Tetrahedron Letters 52 (2011) 4473-4477

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Ytterbium-catalyzed synthesis of dihydropyridines

Shunsuke Sueki, Ryo Takei, Junya Abe, Isao Shimizu*

Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

ABSTRACT

ARTICLE INFO

Article history: Received 29 April 2011 Revised 14 June 2011 Accepted 17 June 2011 Available online 23 June 2011

Keywords: 2,6-Unsubstituted dihydropyridine DHP Ytterbium catalyst Multi-component coupling reaction

Introduction

Dihydropyridines (DHPs) are important nitrogen-containing heterocycles, and have some interesting biological activities,¹ such as widely used calcium channel blockers.² In 1998, Hilgeroth et al. reported that several DHP dimers showed the inhibition of HIV-1 protease.^{1d-f} DHPs are also useful as synthetic intermediates.³ So far various DHP syntheses⁴ have been reported, and among them Hantzsch method^{4a} using 1,3-dicarbonyl compounds is one of the most useful general synthetic methods for DHPs, which gives 2,6-disubstituted DHP known as the Hantzsch ester. Although normal Hantzsch esters do not show any fluorescence, 2,6-unsubstituted DHPs are known to show strong blue fluorescence.⁵ However, photo-electronic property of DHPs is not studied much despite potential usefulness since synthesis of 2,6-unsubstituted DHPs⁶ having various functional groups is not easy by Hantzsch method. Eisner method^{6a} using highly reactive propargyl esters instead of 2-formylacetates is one of the few methods for 2,6-unsubstituted DHPs. Recently, the Eisner method has been improved by the use of imines or enamines as sources of amines and aldehydes.

The reaction of anilines, benzaldehydes, and ethyl 3,3-diethoxypropionate in the presence of $Yb(OTf)_3$ proceeded under mild reaction conditions to give dihydropyridines (DHPs). We have found that the reaction depended on the solvent and the DHPs were obtained selectively in 1,4-dioxane as a solvent. Various

2,6-unsubstituted DHPs were synthesized in one pot in satisfactory yields. © 2011 Elsevier Ltd. All rights reserved.

> Fukuzawa and co-workers succeeded the synthesis of 2,6-unsubstituted DHPs from propargyl esters and imines using Sc catalyst.^{6b} Li and co-workers also reported DHP synthesis using enaminone and aldehyde.^{6c} However, development of simple chemistry for various 2,6-unsubstituted DHPs starting with amines, aldehydes, and esters directly is expected in view of the practical science.

> Previously, we reported the Yb- or Ir-catalyzed multi-substituted quinoline syntheses.⁷ In the course of our studies to develop various heterocycles, we have found that the reaction with anilines, ethyl glyoxylate and ethyl 3,3-diethoxypropionate proceeded unexpectedly to yield DHPs (Scheme 1). Herein, we describe the novel and versatile 2,6-unsubstituted DHP synthesis catalyzed by Lewis acids using ethyl 3,3-diethoxypropionate, which is stable enough to be handled easily and is a readily available useful starting material for organic synthesis.⁸

Results and discussions

At first the reactions with *p*-anisidine (**1a**), ethyl glyoxylate (**2a**) and ethyl 3,3-diethoxypropionate (**3a**) were carried out using

Scheme 1. Ir- or Yb-catalyzed one-pot synthesis of quinolines and dihydropyridines.

^{*} Corresponding author. E-mail address: shimizui@waseda.jp (I. Shimizu).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.06.070

Table 1

One-pot synthesis of DHPs under various reaction conditions

Entry	Catalyst (mol %)	Temp. (°C)	Yield ^a (%)
1	Blank	90	Trace
2	$Yb(OTf)^{3}$ (2.5)	50	N.R.
3		90	73
4		120	42
5	$[IrCl_2(H)(cod)]_2$ (2.5)	90	28 ^b
6	[IrCl(cod)] ₂ (2.5)	90	Trace
7	Ir(acac) ₃ (2.5)	90	Trace
8	$[RhCl(cod)]_2$ (2.5)	90	Trace
9	Ru(acac) ₃ (2.5)	90	Trace
10	$Fe(acac)_3$ (2.5)	90	Trace
11	$ZnCl_{2}$ (2.5)	90	21
12	TiCl ₄ (2.5)	90	61
13	Sc(OTf) ₃ (2.5)	90	57
14	$La(OTf)_{3}$ (2.5)	90	53
15	$Sm(OTf)_{3}$ (2.5)	90	62
16	$Eu(OTf)_3$ (2.5)	90	64
17	$Pr(OTf)_{3}$ (2.5)	90	51
18	PTSA monohydrate (2.5)	90	31
19	DOWEX [®] (2.5)	90	48
20	4 M HCl in 1,4-dioxane (5.0)	90	67
21	TfOH (7.5)	90	50

^a Isolated yields based on *p*-anisidine (**1a**).

^b DMSO was used as a solvent.

various Brønsted and Lewis acids and the results are summarized in Table 1. When the reaction was carried out without catalyst at 90 °C, the DHP **4a** was scarcely obtained (entry 1). In the reaction at 50 °C in the presence of Yb(OTf)₃ as a catalyst, the reaction did not proceed, but the reaction at 90 °C gave **4a** in 73% yield (entries 2 and 3). However in the reaction at 120 °C, the yield of **4a** was decreased to 42% (entry 4). Transition metal salts and complexes were less effective or inactive (entries 5–10). The reaction with the Lewis acids, ZnCl₂ and TiCl₄, gave **4a** in 21% and 61% yields (entries 11 and 12). Sc(OTf)₃ was not so effective in this reaction system as the synthesis from imines and propargyl ester as Fukuzawa et al. reported (entry 13). Other lanthanoid triflates, La(OTf)₃,

Table 2

One-pot synthesis of DHPs under various solvents

		Et EtO OEt O	Yb(OTf) ₃ (2.5 mol%) Solvent, 90 °C O ₂ (1 atm)	PMP ^{-N} CO ₂ Et +	MeO CO ₂ Et	
	1a 2a	3a		4a	5	
Entry		Solvent			Yield ^a (%)	
				4a		5
1		DMSO		51		20
2		CH ₃ CN		58		Trace
3		DMF		72		14
4		1,4-Dioxane		74		Trace
5		Toluene		58		21
6		THF		20		16
7		Benzene		18		16
8		CH ₂ Cl ₂		3		11
9		Ethanol		0		0
10		NMP		Trace		Trace

^a Isolated yields based on *p*-anisidine (**1a**).

Sm(OTf)₃, Eu(OTf)₃ and Pr(OTf)₃, gave similar activities as Sc(OTf)₃ in this reaction (entries 14–17). When Brønsted acids, such as PTSA monohydrate and DOWEX[®], were used, **4a** was obtained in low yields (entries 18 and 19). However, when a catalytic amount of 4 M HCl in 1,4-dioxane or TfOH was used, the reaction proceeded to give **4a** in moderate yields, 67% and 57%, respectively (entries 20 and 21). As above Yb(OTf)₃ was the best catalyst for the synthesis of the DHP **4a** and used for further studies of DHP synthesis.

Various solvents in this reaction under oxygen were studied, and the results are shown in Table 2. The selectivity of the DHP **4a** and the quinaldate **5** depends upon the solvents. The reaction of *p*-anisidine (**1a**), ethyl glyoxylate (**2a**) and ethyl 3,3-diethoxy-

Table 3

Yb-catalyzed one-pot synthesis of various DHPs

^a Isolated yields based on arylamine **1**.

Scheme 2. The effect of acetal moiety for Yb-catalyzed one-pot DHP synthesis.

propionate (**3a**) with Yb catalyst in DMSO at 90 °C, **4a** and **5** were obtained in 51% and 20% yields, respectively (entry 1). The reaction in acetonitrile gave **4a** in 58% yield, but formation of **5** was scarcely observed by TLC analysis (entry 2). Although DMF as an aprotic polar solvent was used, the yield of **4a** increased (72%) and the undesired **5** was also obtained in 14% yield (entry 3). The most

satisfactory result was obtained when the reaction in 1,4-dioxane was carried out and **4a** was obtained in a good yield (74%) without formation of **5** even under oxygen atmosphere (entry 4). The reaction in aprotic non-polar solvent, such as toluene gave **4a** and **5** in 58% and 21% yields (entry 5). In this reaction, THF, benzene, CH_2Cl_2 , ethanol and NMP were less effective or inactive (entries 6–10).

Scheme 3. The comparison of acetal and vinyl ether in Yb-catalyzed one-pot DHP synthesis.

Scheme 4. The plausible reaction mechanism of Yb-catalyzed one-pot DHP synthesis.

These solvents have lower boiling points, indicating that the higher temperature is necessary for this reaction. This is in accordance with the results of entry 2 in Table 1.

From these results, Yb(OTf)₃ and 1,4-dioxane were chosen as a suitable catalysis system and applied to synthesis of various DHPs 4. Thus, the reactions of anilines 1, aldehyde 2 and ethyl 3,3-diethoxypropionate (**3a**) in the presence of Yb(OTf)₃ at 90 °C were carout to synthesize the corresponding N-aryl-3,5ried diethoxycarbonyl-DHPs 4. As shown in Table 3, the reactions with various electron deficient aldehydes gave the corresponding DHPs in good yields (**4d–4j** and **4k–4r**). On the other hand, DHPs such as **4m** and **4w** bearing electron donating group in 4-aryl moiety were obtained in moderate yields. The DHP 4c, which was obtained from reaction with o-nitrobenzaldehyde, was obtained in 32% yield because of the steric hindrance of the o-nitro substituent in aryl moiety at 4-position of DHP. The reaction with various functionalized anilines also gave DHPs in good yields.

When ethyl 3,3-dipropylpropionate (**3b**) was used instead of **3a**, **4a** and **5** were obtained in 40% and 35% yields. The reaction with cyclic acetal **3c** did not proceed to give any **4a** and **5** (Scheme 2).

The ethyl vinyl ether **3d** was considered as an intermediate for the reaction and used for the synthesis of **4a**, however the selectivity of the reaction was very different from that with the reaction of ethyl 3,3-diethoxypropionate (**3a**). Thus the reaction with the ethyl vinyl ether **3d** (*cis*- and *trans*-isomers mixture) gave **4a** and **5** in 19% and 72% yields. Although *cis*- or *trans*-isomer of **3d** was used separately, the quinaldate **5** was obtained as a major product in each reaction (Scheme 3).

The above result indicates that **3d** is not intermediate for **4a**. The plausible reaction mechanism of DHP synthesis is considered as shown in Scheme 4. At first, in the presence of Yb catalyst, amine and activated ethyl 3,3-diethoxypropionate formed imine **A**. This imine intermediate **A** can easily tautomerize enamine intermediate **B**, and reacts with Yb-activated aldehyde to form enaminoalcohol **C**. Subsequent dehydration proceeds via intermediate X to give the α , β -unsaturated imine **D**. The Michael-type annulation with the intermediate **D** and the intermediate **B** proceeds to give the tetrahydropyridine **E**. Finally elimination of amine from **E** affords the DHP **F**.

Conclusion

We have found that $Yb(OTf)_3$ is a suitable catalyst for one-pot DHP synthesis, and 2,6-unsubstituted DHPs tolerated various functional groups were synthesized easily, which is expected to provide a useful tool for medicinal chemistry and materials science.

Acknowledgments

This work is financially supported in part by the Global COE program 'Center for Practical Chemical Wisdom' by MEXT and is also a part of the outcome of research performed under a Waseda University Grant for Special Research Projects (Project number: 2010A-874).

Supplementary data

Supplementary data (general experimental procedure and spectral data for all compounds) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2011.06.070.

References and notes

 (a) Mai, A.; Valente, S.; Meade, S.; Carafa, V.; Tardugno, M.; Nebbisso, A.; Galmozzi, A.; Mitro, N.; Fabiani, E. D.; Altucci, L.; Kazantsev, A. J. Med. Chem. 2009, 52, 5496–5504; (b) Fassihi, A.; Azadpour, Z.; Delbari, N.; Saghaie, L.; Memarian, H. R.; Sabet, R.; Alborzi, A.; Miri, R.; Pourabbas, B.; Mardaneh, J.; Mousavi, P.; Moeinifard, B.; Sadeghi-aliabadi, H. Eur. J. Med. Chem. 2009, 44, 3253–3258; (c) Cateni, F.; Zacchigna, M.; Pedemonte, N.; Galietta, L. J. V.; Mazzei, M. T.; Fossa, P.; Giampieri, M.; Mazzei, M. Bioorg. Med. Chem. 2009, 17, 7894–7903; (d) Hilgeroth, A.; Baumeister, U.; Heinemann, F. W. Eur. J. Org. Chem. 1998, 1213–1218; (e) Hilgeroth, A.; Baumeister, U.; Heinemann, F. W. Eur. J. Org. Chem. Chem. 2000, 245-249; (f) Hilgeroth, A.; Billich, A.; Lilie, H. Eur. J. Med. Chem. 2001, 36, 367-374.

- (a) Takahashi, D.; Oyunzul, L.; Onoue, S.; Ito, Y.; Uchida, S.; Simsek, R.; Gunduz, M. G.; Safak, C.; Yamada, S. *Biol. Pharm. Bull.* **2008**, *31*, 473–479; (b) Kappe, C. O. *Eur. J. Med. Chem.* **2000**, *35*, 1043–1052.
- Marchalín, Š.; Baumlová, B.; Baran, P.; Oulyadi, H.; Daïch, A. J. Org. Chem. 2006, 71, 9114–9127.
- 4. (a) Hantzsch, A. Justus Liebigs Ann. Chem. 1882, 215, 1-82; (b) Vodra, R. K.; Bruneau, C.; Renaud, J.-L. Adv. Synth. Catal. 2006, 348, 2771-2774; (c) Moreau, J.; Duboc, A.; Hubert, C.; Hurvois, J.-P.; Renaud, J.-L. Tetrahedron Lett. 2007, 48, 8647-8650; (d) Jiang, J.; Yu, J.; Sun, X.-X.; Rao, Q.-Q.; Gong, L.-Z. Angew. Chem., Int. Ed. 2008, 47, 2458-2462; (e) Molina, P.; Pastor, A.; Vilaplana, M. J. J. Org. Chem. 1996, 61, 8094-8098; (f) Perozo-Rondón, E.; Calvino-Casilda, V.; Martín-Aranda, R. M.; Casal, B.; Durán-Valle, C. J.; Rojas-Cervantes, M. L. Appl. Surf. Sci. 2006, 252, 6080-6083; (g) Kantam, M. L.; Ramani, T.; Chakrapani, L.; Choudary, B. M. Catal. Commun. 2009, 10, 370-372; (h) Fan, X. S.; Li, Y. Z.; Zhang, Z. Y.; Qu, G. R.; Wang, J. J.; Hu, Z. Y. Heteroat. Chem. 2006, 17, 382-388; (i) Mirza-Aghayan, M.; Langrodi, M. K.; Rahimifard, M.; Boukherroub, R. Appl. Organomet. Chem. 2009, 23, 267-271; (j) Adlakha, P.; Naveen, S.; Lakshmi, S.; Manvar, A.; Karia, D.; Shah, A.; Sridhar, M. A.; Prasad, J. S. J. Chem. Crystallogr. 2009, 39, 389-394; (k) Wang, L.-M.; Sheng, J.; Zhang, L.; Han, J.-W.; Fan, Z.-Y.; Tien, H.; Qian, C.-T. Tetrahedron 2005, 61, 1539-1543; for review of DHPs, see: (1) Stout, D. M.;

Meyers, A. I. Chem. Rev. **1982**, 82, 223–243; (m) Sausins, A. E.; Duburs, G. Chem. Heterocycl. Compd. **1992**, 28, 363–391; (n) Simon, C.; Constantieux, T.; Rodriguez, J. Eur. J. Org. Chem. **2004**, 4957–4980.

- (a) Deme, A. K.; Lusis, V. K.; Dubur, G. Y. *Khim. Geterotsikl. Soedin.* **1988**, 1, 67–70;
 (b) Nair, Y.; Offerman, R. J.; Turner, G. A.; Pryor, A. N.; Baenziger, N. C. *Tetrahedron* **1988**, 44, 2793–2803.
- (a) Chennat, T.; Eisner, U. J. Chem. Soc., Perkin Trans. 1 1975, 926–929; (b) Kikuchi, S.; Iwai, M.; Murayama, H.; Fukuzawa, S. Tetrahedron Lett. 2008, 49, 114–116; (c) Yang, J.; Wang, C.; Xie, X.; Li, H.; Li, Y. Eur. J. Org. Chem. 2010, 4189– 4193; (d) Sirijindalert, T.; Hansuthirakul, K.; Rashatasakhon, P.; Sukwattanasinitt, M.; Ajavakom, A. Tetrahedron 2010, 66, 5161–5167; (e) Lusis, V. K.; Dubur, G. Y. Khim. Geterotsikl. Soedin. 1982, 8, 1067–1071; (f) Wille, F.; Schwab, W. Monatsh. Chem. 1977, 108, 929–952; (g) Balalaie, S.; Kowsari, E. Monatsh. Chem. 2001, 132, 1551–1555; (h) Cui, S.-L; Wang, J.; Lin, X.-F.; Wang, Y.-G. J. Org. Chem. 2009, 74, 2862–2865.
- (a) Nakajima, T.; Inada, T.; Igarashi, T.; Sekioka, T.; Shimizu, I. Bull. Chem. Soc. Jpn. 2006, 79, 1941–1949; (b) Inada, T.; Nakajima, T.; Shimizu, I. Heterocycles 2005, 66, 611–619; (c) Sueki, S.; Okamoto, C.; Shimizu, I.; Seto, K.; Furukawa, Y. Bull. Chem. Soc. Jpn. 2010, 83, 385–390.
- 8. Tietze, L. F.; Voss, E.; Hartfiel, U. Org. Synth. 1990, 69, 238-244.