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Abstract: Synthesis of the versatile F sugar unit building block of moenomycin A, Phenyl 2-O-levulinoyl-4-
C-methyl-1-thio-p-D-glucopyranosiduronic acid is described starting from phenyl 1-thio-B-D-
galactopyranoside. The key synthetic steps included: (I) Regioselective protection of the 3-OH group of
phenyl 6-O-trityl-1-thio-B-D-galactopyranoside as its TBDMS ether, (ii) TBAF mediated TBDMS group
migration from the C-3 to C-2 position of phenyl 3-O-TBDMS-4-C-methyl-6-O-trityl-1-thio-B-D-
galactopyranoside, and (iii) Selective deprotection of TBDMS and trityl groups in pheny! 2-O-levulinoyl-3-
g;z;lgelgMS-4—C-methyl-6-0-trityl—l-thio-B—D-glucopyranoside by DDQ. © 1998 Elsevier Science Ltd. All rights

Moenomycin A' (1, Figure 1) belongs to the moenomycin family of phosphoglycolipid
antibiotics,” and is a potent inhibitor of bacterial cell wall peptidoglycan biosynthesis.?
Moenomycin A is the major and most active constituent of animal nutritional product®
Flavomycin®. The disaccharide 2* (Figure 1) is the smallest fragment of moenomycin A,
which retains the full biological activity of the parent compound. Further studies® on the
degradation products of 1 revealed the moenuronamide part (F unit with phospholipid) shows
some antibacterial activity. However, degradation products of moenomycin C, and A,,, which
contain a galacturonamide moiety as the F unit, revealed that the trisaccharides 3¢ and 4’
(Figure 1) were the minimum structures required for biological activity.
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In order to probe the structure-activity relations of Moenomycin A degradation product 2
through a combinatorial library, we required a suitable protected F unit building block. We
envisioned the moenuronamide compound 5 as a versatile building block to generate a three
dimensional library. Diversity at C;, C, and C; hydroxyl positions of compound 5 was
expected to arise by introducing various phospholipids, monosaccharides and carbamate
functionalities at respective positions (Figure 2). The existing synthetic methods® for the
preparation of 4-C-methyl glucopyranosiduronic acid derivatives were not suitable to prepare
the required building block 5. In this communication, we present a novel and efficient method
for the synthesis of corfipound § starting from phenyl 1-thio-f-D-galactopyranoside’ (6).
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Tritylation of phenyl 1-thio-B-D-galactopyranoside (6) in pyridine and DMAP at 120 °C
for 6h furnished 6-O-trityl compound 7 in quantitative yield. Selective protection of the 3-OH
group in compound 7 as its TBDMS (tert-butyldimethylsilyl) ether using TBDMSCI and
imidazole in DMF for 2h at rt afforded the 3-O-TBDMS derivative 8 in 80% yield along with
10% of the 2-O-TBDMS derivative 8a, and trace amounts of the 2,4-di-O-TBDMS derivative
8b. The structures of 8, 8a and 8b were confirmed by conversion into their corresponding
acetates. Regioselective acetylation of 3-O-TBDMS derivative 8 with Ac,0 and DMAP in
pyridine at 0°C to 10°C gave us the 2-O-acetyl derivative 9 in quantitative yield. The structure
of the 2-O-acetylated compound 9 was confirmed by its 'H NMR,'® which showed one CH,
signal at 2.10 ppm and a deshielded H-2 proton signal as a triplet at 5.16 ppm. PDC oxidation
of the 4-OH group in compound 9 furnished the ulose derivative 10 in 75% yield. Grignard
reaction of ulose derivative 10 with MeMgCl in the presence of CeCl, in toluene at -78°C to rt
resulted in 3:1 ratio (80% yield) of phenyl 3-O-TBDMS-4-C-methyl-6-O-trityl-1-thio-B-D-
glucopyranoside (11) and phenyl 4-C-methyl-6-O-trityl-1-thio-B-D-galac-topyranoside (12)
(Scheme 1). The stereochemical configuration at C-4 of 4-C-methyl-gluco derivative 11 and
4-C-methyl-galacto derivative 12 was confirmed by *C NMR,"' which showed characteristic
4-C-Methyl carbon signals'? at 15.77 and 20.65ppm, respectively.

The 4-C-methyl-gluco derivative 11 when treated with TBAF" at rt for 15 min
resulted in TBDMS group migration to give compound 13 in 90% yield. The 3-OH group in
compound 13 was converted in 85% yield to its levulinoyl ester 14 by treatment with
levulinic acid, DCC and DMAP in dichloromethane at refluxing conditions for 10 h. Simulta-
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Scheme 1: (i) TrCl, Py, DMAP, 120 0C, 6 h; (ii) TBDMSC], imidazole, DMF, rt, 2 h;

(iii) Ac,0, Py, DMAP, 0 °C to 10 °C, 1 h; (iv) PDC, Ac,0, CH,Cl,, reflux, 2 h;

(v) MeMgCl, CeCls, Toluene, -76 °C to rt, 14h
neous deprotection of trityl and TBDMS protecting groups in compound 14 was achieved by
modifying the existing DDQ catalyzed TBDMS deprotection protocol."* Refluxing compound
14 with 0.5 equivalents of DDQ in 90% aqueous acetonitrile for 4 h gave compound 16 in
70% vyield along with a 15% yield of phenyl 2-O-TBDMS-3-O-Levu-linoyl-4-C-methyl-1-
thio-p-D-glucopyranoside (15). Jones oxidation'® of 3-O-levulinoyl-4-C-methyl-glucopyra-
noside derivative 16 furnished 5 in 65% yield (Scheme 2). The structure of compound 5§ was
confirmed by 'H NMR, "*C NMR, MS and elemental analysis.'®
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Scheme 2: (i) TBAF , THF, rt, 15 min; (ii) Levulmlc acid, DCC, DMAP, CH,Cl,, reflux, 24 h;
(iii) 90% aq. CH5;CN, DDQ, 90 0C, 4 h; (iv) Jones reagent, acetone, sonication, 30 OC, 1h
In conclusion, we developed an expeditious (17% overall yield) route to F Unit

building block (5) of Moenomycin A. This versatile building block 5 will be used as an
acceptor in the construction of a combinatorial library based on the disaccharide
phosphoglycolipid 2. The selective protection of compounds 8 and 9 with TBDMS and
acetate groups should find general utility for carbohydrate building block synthesis. We have
also demonstrated for the first time that in the presence of a thiophenyl group and a levulinoyl
ester, DDQ is useful in deprotecting TBDMS and trityl groups from carbohydrate molecules.
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