

0277-5387(95)00294-4

THE SYNTHESIS OF PALLADIUM-GOLD AND PLATINUM-GOLD BIMETALLIC COMPLEXES BASED UPON BIS(DIPHENYLARSINO)METHANE: CRYSTAL STRUCTURE OF *TRANS*-[Pd(μ-Ph₂AsCH₂AsPh₂AuCl)₂Cl₂] · xCH₂Cl₂

ANDREW F. CHIFFEY, JOHN EVANS, WILLIAM LEVASON* and MICHAEL WEBSTER

Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.

(Received 12 April 1995; accepted 15 June 1995)

Abstract—The reaction of trans-[M(η^1 -Ph₂AsCH₂AsPh₂)₂Cl₂] (M = Pd or Pt) with Au(tht)Cl (tht = tetrahydrothiophen) formed trans-[M(μ -Ph₂AsCH₂AsPh₂AuCl)₂Cl₂], from which the corresponding bromides were made by reaction with LiBr. Oxidative addition of the appropriate dihalogen formed trans-[M(μ -Ph₂AsCH₂AsPh₂AuX₃)₂X_n] (M = Pd, n = 2; M = Pt, n = 4). The structure of the complex trans-[Pd(μ -Ph₂As CH₂AsPh₂AuCl)₂Cl₂] • xCH₂Cl₂ has been determined and shown to contain trans square planar palladium atoms [Pd—Cl 2.291 (av), Pd—As 2.416(2), 2.400(2) Å]. Each bis(diphenylarsino)methane ligand coordinates to palladium and gold [As—Au 2.331(2), 2.340(2) Å], but there are no significant Pd···Au interactions. The ligand Me₂AsCH₂AsMe₂ formed only insoluble, probably polymeric, 1 : 1 complexes [{MCl₂(Me₂AsCH₂AsMe₂)_n], whilst reaction of [PdCl₂(Ph₂SbCH₂SbPh₂)₂] with [Au(tht)Cl] produced [PdCl₂ (Ph₂SbCH₂SbPh₂)]₂ and [ClAu(Ph₂SbCH₂SbPh₂)AuCl].

The syntheses of homo- and heteronuclear bimetallic complexes using methylene backboned phosphine ligands such as $Ph_2PCH_2PPh_2$ (dppm) or $Ph_2PCH_2P(Ph)CH_2PPh_2$ have been extensively studied.¹⁻³ Our current interest is in the production of hetero-bimetallic complexes containing soft metals as catalyst precursors, and we have reported elsewhere⁴ studies of palladium and platinum complexes of the group 16 ligands RECH₂ER (R = Me or Ph, E = S, Se or Te). These complexes are too labile to form bimetallic species conveniently, and hence we have examined the ligands Ph_2As CH_2AsPh_2 (dpam) and $Ph_2SbCH_2SbPh_2$ (dpsbm), and report the results below.

RESULTS AND DISCUSSION

Bis(diphenylphosphino)methane (dppm) is known to preferentially chelate to Pd^{II} and Pt^{II}

complexes such as $[M(dppm)Cl_2]$ in and $[M(dppm)_2]Cl_2^{1,2,5}$ (M = Pd or Pt), although with strong binding co-ligands such as σ -C₆F₅⁶ or C = CR,⁵ the η^1 coordination mode is found as in $[M(\eta^1-dppm)_2R_2]$ (R = C₆F₅ or C=CR). These complexes have been used to construct bimetallics by binding a second metal to the uncoordinated ---PPh₂ group in the η^1 -dppm. For our purposes the presence of "exotic" groups such as acetylides or perfluoroaryls was undesirable, and hence we replaced dppm by the heavier analogues dpam and dpsbm, in which the larger donor atoms significantly increase the ring strain on chelation and hence favour the η^1 bonding mode.^{7,8}

The reaction of M(MeCN)₂Cl₂ (M = Pd or Pt) with dpam in acetonitrile in a 1:2 ratio afforded the complex [M(dpam)₂Cl₂]. The platinum complex has been described previously,⁷ and formulated as a *trans* isomer on the basis of the far-IR spectrum. The ¹⁹⁵Pt NMR shift at δ -3659 confirms the geometry as *trans*, since *cis* PtAs₂Cl₂ donor sets resonate at substantially lower frequencies.⁹

^{*}Author to whom correspondence should be addressed.

 $[Pd(dpam)_2Cl_2]$ exhibits v(Pd-Cl) at 354 cm⁻¹, consistent with a trans geometry in this case also. Treatment of the [M(dpam)₂Cl₂] complexes with two equivalents of [Au(tht)Cl] (tht = tetrahydrothiophen) in CH_2Cl_2 produced yellow solids which contained M, gold, arsenic and chlorine by EDX, and had analyses consistent with the formula [M(dpam)₂Au₂Cl₄]. The ¹H NMR spectra of these complexes revealed the absence of tht, and that the $\delta(CH_2)$ resonances of the dpam ligand had shifted to high frequency by ≥ 0.6 ppm. The v(M-Cl) vibrations, and in the platinum case the ¹⁹⁵Pt chemical shift, were only slightly different from those of the starting materials. Overall, this suggests that the gold has bound to the uncoordinated -AsPh₂ groups with no major change at the M centres, and that a probable formulation is $[M(\mu$ dpamAuCl)₂Cl₂]. This was confirmed by an X-ray study of the palladium-gold complex.

The crystal structure of trans-[Pd(μ -Ph₂As CH₂AsPh₂AuCl)₂Cl₂] · xCH₂Cl₂ consists of discrete molecules with the unit cell containing two very similar but crystallographically distinct molecules. Each molecule is centrosymmetric, with a palladium atom positioned on the centre of symmetry and with a *trans* square planar coordination geometry (Fig. 1 and Table 1). Bis(diphenylarsino)methane (dpam) has been characterized crystallographically a number of times and several coordination modes have been established. In the present example, one arsenic atom coordinates to Pd^{II} and the other to Au^I, but with a Pd···Au distance [3.56 (av) Å] too long to be

Fig. 1. View of molecule 2 showing the atom labelling scheme. Thermal ellipsoids are drawn at the 35% probability level and hydrogen atoms are omitted for clarity. Molecule 1 has a similar geometry and a related numbering scheme.

regarded as a significant interaction. In the same vein, the Pd \cdots Cl(Au) distance (>3.6 Å) means that the palladium is in a clear cut square planar coordination geometry. The Pd-As distances [2.416(2), 2.400(2) Å] are in good agreement with a much earlier study¹⁰ of [Pd(dpam)Cl]₂CO (2.40-2.46 Å) and the Pd-Cl distances [2.291 (av) Å] may be compared to that, for example, in $(NH_4)_2$ [PdCl₄] [2.299(4) Å].¹¹ The As—Au distances [2.331(2), 2.340(2) Å] are shorter than those found¹² in the Au^{III} species [{ $R_3Au(dpam)$ } Ag(OClO₃)] (R = C₆F₅) [2.457(2), 2.469(2) Å] and similar to that in [Ph3AsAuBr] [2.342(5) Å].¹³ The ligand geometry is unexceptional, with one of the phenyl groups showing some disorder as evidenced by the thermal parameters, and the crystal contains methylene chloride of solvation, which showed a partial occupancy of 0.17(2). As found in other systems with coordinated Au-Cl, the As—Au—Cl angle is close to linear.

The $[M(\mu-dpamAuCl)_2Cl_2]$ complexes are stable in solution in chlorinated solvents, and reaction with LiBr in refluxing ethanol converts them to the corresponding bimetallic bromides, which are assigned a similar structure on the basis of the spectroscopic data (Experimental section). Treatment of $[Pt(\mu-dpamAuX)_2X_2]$ (X = Cl or Br) in CH₂Cl₂ solution with a small excess of the corresponding dihalogen in CCl₄ resulted in precipitation of deep yellow (X = Cl) or orange (X = Br) solids, which analysed as $[Pt(\mu-dpamAuX_3)_2X_4]$, corresponding to oxidation of both metal centres. The ¹⁹⁵Pt NMR spectrum of the bromocomplex in CH₂Cl₂ showed a single resonance at δ – 3147, consistent with Pt^{IV}, but the dark orange solution paled rapidly and a new resonance at $\delta - 4075$ appeared and the Pt^{IV} resonance disappeared. The new resonance was in the region expected for a Pt^{II} complex, but differed from that of either $[Pt(\mu-dpamAuBr)_2Br_2]$ or $[Pt(\eta^{1}$ dpam)₂Br₂], and is tentatively assigned to [Pt(μ dpamAuBr₃)₂Br₂], the product of reductive elimination at the platinum, with the gold centre remaining as Au^{III} . The corresponding [Pt(μ dpamAuCl₃)₂Cl₄] had a ¹⁹⁵Pt NMR resonance at $\delta - 2286$, and the decomposition product $[Pt(\mu-dpamAuCl_3)_2Cl_2]$ had a signal at $\delta-3335$. On further standing, this solution also developed a resonance at δ -1615 attributable to [PtCl₄]²⁻. Addition of dihalogen in CCl₄ to CH₂Cl₂ solutions of $[Pd(\mu-dpamAuX)_2X_2]$ produced yellow materials which we formulate as $[Pd(\mu-dpamAuX_3)_2X_2]$, where the palladium remains as Pd¹¹, but the gold has oxidized to Au^{III}. The UV-vis spectra consist of several overlapping bands with poorly defined maxima, but by comparison with the spectra of the Pd^{II}-Au^I starting materials, new absorptions were

Molecule 1		Molecule 2		
Pd(1)-Cl(11) 2.289(5)		Pd(2)-Cl(21)	2.293(5)	
Pd(1)—As(11) 2.416(2)		Pd(2)As(21)	2.400(2)	
Au(1)—As(12) 2.331(2)		Au(2)—As(22)	2.340(2)	
Au(1)-Cl(12) 2.260(5)		Au(2)Cl(22)	2.267(5)	
As(11) - C(1) = 1.94(2)		As(21) - C(2)	1.97(2)	
As(11) - C(11) = 1.97(2)		As(21)C(51)	1.94(2)	
As(11) - C(21) = 1.91(2)		As(21)C(61)	1.95(2)	
As(12) - C(1) = 1.91(2)		As(22) - C(2)	1.94(2)	
As(12)—C(31) 1.93(2)		As(22)—C(71)	1.92(2)	
As(12) - C(41) = 1.90(2)		As(22)C(81)	1.93(2)	
$As(11) \cdots As(12) = 3.233$		$As(21) \cdots As(22)$	3.192	
$Pd(1) \cdots Au(1) = 3.636$		$Pd(2)\cdots Au(2)$	3.494	
C—C (phenyl) min. 1.3	1(3)	max. 1.53(4)		
Cl(11)Pd(1)As(11)	91.8(1)	Cl(21)— $Pd(2)$ — A	as(21)	90.8(1)
Cl(12)— $Au(1)$ — $As(12)$	176.8(2)	Cl(22)—Au(2)—A	As(22)	175.0(2)
Pd(1) - As(11) - C(1)	114.9(6)	Pd(2)-As(21)-C	C(2)	112.6(6)
Pd(1) - As(11) - C(11)	117.0(6)	Pd(2)-As(21)-C	C(51)	115.4(5)
Pd(1) - As(11) - C(21)	116.5(6)	Pd(2)—As(21)—C	C(61)	118.2(6)
Au(1) - As(12) - C(1)	111.9(6)	Au(2)As(22)	C(2)	117.9(6)
Au(1) - As(12) - C(31)	110.2(6)	Au(2)—As(22)—4	C(71)	114.6(6)
Au(1) - As(12) - C(41)	115.9(6)	Au(2)—As(22)—4	C(81)	110.8(6)
C(1)— $As(11)$ — $C(11)$	102.6(8)	C(2)—As(21)—C	(51)	104.0(8)
C(1)— $As(11)$ — $C(21)$	100.6(8)	C(2)As(21)C	(61)	101.6(8)
C(11)— $As(11)$ — $C(21)$	103.0(8)	C(51)-As(21)-C	C(61)	103.1(8)
C(1) $As(12)$ $C(31)$	106.4(9)	C(2)As(22)C	(71)	106.6(8)
C(1)— $As(12)$ — $C(41)$	105.4(9)	C(2) - As(22) - C	(81)	101.2(8)
C(31)— $As(12)$ — $C(41)$	106.5(9)	C(71)—As(22)—O	C(81)	104.2(8)
As(11) - C(1) - As(12)	114(1)	As(21)-C(2)-A	s(22)	110(1)
CC (phenyl)	min. 111(3)	max. 126(3)		

Table 1. Selected bond lengths (Å) and angles (°)

identified at *ca* 30,000 (X = Cl) or *ca* 25,000 (X = Br) cm⁻¹, regions where [AuX₃(AsR₃)] complexes absorb.¹⁴ The spectra lack absorptions at lower energy ($\ge ca$ 20,000 cm⁻¹) reported for Pd^{TV} complexes of type [Pd(AsR₃)₂X₄].¹⁵ The latter are highly unstable deep orange-red complexes, and few have been obtained in a pure state.¹⁵ Our failure to convert the Pd^{TI} centres to Pd^{TV} is not particularly surprising, and even in the platinum analogues the Pt^{TV} centres readily reductively eliminate X₂ in solution.

In marked contrast to dpam or Me₂PCH₂PMe₂,² the coordination chemistry of the ligand Me₂As CH₂AsMe₂ has not been investigated. We found that reaction of Me₂AsCH₂AsMe₂ with MCl₂ (MeCN)₂ in CH₂Cl₂ gave only 1:1 complexes {MCl₂(Me₂AsCH₂AsMe₂)}_n, which were insoluble in common organic solvents. The tentative identification of two ν (M—Cl) stretching modes in the far-IR spectrum of each complex suggests the chlorines are *cis*, but whether the complexes are mono-, di- or polymeric is unclear. The corresponding $\{PtCl_2(Me_2PCH_2PMe_2)\}_n$ is also insoluble in common solvents, and is thought¹⁶ to be a *cis*-diphosphine-bridged dimer. dithioether The and diselencether complexes $\{M(MeECH_2EMe)Cl_2\}_{\mu}$ $(E = S \text{ or } Se)^4$ (but not the corresponding ditelluroether complexes) dissolve in chlorocarbons in the presence of excess MeECH₂EMe to give $[MCl_2(\eta^1-MeECH_2EMe)_2]$. However, no reaction occurred between the $\{MCl_2(Me_2AsCH_2AsMe_2)\}_n$ and excess Me₂AsCH₂AsMe₂. The difference between dpam and Me₂AsCH₂AsMe₂ is consistent with the expected greater donor ability of Me₂As groups which, combined with the insolubility of the 1:1 complexes, disfavour the formation of η^{1} coordinated Me₂AsCH₂AsMe₂ complexes.

The palladium ditertiary stibine complex $[Pd(dpsbm)_2Cl_2]$, which is probably a *cis* isomer on the basis of its far-IR spectrum,⁸ was treated with [Au(tht)Cl], resulting in a red-brown solid. However, this contained gold, antimony and chlor-

ine but no palladium (EDX data) and was identified⁸ as ClAu(dpsbm)AuCl by comparison with a sample prepared directly from Au(tht)Cl and dpsbm in CH₂Cl₂. The palladium product from this reaction was identified by chemical analysis as $[Pd(dpsbm)Cl_2]_2$.⁸ Hence, in the case of dpsbm, the gold reagent abstracts one dpsbm ligand in preference to forming a bimetallic complex.

EXPERIMENTAL

Physical measurements were made as described previously.⁴

Preparations and characterizations

Pd(Ph₂AsCH₂AsPh₂)₂Cl₂. A solution of Ph₂As CH₂AsPh₂ (1.92 g, 4.1 mmol) in MeCN (10 cm³) was added to PdCl₂(MeCN)₂ (0.52 g, 2.0 mmol) suspended in MeCN (30 cm³). The mixture was refluxed for 5 h. The yellow precipitate that formed was filtered off and rinsed with MeCN (10 cm³). The crude product was recrystallized from CH₂Cl₂. Yield 0.20 g (89%). ¹H NMR (CDCl₃, 90 MHz) : δ 3.15 (CH₂), 7.0–7.6 (phenyl). ν (Pd—Cl) = 354 cm⁻¹. $E_{max}/10^3$ cm⁻¹ (ϵ mol/mol⁻¹cm⁻¹ dm³) : 28.4 (12,700), 34.1 (6300).

Pt(Ph₂AsCH₂AsPh₂)₂Cl₂. This was prepared in an analogous manner, in 80% yield, using PtCl₂(MeCN)₂. ¹H NMR (CDCl₃, 90 MHz) : δ 2.97 (CH₂), 7.0–7.6 (phenyl). ¹⁹⁵Pt NMR (CD₂Cl₂, 77.8 MHz) : δ – 3659. ν (Pt––Cl) = 329 cm⁻¹. E_{max} (ϵ mol) : 32.5 (3600).

Pd(Ph₂AsCH₂AsPh₂—AuCl)₂Cl₂. A solution of Pd(Ph₂AsCH₂AsPh₂)₂Cl₂ (0.17 g, 0.15 mmol) in CH₂Cl₂ (10 cm³) was treated with AuCl (tetrahydrothiophen) (0.10 g, 0.31 mmol) in CH₂Cl₂ (5 cm³). The mixture was stirred for 3 h, concentrated (2 cm³) and precipitated with Et₂O (20 cm³). The yellow solid that formed was separated, washed thoroughly with Et₂O and dried *in vacuo*. Yield 0.20 g (83%). Found: C, 38.0; H, 2.7. Calc. for C₅₀H₄₄As₄Au₂Cl₄Pd: C, 37.8; H, 2.8%. ¹H NMR (CDCl₃, 300 MHz): δ 3.75 (CH₂), 7.0–7.6 (phenyl). ν (Pd—Cl) = 354 cm⁻¹, ν (Au—Cl) = 326 cm⁻¹. E_{max} (ϵ mol): 27.9 (13,300), 38.2 (20,300).

Pt(Ph₂AsCH₂AsPh₂—AuCl)₂Cl₂. This was prepared in an analogous manner, in 79% yield, using Pt(Ph₂AsCH₂AsPh₂)₂Cl₂. Found : C, 35.9 ; H, 2.5. Calc. for C₅₀H₄₄As₄Au₂Cl₄Pt : C, 35.8 ; H, 2.6%. ¹H NMR (CDCl₃, 300 MHz) : δ 3.73 (CH₂), 7.0-7.6 (phenyl). ¹⁹⁵Pt NMR (CD₂Cl₂, 77.8 MHz) : δ - 3685. v(Pt—Cl) = 326 cm⁻¹. E_{max} (ε mol) : 35.5 (17,600), 37.7 (22,100).

The bromo complexes were prepared by refluxing the analogous chloro complexes with a large excess

of LiBr in ethanol for 4 h. The resulting materials were filtered off, washed with a little diethyl ether and dried *in vacuo*.

Pd(Ph₂AsCH₂AsPh₂—AuBr)₂Br₂. Found : C, 33.7; H, 1.6. Calc. for C₅₀H₄₄As₄Au₂Br₄Pd : C, 34.0; H, 2.5%. ¹H NMR (CDCl₃, 300 MHz) : δ 3.95 (CH₂), 7.0–7.6 (phenyl). v(Pd—Br) = 278 cm⁻¹. E_{max} (ϵ mol) : 26.1 (17,300), 32.3 (11,300).

Pt(Ph₂AsCH₂AsPh₂—AuBr)₂Br₂. Found: C, 30.1; H, 2.0. Calc. for C₅₀H₄₄As₄Au₂Br₄Pt: C, 32.4; H, 2.4%. ¹H NMR (CDCl₃, 300 MHz): δ 3.91 (CH₂), 7.0–7.6 (phenyl). ¹⁹⁵Pt NMR (CD₂Cl₂, 77.8 MHz): δ –4304. v(Pt—Br) = 279 cm⁻¹. E_{max} (ϵ mol): 33.1 (14,200), 37.9 (25,500).

Pd(Ph₂AsCH₂AsPh₂—AuCl₃)₂Cl₂. A solution of Pd(Ph₂AsCH₂AsPh₂—AuCl)₂Cl₂ (0.20 g, 0.13 mmol) in CH₂Cl₂ (10 cm³) was treated with a saturated solution of chlorine in CCl₄ (1 cm³). The solution was stirred for 5 min, concentrated (2 cm³) and precipitated with Et₂O (10 cm³). The yellow solid produced was filtered off and dried *in vacuo*. Found: C, 35.0; H, 2.6. Calc. for C₅₀H₄₄As₄Au₂ Cl₈Pd: C, 34.7; H, 2.5%. ¹H NMR (CDCl₃, 90 MHz): δ 3.48 (CH₂), 7.2–7.7 (phenyl). E_{max} (ϵ mol): 29.3 (13,500), 32.2 (16,100).

Pt(Ph₂AsCH₂AsPh₂—AuCl₃)₂Cl₄. This was prepared in an analogous manner using Pt(Ph₂As CH₂AsPh₂—AuCl)₂Cl₂. Found: C, 32.7; H, 2.4. Calc. for C₅₀H₄₄As₄Au₂Cl₁₀Pt: C, 31.8; H, 2.3%. ¹H NMR (CDCl₃, 90 MHz): δ 3.72 (CH₂), 7.2–7.7 (phenyl). *E*_{max} (ϵ mol): 29.0 (33,800), 37.5 (23,400). ¹⁹⁵Pt NMR (CD₂Cl₂, 77.8 MHz): δ –2286 (Pt^{1V}), –3335 (Pt¹¹).

Pd(Ph₂AsCH₂AsPh₂—AuBr₃)₂Br₂. A solution of Pd(Ph₂AsCH₂AsPh₂—AuBr)₂Br₂ (0.22 g, 0.12 mmol) in CH₂Cl₂ (10 cm³) was treated with a solution of bromine in CCl₄ (1 cm³ of 10 cm³ Br₂ in 50 cm³ CCl₄). The solution was stirred for 5 min, concentrated (2 cm³) and precipitated with Et₂O (10 cm³). The orange solid that formed was filtered off and dried *in vacuo*. Found: C, 28.5; H, 1.5. Calc. for C₅₀H₄₄As₄Au₂Br₈Pd: C, 28.8; H, 2.1%. ¹H NMR (CDCl₃, 90 MHz): δ 3.73 (CH₂), 7.2–7.7 (phenyl). *E*_{max} (ϵ mol): 26.3 (5100), 28.4 (5200), 38.8 (32,200).

Pt(Ph₂AsCH₂AsPh₂—AuBr₃)₂Br₄. This was prepared in an analogous manner using Pt(Ph₂As CH₂AsPh₂—AuBr)₂Br₂. Found: C, 25.0; H, 1.7. Calc. for C₅₀H₄₄As₄Au₂Br₁₀Pt: C, 25.7; H, 1.9%. ¹H NMR (CDCl₃, 90 MHz): δ 3.55 (CH₂), 7.2–7.7 (phenyl). *E*_{max} (ϵ mol): 26.5 (4200), 29.7 (6700), 33.1 (10.900), 38.8 (28,000). ¹⁹⁵Pt NMR (CD₂Cl₂, 77.8 MHz): δ –3147 (Pt^{IV}), –4075 (Pt^{II}).

 $Me_2AsCH_2AsMe_2$. Sodium metal (4.2 g, 0.18 mol) in THF (150 cm³) was treated dropwise with Me_2AsI (20.4 g, 0.84 mol) with gentle heating to

initiate the reaction. After stirring for 30 min, CH_2Cl_2 (2.0 cm³, 0.03 mol) was added dropwise over 1 h, then the mixture was stirred overnight. Excess sodium was hydrolysed with ethanol (10 cm³) and the reaction mixture was hydrolysed with H_2O (60 cm³). The organic layer was separated and dried over MgSO₄. The solvents were removed and the crude product distilled *in vacuo*, giving 1.4 g (21% based on CH₂Cl₂) of Me₂AsCH₂AsMe₂, b.p. 30°C (1.0 mm Hg). ¹H NMR (CDCl₃, 90 MHz) : δ 1.1 (CH₃), 1.6 (CH₂).

Pd(Ph₂SbCH₂SbPh₂)₂Cl₂. This was made as described.⁸ Found: C, 45.6; H, 3.4. Calc. for $C_{50}H_{44}Cl_2PdSb_4$: C, 45.9; H, 3.4%. ¹H NMR (CDCl₃, 300 MHz): δ 2.44 (CH₂), 7.0–7.6 (phenyl).

Reaction of $Pd(Ph_2SbCH_2SbPh_2)_2Cl_2$ with Au(tht)Cl. A solution of Au(tht)Cl (0.04 g, 0.12 mmol) in CH_2Cl_2 (5 cm³) was added to $Pd(Ph_2SbCH_2SbPh_2)_2Cl_2$ (0.08 g, 0.06 mmol) in CH_2Cl_2 (10 cm³), and the mixture stirred for 30 min. The solution was concentrated *in vacuo* to *ca* 5 cm³, diethyl ether (10 cm³) added, and the redbrown solid (A) produced filtered off and dried *in vacuo*. The yellow filtrate was taken to dryness *in vacuo* (B).

(A) Found: C, 28.2; H, 2.1. Calc. for $C_{25}H_{22}$ Au₂Cl₂Sb₂: C, 29.1; H, 2.1% ¹H NMR (CDCl₃, 300 MHz): δ 2.93 (CH₂), 7.0–7.6 (phenyl). $v(Au-Cl) = 320 \text{ cm}^{-1}$. (B) Found: C, 40.4; H, 3.0. Calc. for $C_{50}H_{44}Cl_4Pd_2Sb_4$: C, 40.4; H, 3.0%.

Au₂Cl₂(Ph₂SbCH₂SbPh₂). To Au(tht)Cl (0.07 g, 0.2 mmol) in CH₂Cl₂ (5 cm³) was added to a solution of Ph₂SbCH₂SbPh₂ (0.06 g, 0.1 mmol) in CH₂Cl₂ (5 cm³). The mixture was stirred for 30 min, concentrated to 2 cm³ and treated with diethyl ether (15 cm³). The dark red–brown precipitate was filtered, washed with diethyl ether (10 cm³) and dried *in vacuo*. Yield 0.08 g (73%). Found : C, 28.1 ; H, 2.2. Calc. for C₂₅H₂₂Au₂Cl₂Sb₂: C, 29.1 ; H, 2.1%. ¹H NMR (CDCl₃, 300 MHz) : δ 2.93 (CH₂), 7.3–7.6 (phenyl). v(Au–Cl) = 319 cm⁻¹.

Crystal structure determination

Crystals were grown by vapour diffusion from CH_2Cl_2 -Et₂O and mounted in glass capillaries. Data were collected using a Stoe Stadi-4 diffractometer fitted with Mo radiation and a graphite monochromator. Cell dimensions were determined from 11 reflections ($24 \le 2\theta \le 25^\circ$) using a yellow needle crystal. The three standard reflections showed some decay during the experiment, which was allowed for in the data processing along with the usual Lorentz and polarization corrections. An empirical ψ -scan absorption correction was applied. The structure was solved using SHELXS86¹⁷ and refined using SHELX76.¹⁸ Weak

features in the difference electron density map showed the presence of a dichloromethane solvate molecule, which was allowed to refine with a variable population. Hydrogen atoms were introduced in calculated positions [d(C-H) = 1.08 Å] with a common refined thermal parameter, and the palladium, gold, arsenic and chlorine (not solvate) atoms given anisotropic thermal parameters. One of the phenyl rings [C(4J), J = 1, 6] refined poorly, giving unreasonable bond lengths and large thermal parameters, and during the final refinement this was constrained to be a regular hexagon [d(C-C) = 1.395 Å]. Full-matrix least-squares refinement minimizing $\Sigma w \Delta^2$ using neutral atom complex scattering factors taken from SHELX76 (Cl, C, H) and ref. 19 (Pd, Au, As) converged satisfactorily and the residual electron density was in the range +1.32 to -1.38 e Å⁻³, with the largest peak close to Au(1). Details of the structure solution are given in Table 2. Additional material available from the Cambridge Crystallographic Data

Table 2. Crystal data for *trans*- $[Pd(\mu-Ph_2AsCH_2AsPh_2AuCl)_2Cl_2] \cdot xCH_2Cl_2$

Formula	$C_{50}H_{44}As_4Au_2Cl_4Pd \cdot xCH_2Cl_2$		
	[x = 0.17(2)]		
M _r	1586.76 + 84.92x		
Crystal system	Triclinic		
Space group	РĪ		
a (Å)	13.435(7)		
$b(\mathbf{A})$	11.458(7)		
$c(\mathbf{\hat{A}})$	18.595(9)		
α (°)	90.53(4)		
β (°)	100.38(4)		
γ (°)	89.83(5)		
$V(Å^3)$	2815.5		
$T(\mathbf{K})$	295		
Density (calc.; $g cm^{-3}$)	1.871 ($x = 0$) to 1.971 ($x = 1$)		
Z	2		
F(000) (e)	1496 + 84x		
Crystal size (mm ³)	$0.10 \times 0.10 \times 0.78$		
Type of data collection	ω -2 θ		
Measured reflections	7272		
Unique reflections	$6432 \ (R_{\rm int} = 0.034)$		
Absorption correction	ψ -scan		
2θ range (°)	5-45		
Index range $(h; k; l)$	-14 to 14, -12 to 12, 0 to 20		
Observed reflections	5160 $[F > 3\sigma(F)]$		
Number of parameters	302		
Weighting scheme (w^{-1})	$\sigma^2(F) + 0.001F^2$		
λ , Å (Mo- K_{α})	0.71073		
$\mu ({\rm cm}^{-1})$	80.1 (x = 0)		
Max. shift/e.s.d.	0.09		
R"	0.059		
R_{w}^{a}	0.081		

 ${}^{a}R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; R_{w} = [\Sigma w (F_{o} - F_{c})^{2} / \Sigma w F_{o}^{2}]^{1/2}.$

Centre comprises the fractional atomic coordinates, thermal parameters and a full listing of bond lengths and angles.

Acknowledgements—We thank the SERC and B.P. Chemicals Ltd for a CASE award (A.F.C.), and Dr A. J. Blake of the University of Edinburgh for the X-ray data collection.

REFERENCES

- 1. R. J. Puddephatt, Chem. Soc. Rev. 1983, 99.
- B. Chaudret, B. Delavaux and R. Poilblanc, Coord. Chem. Rev. 1988, 86, 191.
- 3. A. L. Balch, Prog. Inorg. Chem. 1994, 41, 239.
- A. F. Chiffey, J. Evans, W. Levason and M. Webster, J. Chem. Soc., Dalton Trans. 1994, 2835.
- C. R. Langrick, D. M. McEwan, P. G. Pringle and B. L. Shaw, J. Chem. Soc., Dalton Trans. 1983, 2487.
- R. Uson, A. Laguna, J. Fornies, I. Valenzuela, P. G. Jones and G. M. Sheldrick, *J. Organomet. Chem.* 1984, 273, 129.
- G. B. Jacobsen and B. L. Shaw, J. Chem. Soc., Dalton Trans. 1987, 151.
- 8. W. Levason and C. A. McAuliffe, J. Coord. Chem. 1974, 4, 47.

- 9. P. S. Pregosin, Coord. Chem. Rev. 1982, 44, 247.
- R. Colton, M. J. McCormick and C. D. Pannan, J. Chem. Soc., Chem. Commun. 1977, 823; Aust. J. Chem. 1978, 31, 1425.
- 11. J. D. Bell, D. Hall and T. N. Waters, *Acta Cryst.* 1966, **21**, 440.
- A. Laguna, M. Laguna, J. Fananas, P. G. Jones and C. Fittschen, *Inorg. Chim. Acta* 1986, 121, 39.
- F. W. B. Einstein and R. Restivo, Acta Cryst., Sect. B 1975, 31, 624.
- 14. C. A. McAuliffe, R. V. Parish and P. D. Randall, J. Chem. Soc., Dalton Trans. 1979, 1730.
- D. J. Gulliver and W. Levason, J. Chem. Soc., Dalton Trans. 1982, 1895.
- K. A. Azam, G. Ferguson, S. S. M. Ling, M. Parvez, R. J. Puddephatt and D. Srokowski, *Inorg. Chem.* 1985. 24, 2799.
- G. M. Sheldrick, SHELXS86, Program for the Solution of Crystal Structures. University of Göttingen, Germany (1986); Acta Cryst., Sect. A 1990, 46, 467.
- G. M. Sheldrick, SHELX76, Program for Crystal Structure Determination. University of Cambridge (1976).
- International Tables for X-ray Crystallography, Vol. 4, pp. 99–101, 149–150. Kynoch Press, Birmingham (1974).