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Representative results of this reaction are shown in
Table 1.

In the presence of catalytic amounts of IrH5(Pi-Pr3)2 (0.10
mmol) (1), the b-selective C-C bond cleavage of nitriles
or ketones (1.0 mmol) proceeds to give the corresponding
product in good yields.17 The reaction of nitriles having
two phenyl groups at 2-position proceeds more effectively
than that of the nitrile with one phenyl group. For exam-
ple, 2,2-diphenyl-pentanedinitrile could react to produce
diphenylacetonitrile almost quantitatively (entry 2). Phe-
nyl group at 2-position is essential for this reaction. It is
noteworthy that the iridium-catalyzed C-H activation
tolerates bulky substituents at a-position of the nitriles.
Typically, the reaction of 2,4-dimethyl-2- phenypentane-
dinitrile gave better yield than the reaction of 5 (entry 3).
Generally, ketones are less reactive than nitriles toward
a-C-H activation because of their poor coordination abil-
ity to metals. However, in the presence of catalyst 1, the
C-C bond cleavage of ketones can be performed as shown
in entries 4–6. A similar rate enhancement due to two
phenyl groups was also observed in the reaction of ketone
(entry 5).

A plausible mechanism of this reaction is shown in
Scheme 3. The catalytically active species seems to be un-
saturated iridium complexes IrLn (L = Pi-Pr3 and H)
which would be formed by dissociation of molecular hy-
drogen from 1.16 Nitriles or ketones would coordinate to
the iridium active catalyst IrLn to give intermediate 7. The
activation of C-H bond adjacent to X would provide inter-

mediate 8.18 Subsequent b-carbon elimination from 8
would proceed to afford olefin-coordinated intermediate
9. Dissociation of the olefin (X = -CN; acrylonitrile, X =
-COR; methylvinylketone) from 9 would lead to alkyliri-
dium intermediate 10. Reductive elimination of iridium in
10 would yield product 11 with regeneration of the cata-
lyst. During this catalytic cycle, thermodynamic stability
of Ir-C bond20 might contribute to generation of interme-
diates 8–10.
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