

Tetrahedron Letters 40 (1999) 5-8

TETRAHEDRON LETTERS

Expeditious Route to F unit Building Block of Moenomycin A

Ramesh Kakarla^{*}, Manuka Ghosh, Jan A. Anderson, Richard G. Dulina and Michael J. Sofia

Intercardia Research Laboratories, 8 Cedar Brook Drive, Cranbury, NJ 08852

Received 18 September 1998; revised 13 October 1998; accepted 16 October 1998

Abstract: Synthesis of the versatile F sugar unit building block of moenomycin A, Phenyl 2-O-levulinoyl-4-C-methyl-1-thio- β -D-glucopyranosiduronic acid is described starting from phenyl 1-thio- β -D-galactopyranoside. The key synthetic steps included: (I) Regioselective protection of the 3-OH group of phenyl 6-O-trityl-1-thio- β -D-galactopyranoside as its TBDMS ether, (ii) TBAF mediated TBDMS group migration from the C-3 to C-2 position of phenyl 3-O-TBDMS-4-C-methyl-6-O-trityl-1-thio- β -D-galactopyranoside, and (iii) Selective deprotection of TBDMS and trityl groups in phenyl 2-O-levulinoyl-3-O-TBDMS-4-C-methyl-6-O-trityl-1-thio- β -D-glucopyranoside by DDQ. © 1998 Elsevier Science Ltd. All rights reserved.

Moenomycin A¹ (1, Figure 1) belongs to the moenomycin family of phosphoglycolipid antibiotics,² and is a potent inhibitor of bacterial cell wall peptidoglycan biosynthesis.³ Moenomycin A is the major and most active constituent of animal nutritional product² Flavomycin^R. The disaccharide 2⁴ (Figure 1) is the smallest fragment of moenomycin A, which retains the full biological activity of the parent compound. Further studies⁵ on the degradation products of 1 revealed the moenuronamide part (F unit with phospholipid) shows some antibacterial activity. However, degradation products of moenomycin C₁ and A₁₂, which contain a galacturonamide moiety as the F unit, revealed that the trisaccharides 3⁶ and 4⁷ (Figure 1) were the minimum structures required for biological activity.

0040-4039/99/\$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4039(98)02217-5

In order to probe the structure-activity relations of Moenomycin A degradation product 2 through a combinatorial library, we required a suitable protected F unit building block. We envisioned the moenuronamide compound 5 as a versatile building block to generate a three dimensional library. Diversity at C_1 , C_2 and C_3 hydroxyl positions of compound 5 was expected to arise by introducing various phospholipids, monosaccharides and carbamate functionalities at respective positions (Figure 2). The existing synthetic methods⁸ for the preparation of 4-C-methyl glucopyranosiduronic acid derivatives were not suitable to prepare the required building block 5. In this communication, we present a novel and efficient method for the synthesis of compound 5 starting from phenyl 1-thio- β -D-galactopyranoside⁹ (6).

Tritylation of phenyl 1-thio- β -D-galactopyranoside (6) in pyridine and DMAP at 120 °C for 6h furnished 6-O-trityl compound 7 in quantitative yield. Selective protection of the 3-OH group in compound 7 as its TBDMS (tert-butyldimethylsilyl) ether using TBDMSCl and imidazole in DMF for 2h at rt afforded the 3-O-TBDMS derivative 8 in 80% yield along with 10% of the 2-O-TBDMS derivative 8a, and trace amounts of the 2,4-di-O-TBDMS derivative 8b. The structures of 8, 8a and 8b were confirmed by conversion into their corresponding acetates. Regioselective acetylation of 3-O-TBDMS derivative 8 with Ac₂O and DMAP in pyridine at 0°C to 10°C gave us the 2-O-acetyl derivative 9 in quantitative yield. The structure of the 2-O-acetylated compound 9 was confirmed by its ¹H NMR,¹⁰ which showed one CH₃ signal at 2.10 ppm and a deshielded H-2 proton signal as a triplet at 5.16 ppm. PDC oxidation of the 4-OH group in compound 9 furnished the ulose derivative 10 in 75% yield. Grignard reaction of ulose derivative 10 with MeMgCl in the presence of CeCl₃ in toluene at -78°C to rt resulted in 3:1 ratio (80% yield) of phenyl 3-O-TBDMS-4-C-methyl-6-O-trityl-1-thio-B-Dglucopyranoside (11) and phenyl 4-C-methyl-6-O-trityl-1-thio-B-D-galac-topyranoside (12) (Scheme 1). The stereochemical configuration at C-4 of 4-C-methyl-gluco derivative 11 and 4-C-methyl-galacto derivative 12 was confirmed by ¹³C NMR,¹¹ which showed characteristic 4-C-Methyl carbon signals¹² at 15.77 and 20.65ppm, respectively.

The 4-C-methyl-gluco derivative 11 when treated with $TBAF^{13}$ at rt for 15 min resulted in TBDMS group migration to give compound 13 in 90% yield. The 3-OH group in compound 13 was converted in 85% yield to its levulinoyl ester 14 by treatment with levulinic acid, DCC and DMAP in dichloromethane at refluxing conditions for 10 h. Simulta-

Scheme 1: (i) TrCl, Py, DMAP, 120 ⁰C, 6 h; (ii) TBDMSCl, imidazole, DMF, rt, 2 h; (iii) Ac₂O, Py, DMAP, 0 ⁰C to 10 ⁰C, 1 h; (iv) PDC, Ac₂O, CH₂Cl₂, reflux, 2 h; (v) MeMgCl, CeCl₃, Toluene, -76 ⁰C to rt, 14h

neous deprotection of trityl and TBDMS protecting groups in compound 14 was achieved by modifying the existing DDQ catalyzed TBDMS deprotection protocol.¹⁴ Refluxing compound 14 with 0.5 equivalents of DDQ in 90% aqueous acetonitrile for 4 h gave compound 16 in 70% yield along with a 15% yield of phenyl 2-O-TBDMS-3-O-Levu-linoyl-4-C-methyl-1-thio- β -D-glucopyranoside (15). Jones oxidation¹⁵ of 3-O-levulinoyl-4-C-methyl-glucopyranoside derivative 16 furnished 5 in 65% yield (Scheme 2). The structure of compound 5 was confirmed by ¹H NMR, ¹³C NMR, MS and elemental analysis.¹⁶

Scheme 2: (i) TBAF, THF, rt, 15 min; (ii) Levulinic acid, DCC, DMAP, CH_2Cl_2 , reflux, 24 h; (iii) 90% aq. CH_3CN , DDQ, 90 ^{0}C , 4 h; (iv) Jones reagent, acetone, sonication, 30 ^{0}C , 1 h

In conclusion, we developed an expeditious (17% overall yield) route to F Unit building block (5) of Moenomycin A. This versatile building block 5 will be used as an acceptor in the construction of a combinatorial library based on the disaccharide phosphoglycolipid 2. The selective protection of compounds 8 and 9 with TBDMS and acetate groups should find general utility for carbohydrate building block synthesis. We have also demonstrated for the first time that in the presence of a thiophenyl group and a levulinoyl ester, DDQ is useful in deprotecting TBDMS and trityl groups from carbohydrate molecules.

References and notes

- a) Welzel, P.; Witteler, F.-J.; Muller, D.; Riemer, W. Angew. Chem. Int. Ed. Engl. 1981, 20, 121-123. b) Welzel, P.;Wietfeld, B.; Kunisch, F.; Schubert, T.; Hobert, K.; Duddeck, H.; Muller, D.; Huber, G.; Maggio, J. E.; Williams, D. H. Tetrahedron 1983, 39, 1583-1591, and references cited therein.
- 2. Huber, G. Antibiotics; (Ed.) Hahn, F. E.; Springer: Berlin; 1979, vol 5, 135-153.
- van Heijenoort, J.; van Heijenoort, Y.; Welzel, P. Antibiotic Inhibition of Bacterial Cell Wall Surface Assembely and Function; (Eds.) Actor, P.; Danco-Moore, L.; Higgins, M. L.; Salton, M. R. J.; Shockman, G. D.; American Society for Microbiology: Washington, 1988, 549-557.
- 4. Welzel, P.; Kunisch, F.; Kruggel, F.; Stein, H.; Scherkenbeck, J.; Hiltmann, A.; Duddeck, H.; Muller, D.; Maggio, J. E.; Fehlhaber, H. -W.; Siebert, G.; van Heijenoort, Y.; van Heijenoort, J. *Tetrahedron* 1987, 43, 585-598.
- 5. Fehlhaber, H.-W.; Girg, M.; Seibert, G.; Hobert, K.; Welzel, P.; van Heijenoort, Y.; van Heijenoort, J. Tetrahedron 1990, 46, 1557-1568.
- Hebler-Klintg, M; Hobert, K.; Biallab, A.; Siegels, T.; Hiegemann, M.; Maulshagen, A.; Muller, D.; Welzel, P.; Huber, G.; Bottger, D.; Markus, A.; Seibert, G.; Stark, A.; Fehlhaber, H.-F.; van Heijenoort, Y.; van Heijenoort, J. Tetrahedron 1993, 49, 7667-7678.
- 7. Donnerstag, A.; Marzian, S.; Muller, D.; Welzel, P. Tetrahedron 1995, 51, 1931-1940.
- a) Sato, K.-I.; Kubo, K.; Hong, N.; Kodama, H.; Yoshimura, J. J. Bull. Chem. Soc. Jpn. 1982, 55, 938-942.
 b) Welzel, P.; Bulian, H.-P.; Maulshagen, A.; Muller, D.; Snatzke, G. Tetrahedron 1984, 40, 3657-3666. c) Plewe, M.; Sandhoff, K.; Schmidt, R. R. Carbohydrate Res. 1992, 235, 151-161. d) Hansson, T. G.; Plobeck, N. A. Tetrahedron 1995, 51, 11319-11326.
- 9. a) Ferrier, R. J.; Furneaux, R. H. Carbohydrate Res. 1976, 52, 63-68. b) Sarkar, A. K.; Matta, K. L. Carbohydrate Res. 1992, 233, 245-250.
- 10. Compound 9: ¹H NMR (CDCl₃ + 2 drops D_2O): δ 7.60-7.10 (m, 5H), 5.16 (t, J = 9.6Hz, 1H), 4.54 (d, J = 9.6Hz, 1H), 3.75-3.50 (m, 4H), 3.28-3.22 (m, 1H), 2.10 (s, 3H), 0.85 (s, 9H), 0.06 and 0.05 (each s, 6H).
- 11. a) Compound 11: ¹H NMR (CDCl₃ + 2 drops D₂O) δ 7.70-7.20 (m, 5H), 4.61 (d, J = 9.6Hz, 1H), 3.52-3.40 (m, 3H), 3.26-3.16 (m, 2H), 0.90 (s, 3H), 0.85 (s, 9H), 0.09 and 0.07 (each s, 6H). Selected peaks in ¹³C NMR (CDCl₃) δ 88.89, 87.05, 81.51, 81.1973.09, 71.70, 62.66, 25.93, 18.34, 15.77 (4-C-Me), -4.40 and -4.73. b) Compound 12: ¹H NMR (CDCl₃ + 2 drops D₂O) δ 7.69-7.22 (m, 5H), 4.56 (d, J = 9.6Hz, 1H), 3.65 (t, J = 9.6Hz), 3.57-3.25 (m, 3H), 3.17 (d, J = 9.6Hz, 1H), and 0.95 (s, 3H). Selected peaks in ¹³C NMR (CDCl₃ + 2 drops D₂O) δ 88.20, 87.12, 81.34, 78.08, 73.14, 70.35, 62.95, 20.65 (4-C-Me).
- a) Miljkovic, M.; Gligorijevic, M. Satoh, T.; Miljkovc, D. J. Org. Chem. 1974, 10, 1379-1384. b) Miljkovic, M.; Gligorijevic, M. Satoh, T.; Glisin, D. J. Org. Chem. 1974, 26, 3847-3850.
- a) Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. 1988, 53, 5023-5034. b) Franke, F.; Guthrie, R. D. Aust. J. Chem. 1978, 31, 1285-1290. c) Torisawa, Y.; Shibasaki, M.; Ikegami, S. Tetrahedron Lett. 1979, 21, 1865-1868. d) Ogilvie, K. K.; Beaucage, S. L.; Schifman, A. L.; Theriault, N. Y.; Sadana, K. L. Can. J. Chem. 1978, 56, 2768-2780. e) Jones, S. S.; Reese, C. B. J. Chem. Soc., Perkin Trans. I 1979, 2762-2764. f) Ogilvie, K. K.; Entwistle, D. W. Carbohydrate Res. 1981, 89, 203-210.
- 14. Tanemura, K.; Suzuki, T.; Horaguchi, T. J. Chem. Soc. Perkin Trans. I 1992, 2997-2998.
- Allanson, N. A.; Liu, D.; Chi, F.; Jain, R. K.; Chen, A.; Ghosh, M.; Hong, L.; Sofia, M. J. Tetrahedron Lett. 1998, 39, 1889-1892.
- 16. Compound 5: mp, 60-62 0 C; TLC (CH₂Cl₂ / MeOH, 4:1) R_f = 0.2.; MS (EI): 416 (M+NH₄)⁺; Elemental analysis, Calc: C, 54.26; H, 5.57; S, 8.05. Found: C, 54.45; H, 5.68; S, 7.98. ¹H NMR (CD₃OD) δ 7.53-7.18 (m, 5H), 4.95 (d, J = 9.6Hz, 1H), 4.62 (d, J = 9.6Hz, 1H), 3.85 (br s, 1H), 3.21 (t, J = 9.6Hz, 1H), 2.03 (s, 3H) and 1.04 (s, 3H).; ¹³C NMR (CD₃OD) δ 16.73, 29.05, 29.78, 38.73, 70.40, 73.38, 81.55, 89.05, 129.08, 130.10, 132.36, 133.54, 134.35, 173.87, 208.61.