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Abstract: Reaction of Co(NCS)2 and Ni(NCS)2 with 4-acetylpyridine under different conditions leads to 

the formation of mixed crystals of the layered compound with the composition [CoxNi1-x(NCS)2(4-

acetylpyridine)2]n (x = 0.15 0.3, 0.5 and 0.7). Mixed crystal formation was investigated by a combination of 

X-ray powder diffraction (XRPD), atomic absorption spectroscopy (AAS), simultaneously scanning 

electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), differential scanning 

calorimetry (DSC) as well as magnetic and heat-capacity measurements. Dependent on the synthetic 

method, homo- or heterogenous mixed crystals were obtained as already indicated by XRPD, where 

significant differences to the pattern of physical mixtures of the homometallic counterparts [M(NCS)2(4-

acetylpyridine)2]n with M = Co or Ni) with the same Co:Ni ratio are observed. Mixed crystals can also be 

obtained from physical mixtures under thermodynamic control, indicating that they are more stable than the 

homometallic compounds. This is further supported by AAS, which indicates that the solubility of the 

mixed crystals is lower than that of the homometallic compounds. Magnetic and heat-capacity 
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measurements show a linear increase of the critical temperature of magnetic ordering with increasing Ni 

content and also confirm that homogenous samples were obtained. 

INTRODUCTION 

In recent years, the development of strategies for a rational synthesis of new coordination polymers with 

defined magnetic properties has attracted much attention.1-8 In most cases homometallic compounds were 

prepared with a variety of ligands that can mediate magnetic exchange differently.1-8  The magnetic 

properties of coordination compounds can also be modified by the synthesis of bimetallic compounds, 

which is in most cases more difficult, but can be achieved using ligands, that can coordinate to different 

metal cations.9-11 A very effective strategy consists of the reaction of predefined metal containing building 

blocks that are linked by other metal cations into coordination polymers of different dimensionality.12-24 

Compared to this, only a very few papers report on the synthesis of mixed crystals of paramagnetic metal 

cations as an additional tool to modify or tune the magnetic properties of coordination compounds in more 

detail and some selected examples are given in the reference list.25-29 This is surprising, because this 

synthetic strategy is used for decades in inorganic solid state chemistry e.g. for optimization of Mn-Zn soft 

ferrites 30,  bandgap tuning in AlxGa1−xAs  semiconductors 31,  inducing high-temperature superconductivity 

in La2−xSrxCuO4 
32 or colossal magnetoresistance in La1-xSrxMnO3.

33 

There are surely many reasons for such a situation. First of all the synthesis of pure samples of 

coordination compounds is sometimes difficult to achieve, because in solution different compounds might 

be in equilibria, which can lead to the formation of mixtures of different compounds. The situation is more 

complicated when different but chemically very similar metal cations are used because also physical 

mixtures of the homometallic compounds can form. However, if mixed crystals may have been obtained, 

the question arises, if their metal ratio corresponds to that used in the synthesis, which is not necessarily the 

case. It is also of importance to investigate if “homogenous” mixed crystals are obtained or if the metal to 
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metal ratio varies for different crystals. Finally, if metal cations are used that are neighbors in the periodic 

table, mixed crystal formation is more difficult to prove. 

In this context it is noted that we are interested in coordination polymers based on 3d transition metal 

cations and thio- or selenocyanate anions for several years.34-39 Even if the magnetic exchange of these 

ligands is usually weaker than that of, e.g. azides, these pseudohalide anions show a variety of coordination 

modes and thus, can form structures of different dimensionality.40-56 With monodentate co-ligands, like 

simple pyridine derivatives substituted in 4-position chain structures are usually observed, in which the 

metal cations are linked by pairs of anionic ligands into chains.57 Dependent on the nature of the co-ligand, 

linear or zig-zag-like chains can form, in which the metal cations are differently coordinated including a 

trans or a cis-cis-trans-coordination at the metal center.58 Finally, if other pyridine derivatives are used, 

also 2D thiocyanate networks can be obtained, in which the metal cations are linked by the anionic ligands 

into layers.59-63 

This is observed, e.g., in the crystal structure of compounds with the composition [M(NCS)2(4-

acetylpyridine)2]n for M = Co (1-Co) or M = Ni (1-Ni) as ligand, for which two isomers exists. The 

thermodynamic stable form at room-temperature consists of M(NCS)2 dimers that are linked by single 

anionic ligands into layers that are parallel to the a/b-plane, whereas the metastable isomer forms linear 

chains (Fig. 1).62, 63 In the layered compounds dominating ferromagnetic interactions are observed for 1-Co 

and 1-Ni and both of these compound show magnetic ordering at a critical temperature, which is much 

lower for the Co compared to the Ni compound.61, 62 
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Figure 1. View of the M(NCS)2 coordination network in [M(NCS)2(4-acetylpyridine)2]n (1-Co and 1-Ni). 

The 4-acetylpyridine ligands are omitted for clarity (M = orange; C = black; N = blue; S = yellow).  

Based on these results the question arise whether homogenous mixed crystals with the composition 

[CoxNi1-x(NCS)2(4-acetylpyridine)2]n (1-CoxNi1-x) can be prepared, if they still show a phase transition and 

if this is the case, if the critical temperature can be tuned as a function of the actual Co:Ni ratio. The mixed 

crystal formation and homogeneity of the samples prepared by different routes was investigated by a 

combination of atomic absorption spectroscopy (AAS), scanning electron microscopy (SEM) with 

simultaneous energy dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), X-ray 

powder diffraction (XRPD) as well as magnetic and heat-capacity measurements. Both 2D compounds are 

isotypic and, because both metal cations are neighbored in the periodic table, only very small differences in 

their XRPD pattern are expected, which is already indicated by their calculated pattern (Table S1 and 

Figure S1 in the SI). Therefore, the powder pattern of the mixed crystals were always compared with that 

of physical mixtures of 1-Co and 1-Ni with the same Co:Ni ratio.  
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EXPERIMENTAL SECTION 

Reagents. Co(NCS)2, Ba(NCS)2·3H2O and 4-acetylpyridine were obtained from Alfa Aesar, 

Ni(SO4)2·6H2O was purchased from Merck. All chemicals and solvents were used without further 

purification. Ni(NCS)2 was prepared by a reaction of equimolar amounts of NiSO4·6H2O and 

Ba(NCS)2·3H2O in water. The resulting precipitate of BaSO4 was filtered off, and the solvent was removed 

completely using a rotary evaporator leading to a green residue of Ni(NCS)2. The purity was checked by 

XRPD.  

Synthesis of 1-Co. Crystalline powders were obtained by stirring a mixture of Co(NCS)2 (175mg, 1 mmol) 

and 4-acetylpyridine (222 µL, 2 mmol) in ethanol (1.5 mL) for 2 d. The purity was checked by XRPD and 

by IR spectroscopy (Figure S2 and S3).63  

Synthesis of 1-Ni. Crystalline powders were obtained by stirring a mixture of Ni(NCS)2 (175mg, 1 mmol) 

and 4-acetylpyridine (222 µL, 2 mmol) in ethanol (4 mL) for 2 d. The purity was checked by XRPD and by 

IR spectroscopy (Figure  S4 and S5).62 

Synthesis of 1-CoxNi1-x. Crystalline powders were obtained by dissolving Co(NCS)2 and Ni(NCS)2 

completely in the desired ratio in ethanol. Afterwards a stoichiometric amount of 4-acetylpyridine was 

added to the clear solution and the reaction mixture was stirred for 2 d. 

Elemental Analysis. CHNS analysis was performed using a EURO EA elemental analyzer, fabricated by 

EURO VECTOR Instruments and Software. 

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). These 

measurements were performed using a Philips ESEM XL 3 with an EDAX New XL-30 Detector, at an 

acceleration voltage of 20 kV. 

Atomic absorptions spectroscopy (AAS). The AAS experiments were performed with a Perkin Elmer 

Aanalyst 300. Each sample was dissolved in water with 2.5 mL HNO3 for 100 mL analyte. 
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IR spectroscopy. The IR data were measured using a Genesis Series FTIR Spectrometer with WINFIRST 

control software from ATI Mattson. 

Differential scanning calorimetry (DSC). The DSC experiments were performed using a DSC 1 star 

system with STARe Excellence software from Mettler-Toledo AG under dynamic nitrogen atmosphere. 

The instrument was calibrated using standard reference materials. 

Magnetic measurements. All magnetic measurements were performed using a Physical Property 

Measurement System (PPMS) from Quantum Design, which was equipped with a 9 T magnet, and using 

QD MPMS-5XL squid magnetometer. The data were corrected for core diamagnetism.  

Specific heat measurements. Specific heat was measured by the relaxation technique using a Quantum 

Design PPMS. Powder samples were pressed into pellets. Apiezon N grease was used to ensure thermal 

contact of the samples with the calorimeter. The heat capacity of the grease was measured before each run 

and subtracted. 

X-Ray Powder Diffraction (XRPD). The XRPD measurements were performed by using a Stoe 

Transmission Powder Diffraction System (STADI P) with CuKα radiation that was equipped with a linear 

position-sensitive MYTHEN detector from STOE & CIE. All measurements were performed with Zn as 

internal standard. 

 

RESULTS AND DISCUSSION 

Synthetic investigations. To investigate if one can differentiate between the homometallic compounds by 

XRPD, physical mixtures of 1-Co and 1-Ni in different Co:Ni ratios with additional Zn as internal standard 

were measured. As expected, most reflections overlap but the 043 reflections observed at 2-Theta = 25.02° 

for 1-Co and at 25.18° for 1-Ni are successfully resolved (Figure S6). Moreover, the intensity ratio between 

the 043 reflections for these compounds nicely changes with the Co:Ni ratio and even metal contents of 

15% for Co can be proven. We also have investigated these physical mixtures by IR spectroscopy to check 
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if two bands for the CN stretching vibrations are observed, but they are not successfully resolved and thus, 

do not allow to prove mixed crystal formation (Figure S7). Finally, these mixtures were also investigated 

by DSC measurements, and the comparison with the homometallic counterparts shows an additional 

thermal event that can be traced back to the different decomposition temperatures of the Co and the Ni 

compound (Figure S8). For mixed crystals only one peak would be expected. 

To determine the solubility of both compounds, which might influence the mixed crystal formation, a 

suspension of 1-Co and 1-Ni was stirred in ethanol, from which no solvate can form, filtered off and the 

metal content was determined by AAS in the filtrate. This shows that the solubility of 1-Co (6.18 g/L) is 

significantly higher than that of 1-Ni (1.15 g/L) (Table S2). Immediate XRPD measurements of the filtered 

residue prove that no other crystalline phase has formed, which would influence the outcome of this 

experiment. 

In the beginning it was tried to prepare mixed crystals following the procedure for the synthesis of the 

homometallic compounds, where the metal thiocyanate were added simultaneously to a small amount of 

solvent.62, 63 Therefore, a mixture of Co(NCS)2, Ni(NCS)2 and 4-acetylpyridine was stirred in different 

molar ratios in a small amount of ethanol and the residues that formed within 2 d were investigated by 

XRPD. It is noted that, e.g., water cannot be used as solvent, because hydrates with the composition 

M(NCS)2(H2O)2(4-acetylpyridine)2 (M = Co, Ni) will form.63, 64 For these samples AAS proves, that the 

Co:Ni ratio of the mixed crystals exactly corresponds to that used in the synthesis (Table S3). XRPD 

measurement shows that the 043 reflection of this batch is located exactly between that of the physical 

mixture, indicating for mixed crystal formation (Figure S9). However, the full width at half maximum 

(FWHM) is much broader than that of the homometallic compounds, indicating that crystals of a variety of 

compositions were obtained (Figure S9). Scanning electron microscopy (SEM) of these mixed crystals and 

the homometallic compounds indicates, that the broadening cannot be traced back to large differences in 

the particle size (Figure S10). The formation of inhomogeneous samples is further confirmed by EDX 
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measurements of selected crystals, that show significant deviations from the expected Co:Ni ratio (Table 

S4) and this is also in agreement with magnetic and heat capacity measurements (see below). The 

formation of inhomogeneous samples might originate from the different solubility and dissolution rate of 

the metal salts in ethanol and the fact that using small amounts of solvent the metal salts are not completely 

dissolved. Moreover, the sequence of adding the reactants is also of importance, because if, e.g. Ni(NCS)2 

is added first to the mixture with ligand before Co(NCS)2, Ni-rich particles can precipitate in the beginning 

and would become Co-rich with increasing reaction time. This would also explains that after complete 

precipitation the ratio between Co and Ni will correspond to that used in the synthesis. For the synthesis of 

the homometallic compounds it is unimportant and if only a very small amount of solvent is used it is of 

advantage, because the products are obtained in high yield.  

However, concerning the stability of mixed crystals one would assume that they are more stable than the 

homometallic counterparts because of entropy and thus, one would expect formation of homogenous 

samples with increasing reaction time. Therefore, we prepared a suspension of equivalent amounts of 1-Co 

and 1-Ni with large excess of solid in ethanol, which was stirred for 30 d. Investigations of the residue by 

AAS reveal, that mixed crystals with x close to 0.5 are obtained, which according to XRPD measurements 

should be homogenous (Figure S11). For such a sample the Co and Ni concentration in a saturated solution 

was measured by AAS using the same procedure as that used to determine the solubility of the individual 

compounds. These values are lower than that of the homometallic compounds, which also points to a 

higher stability (Table S5).  

Based on the above described results we prepared mixed crystals by adding 4-acetylpyridine to clear 

solutions of Co(NCS)2 and Ni(NCS)2 in ethanol at room-temperature but also at elevated temperatures. 

Independent of the reaction time or temperature, always samples were obtained, in which the Co:Ni ratio 

corresponds exactly to that used in the synthesis, as proven by AAS measurements (Table S6) EDX 

measurements of selected crystals indicate the formation of homogenous samples (Table S7). This is 
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further supported by DSC measurements where in contrast to the physical mixtures only one thermal event 

is observed (Figure S12). Mixed crystal formation is also indicated by XRPD measurements, where two 

peaks are observed for the 043 reflection in the physical mixtures, whereas only one peak is visible for the 

mixed crystals (Figure 2 and Figure S13). 

 

Figure 2. XRPD pattern of 1-Co, 1-Ni and 1-CoxNi1-x (x = 0.15, 0.3, 0.5, and 0.7; black) and of physical 

mixtures of 1-Co and 1-Ni with the same Co:Ni ratio (red). For the full range see Figure S13. 

It is also visible that, with increasing Ni content, the 043 reflection shifts to higher Bragg angles. If the 

FWHM of the reflections of the mixed crystals is compared with that of the physical mixture and that of an 

inhomogenous sample as described above, it is strongly indicated that by this procedure homogenous 

samples are obtained. 

For these mixed crystals the unit cell volume was determined from Pawley fits 65 using XRPD patterns 

measured at room-temperature, which shows a linear increase with increasing Ni content. This  nicely 

proves that Vegard's law is valid, which is expected for homogenous mixed crystals (Figure 3).66, 67 
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Figure 3. Unit cell volume as function of the Co and Ni content in 1-CoxNi1-x (x = 0, 0.15, 0.3, 0.5, 0.7 and 

1.0). 

Magnetic and heat-capacity measurements. To investigate the influence of mixed crystal formation on 

the magnetic properties, the temperature dependence of the susceptibility χ was measured at 100 Oe for 1-

CoxNi1-x but also for 1-Co and 1-Ni (Figure 4). For 1-Ni the susceptibility increases significantly starting at 

about 10 K and at about 2 K nearly saturation is observed, which is in agreement with its ferromagnetic 

behavior, already reported in literature.61 With decreasing Ni content the temperature at which the 

susceptibility starts to increase moves to lower temperatures and one can anticipate that saturation might be 

reached at below 2 K. For 1-Co the χ vs. T curve looks like that for a paramagnet, which can be traced back 

to the fact that magnetic ordering occurs at a temperature that is below the lowest temperature available in 

the used magnetometer (Figure 4). The room-temperature values of χT vary between 1.21 cm3 K mol−1 for 

the Ni and 3.35 cm3 K mol−1 for the Co compound, which is in the range typically observed for these 

cations in an octahedral coordination.61, 68-71 For all compounds the magnetic behavior changes 

continuously as function of the actual Co:Ni ratio (Figure S14 and S15).  

Page 10 of 22

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11 

 

 

Figure 4. Temperature dependence of the magnetic susceptibility at 100 Oe measured for 1-Co, 1-Ni and 1-

CoxNi1-x (x = 0.15, 0.3, 0.5, and 0.7). Only the low temperature range is shown. 

The field dependence of the magnetization of 1-Ni measured at 2.1 K shows a behavior typical for a 

ferromagnet with nearly saturation at high fields (Figure S16). With increasing Co content the 

magnetization is modified in the range 0-15 kOe, indicating that significant anisotropy is introduced even 

by x = 0.15 admixture of Co. The saturation magnetization for the mixed crystals is in between that of the 

homometallic counterparts and increases with increasing Co content (Figure S16). To get some idea how 

the critical temperature changes as function of the actual Co:Ni ratio, the first derivative of χ(T) was plotted 

as function of temperature, which shows that the critical temperature shifts to lower temperatures with 

increasing Co content (Figure 5). 
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Figure 5. First derivative of the dc susceptibility for 1-Co, 1-Ni and 1-CoxNi1-x (x = 0.15, 0.3, 0.5, and 0.7) 

measured as function of temperature at 100 Oe. Please note that for 1-Co the critical temperature is at too 

low temperatures. 

To prove the magnetic ordering for the mixed crystals, heat capacity measurements down to 0.4 K were 

performed, from which the critical temperatures might be determined more precisely. For all samples a 

lambda-type peak is observed, which points to a second order phase transition (Figure 6).  

 

Figure 6. Temperature dependence of the low-temperature specific heat C measured for 1-Co, 1-Ni and 1-

CoxNi1-x (x = 0.15, 0.3, 0.5, and 0.7). 
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This confirms, that all mixed crystals show a long-range ordering as already observed for 1-Co and 1-Ni 

61 and excludes a spin-glass behavior. The ac susceptibility shows a maximum of χ'(T) at temperature that 

does not depend on the ac frequency, which is also against a spin-glass phase, and in favor of the long 

range ordering (Figure S18). As the spin-glass ground state would be expected in case of competing FM-

AFM exchange interactions in disordered Ni-Co lattice, the presence of the second order transition for all 

compositions also suggests that all exchange interactions, also between Ni and Co pairs, are ferromagnetic. 

From the heat-capacity measurements the values for the critical temperatures were extracted and plotted 

as function of the actual Co:Ni ratio, which shows that Tc decreases with increasing Co content almost 

linearly (Figure 6). The values obtained from dχ/dT  are in very good agreement with that obtained from the 

heat-capacity measurements (Figure 6). 

 

Figure 6. Critical temperature of magnetic ordering for 1-CoxNi1-x (x = 0, 0.15, 0.3, 0.5, 0.7 and 1.0) as 

determined from specific heat (red points) and magnetic measurements (black points). 

Finally, we also investigated one sample with x = 0.5 by magnetic and heat-capacity measurements for 

which XRPD measurements indicate inhomogeneity (see above and Figure S11). In this case one would 

expect broad peaks of dχ/dT, because if each crystal has a different Co:Ni ratio it will exhibits his own 

transition temperature. This is exactly observed in the magnetic measurements and it is obvious that dχ/dT 
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starts to decrease at higher temperatures, which clearly proves that Ni-rich particles are present (Figure 

S19). This is further confirmed by heat-capacity measurements, for which a behavior with at least two 

distinct broad maxima is observed (Figure S20). 

 

CONCLUSION 

In the present contribution we have shown that the critical temperatures of coordination compounds can 

be tuned by mixed crystal formation. This was proven using layered compounds with the general 

composition [M(NCS)2(4-acetylpyridine)2]n (M = Co, Ni), that show dominating ferromagnetic interactions 

within the layers and magnetic ordering at low temperatures. For the mixed crystals the same behavior was 

observed with the ferromagnetic ordering and no sign for the formation of a spin-glass and it was found 

that the critical temperature increases linear with increasing Ni content. However, in this case homogenous 

samples are needed, because otherwise each of the particles exhibits its own transition temperature leading 

to no definite transition, as proven by magnetic and heat-capacity measurements. This cannot be achieved 

by simply reacting all reactants in an arbitrary order in a small amount of solvent for a limited time, 

because depending on the solubility and dissolution behavior of the reactants and the products as well as 

the order in which the reactants are added, the composition of each particle can be different. However, even 

from inhomogeneous samples homogenous mixed crystals can form using very long reaction time, which 

indicates that the mixed crystals seem to be more stable. To prove mixed crystal formation and the 

homogeneity of samples, different methods should be applied and it this case XRPD represents a powerful 

tool, even if both compounds are isotypic with cations neighbored in the periodic table and consequently 

very similar XRPD patterns. 
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Mixed crystals of a layered coordination polymer with the composition [CoxNi1-x(NCS)2(4-

acetylpyridine)2]n were prepared and characterized by XRPD, EDX, AAS, DSC, magnetic and 

heat capacity measurements, which show that the critical temperature of magnetic ordering 

depends linearly on the actual Co and Ni content. 
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