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Abstract 

Two series of N-alkyl, N-alkoxy, and N-hydroxy bisguanidines derived from the N-

phenylbenzamide and 1,3-diphenylurea scaffolds were synthesised in three steps from 

the corresponding 4-amino-N-(4-aminophenyl)benzamide and 1,3-bis(4-

aminophenyl)urea, respectively. All of the new compounds were evaluated in vitro 

against T. b. rhodesiense (STIB900) trypomastigotes and P. falciparum NF54 parasites 

(erythrocytic stage). N-alkoxy and N-hydroxy derivatives showed weak micromolar 

range IC50 values against T. b. rhodesiense and P. falciparum whereas the N-alkyl 

analogues displayed submicromolar and low nanomolar IC50 values against P. 

falciparum and T. brucei, respectively. Two compounds, 4-(2-ethylguanidino)-N-(4-(2-

ethylguanidino)phenyl)benzamide dihydrochloride (7b) and 4-(2-isopropylguanidino)-

N-(4-(2-isopropylguanidino)phenyl)benzamide dihydrochloride (7c), which showed 

favourable drug-like properties and in vivo efficacy (100% cures) in the STIB900 

mouse model of acute human African trypanosomiasis represent interesting leads for 

further in vivo studies. The binding of these compounds to AT-rich DNA was 

confirmed by biosensor-SPR experiments. 
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Highlights 
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  N-alkylated compounds 7b and 7c were 100% curative in the STIB900 mouse 

model of HAT. 

  DNA binding affinity was measured by SPR with AATT, (AT)4 and (CG)4 

hairpin duplexes. 

  7b and 7c bind selectively to AT-rich DNA. 
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1. Introduction 

Human African trypanosomiasis (HAT) and malaria are parasitic diseases that are 

endemic in sub-Saharian Africa where they cause great morbidity and high mortality 

rates (especially for malaria). Two subspecies of trypanosomes (Trypanosoma brucei 

gambiense and T. b. rhodesiense) lead to chronic and acute forms of HAT, respectively 

[1]. The apicomplexan parasite Plasmodium falciparum, which is the cause of the most  

severe and deadly form of malaria, is mainly prelavent in Africa being responsible of 

over 75% of cases in that continent [2].  

New drugs are required to complete and/or improve the chemotherapeutic arsenal 

available for both diseases. On the one hand, drugs for the treatment of HAT are scarce 

(i.e. pentamidine, suramin, melarsoprol, eflornithine and nifurtimox-eflornithine 

combination therapy – NECT –), stage and species specific, very toxic, and not orally 

active [3, 4]. On the other hand, malaria chemotherapy is suffering from extended 

resistance to conventional drugs (e.g. chloroquine) and the rapid development of 

Plasmodium strains that are resistant to “newly” marketed drugs (e.g. artemisinin) [5, 

6]. In a word, new drugs are urgently needed to fight against these deadly diseases.  

Dicationic compounds such as diamidines [7-10] and bis(2-aminoimidazolines) [11-13] 

have a track record of success as antiprotozoan agents. These compounds bind strongly 

to the DNA minor groove at AT-rich sites which is one of the known targets of these 

molecules. Accordingly dicationic diamidines were shown to be localized to the DNA-

containing nucleus and/or kinetoplast of trypanosomes [14]. Bisguanidine related 

molecules are also very active against T. brucei and P. falciparum [11-13, 15-19]. 

However, low nanomolar in vitro activities do not always result in potent in vivo 

activity in murine models of HAT and malaria [16, 17]. Besides, this class of dibasic 
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compounds is highly polar (i.e. dicationic at physiological pH) and, like pentamidine, 

mostly fails in curing CNS-stage T. brucei infections.  

In recent years, we have discovered a set of bisguanidinium hits that displayed excellent 

activities in vitro against T. b. rhodesiense and P. falciparum [11]. Two hit compounds 

derived from the N-phenylbenzamide scaffold (I) and the 1,3-diphenylurea scaffold (II) 

that presented nanomolar IC50s, adequate selectivities, and promising in vivo activity in 

the STIB900 mouse model of acute HAT were chosen as templates for further 

development (Figure 1). The choice of these scaffolds as antitrypanosomal templates 

was also supported by the excellent results obtained with bis(2-aminoimidazoline) 

analogues that proved to be 100% curative in vivo in the STIB900 mouse model [11].  

 

Figure 1. Structure, In Vitro Activity and Selectivity Index of the N-Phenylbenzamide 

(I) and 1,3-Diphenylurea (II) Bisguanidinium Leads [11] 

 

In previous work, Arafa et al [15] showed that N-alkyl derivatives of diguanidino fused 

ring systems had improved in vivo potency in the STIB900 mouse model of acute HAT 
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compared with the unsubstituted diguanidino parent compounds. In the present study, 

we tested a similar strategy with the hits I and II to check if the antiprotozoan activity 

of these hits could be enhanced in that way. In fact, the addition of N-alkyl and N-

alkoxy substituents in the structure should increase the lipophilicity of the compounds 

whereas N-alkoxy substituents should decrease their basicity with respect to I and II. 

All of these modifications were expected to enhance the antiprotozoan activity of the 

compounds as well as to improve their membrane permeation (e.g. blood-brain barrier). 

Hence, six N-alkyl (7a-c, 8a-c), four N-alkoxy (7d-g), and one hydroxy derivatives of 

the hits I and II were synthesised and tested against T. b. rhodesiense and P. 

falciparum. The most active compounds in vitro were further evaluated in vivo in the 

STIB900 mouse model of acute HAT. This allowed drawing preliminary structure-

activity relationships (SAR) for antimalarial and antitrypanosomal activity. Besides, the 

DNA binding affinity of the compounds was assessed by biosensor–surface plasmon 

resonance (SPR) experiments with three different hairpin oligonucleotides. 

 

2. Results 

2.1. Chemistry 

N-substituted guanidines 7a-g and 8a-c were synthesized in three steps from diamines 1 

and 2, respectively, following the Manimala and Anslyns’s methodology (Scheme 1) 

[20]. The synthesis started with the preparation of the bis(ethoxycarbonylthioureas 3 

and 4 from 4-amino-N-(4-aminophenyl)benzamide and 1,3-bis(4-aminophenyl)urea, 

respectively. These thioureas were reacted with an excess (4 equiv.) of N-alkyl (R = Me, 

Et, 
i
Pr) and N-alkoxy amines (R = OMe, OEt, OBn, OTHP) in the presence of 1-ethyl-

3-(3-dimethylaminopropyl)carbodiimide (EDAC) and N,N-diisopropylethylamine 
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(DIPEA) to give the corresponding N-substituted bis(ethoxycarbonyl) guanidines 5a-g 

and 6a-c. Two strategies were tried to remove the ethoxycarbonyl groups to obtain the 

target guanidines 7a-h and 8a-c.  

 

Scheme 1.
a
 Synthesis of N-alkyl and N-alkoxy guanidines 

 

a  
Reagents and conditions. (i) Ethoxycarbonyl isothiocyanate, CH2Cl2, rt; (ii) R–NH2, 

CH2Cl2, DIPEA, EDAC, rt; (iii) KOH, MeOH, 80 ºC; (iv) HClg–saturated 1,4-dioxane 

solution.* Yields for step (iii). 

 

The first strategy using Lewis acids such as trimethylsilyl (TMSCl) chloride [21, 22] 

and bromide (TMSBr) [20] to generate directly the guanidinium salts was mostly 

unsuccessful in our hands, leading to complex mixtures of partially and fully 
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deprotected products together with 2-alkylamino(3H)quinazolin-4-one by-products as 

previously reported [22]. Apparently, the success of this deprotection protocol is very 

dependent on the R group present on the guanidine moiety [e.g. compound 5c with R = 

i
Pr was cleanly deprotected using TMSCl (10 equiv) / DMF / 80 ºC / MW / 60 min] and 

was not applicable to most of our compounds. Optimal conditions for the removal of the 

ethoxycarbonyl groups took place under basic conditions (0.1 M aqueous KOH in 

MeOH at 80 ºC in a sealed tube) to yield 7a-g and 8a-c as free bases. Hydrochloride 

salts of 7a-f, 8a-c, and 7h were obtained from the free base guanidines 7a-f, 8a-c, and 

7g with HClgas–saturated 1,4-dioxane solution, respectively.   

 

2.2. In Vitro and In Vivo Antiprotozoal Activity 

The target compounds 7a-g and 8a-c were tested in vitro against T. brucei rhodesiense 

(STIB900 strain) by means of an Alamar blue-based assay [23]. The antimalarial 

activity against erythrocytic forms of P. falciparum was evaluated with a 

[
3
H]hypoxanthine incorporation assay [24] using the chloroquine-sensitive strain NF54. 

The cytotoxicity of the compounds against mammalian L6-cells was also evaluated to 

determine their selectivity index. The results are shown in Table 1. 

All of the guanidines with N-alkyl substituents (7a-c and 8a-c) displayed 

submicromolar range IC50 values against T. b. rhodesiense. Compounds with ethyl (7b, 

8b) and isopropyl groups (7c, 8c) were particularly effective with low nanomolar IC50 

values, in the range of the reference drug melarsorprol (IC50 = 8 nM), and high 

selectivities (SI > 1000). These values represent a 2- to 3-fold increase in 

antitrypanosomal activity compared with the unsubstituted parent compounds II and I, 

respectively. In contrast, N-hydroxy (7h) and N-alkoxy (7d, 7g) guanidines showed 
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weak activity. As far as the linker of the diphenyl scaffold is concerned, the amide gave 

5- to 10-fold higher potencies than the urea linker. In general, most of these guanidines 

presented low cytotoxicity (IC50 > 100 µM against L6-cells) even though some 

differences could be observed between both series. Compound I derivatives (7a-d and 

7g-h) in particular were approximately 10-times less cytotoxic than the parent guanidine 

I. On the contrary, derivatives 8a-c were somewhat more cytotoxic than II.  

As with the anti-T. brucei activity, the best antimalarial compounds were the N-alkyl 

derivatives 7b-c and 8a-c that displayed submicromolar IC50 values with selectivities 

for the parasite > 200. Again, N-hydroxy and N-alkoxy derivatives were less potent with 

IC50s in the low micromolar range.  

To evaluate the in vivo potential of these new N-alkyl guanidines, the best trypanocidal 

compounds in vitro (7b, 7c, 8b, and 8c) were tested in a mouse model of acute (stage 1) 

HAT. Groups of four mice infected with T. b. rhodesiense (strain STIB900) received a 

four days treatment (days 3, 4, 5 and 6 post-infection) with the tested compounds (4×20 

mg/kg ip). One control group (3 mice) remained untreated. The blood parasitemia was 

checked periodically over the 60 days of the experiment and the mean day of relapse of 

parasitemia was calculated. The mice that survived 60 days free of parasites were 

considered as cured (Table 1).  

The 1,3-diphenylurea analogues (8b, 8c) were poorly active in vivo and showed acute 

toxicity at the dose tested. The lead compound I showed high efficacy in this model, 

giving 4/4 cures by intraperitoneal (4×5 mg/kg ip) and oral administration (4×50 mg/kg 

po). Unfortunately, it was inactive in the GVR35 model of late-stage disease (i.e. 5×20 

mg/kg ip, data not shown), which is probably due to poor BBB permeation. The N-

phenylbenzamide derivatives 7b and 7c were 100% curative in the STIB900 model 
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showing that the introduction of N-ethyl and N-isopropyl substituents is well tolerated 

in vivo. Altogether, the results indicate that compounds 7b and 7c are promising 

candidates for further in vivo studies (e.g. CNS stage).  

 

Table 1. In Vitro and In Vivo Antitrypanosomal and Antimalarial Activity  

 

Cmpd R T. b. rhodesiense
a 

P. falciparum
b 

Cytotoxicity
c
 

STIB900 mouse model 

of acute HAT
d
 

 
 

 
IC50 (Selectivity index)

e
 µM

 
CC50 µM 

Dosis 

(mg/kg) 
Cured/infected 

Mean 

day of 

relapse
f
 

I 
 

H 0.036
g
 (319) 

 

ND
h 

 

11.5
g 

 

4×5 ip 

4×50 po 

4/4 

4/4 

>60 

>60 

II
 H 0.187

g
 (>1256) ND > 235

g
  ND ND 

7a Me 0.177 (977) 1.02 (169) 173 
 

ND
 

ND 

7b Et 0.009 (13111) 0.232 (509) 118 4×20 ip 4/4 >60 

7c 
i
Pr 0.011 (9364) 0.446 (231) 103 4×20 ip 4/4 >60 

7d OMe 56.0 7.49 141  ND ND 

7f OBn 3.13 2.83 6.6  ND ND 

7g OTHP 51.4 42.6 160  ND ND 

7h OH 4.88 3.58 100  ND ND 

8a Me 0.264 (670) 0.192 (922) 177  ND ND 

8b Et 0.090 (1289) 0.397 (292) 116 4×20 ip
 

0/3
i 

18.3 

8c 
i
Pr 0.049 (2571) 0.437 (288) 126 4×20 ip 0/2

j
 10 

IC50 values reported are the average of two independent assays and vary less than ± 

50%. 
a
 T. b. rhodesiense STIB900 trypomastigotes; reference drug: melarsoprol, IC50 = 

0.008 µM. 
b
 P. falciparum NF54, intraerythrocytic stage: this strain is susceptible to 

chloroquine, IC50 = 0.006 µM. 
c 

Rat skeletal myoblast L6-cells; reference drug: 

podophyllotoxin, IC50 = 0.014 µM. 
d
 Compounds were administrated intraperitoneally 

at 20 mg/kg/day (4 days). 
e
 SI = [CC50 /IC50 (parasite)]. 

f
 Untreated control mice were all 

positive at day 7. 
g
 Data previously reported in reference [11] and shown here for 
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comparative purpose. 
h
 Not determined. 

i
 One mouse died after first application. 

j 
Two 

mice died after 4
th

 application.  

 

2.3. DNA Binding Affinity. Biosensor–SPR Experiments 

Since N-phenylbenzamide and 1,3-diphenylurea guanidine and imidazoline derivatives 

are strong DNA minor groove binders [11, 25-27], we were interested in quantitatively 

evaluating the binding affinity of the new compounds with DNA. Binding to DNA and 

resultant inhibition of transcription and activity of other DNA-dependent enzymes is 

thought to contribute to the antiprotozoal activity of dicationic compounds [28]. This 

was done by biosensor–SPR experiments with different DNA hairpin duplexes [i.e., 

AATT, (AT)4, (CG)4] immobilized on a chip biosensor surface [29, 30]. All of the 

compounds were first screened for binding to the three oligonucleotide sequences at a 

single concentration (25 µM). This allowed the ranking of the compounds as 

binders/non binders (data not shown). Then, the binding constants of the most 

interesting compounds with the three different DNA hairpins were determined (Table 

2). Compounds 7b and 7c bound selectively to AT-rich DNAs (K values in the range 

4.0 – 9.8 × 10
5
 M

-1
) with a slight preference for the AATT (approximately 1.5 – 2-fold) 

over the (AT)4 sequence. The stoichiometry of binding was 2 for both AT-sequences 

(Figure 2). These K values were approximately 7 to 9-fold lower (for AATT) and 3 to 4-

fold lower (for (AT)4) than the values reported for the unsubstituted bisguanidine I [25]. 

Hence, in this series, the alkylation of the guanidine moieties resulted in a decrease in 

binding affinity to AT sequences. Besides, no important differences in binding were 

observed between 
i
Pr and Et groups. These findings agree with the data reported earlier 

with a series of linear triaryl bisguanidines [17].  
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On the one hand, none of the compounds tested bound significantly to the (CG)4 

sequence (Figure 2B) suggesting a specific AT-rich minor groove mode of binding for 

7b and 7c. On the other hand, binding of the urea derivative 8b was approximately 30-

times weaker than that of 7b and 7c (K < 1× 10
5
 M

-1
) suggesting unspecific binding to 

DNA.  

 

 

Table 2. DNA Binding Constants Determined by SPR 

 K (×10
5
 M

-1
) 

Compound AATT
a 

(AT)4
b 

(CG)4
c
 

I 71.0
d 

18.0
d
 <1

d
 

7b 8.1
e
  5.2

e
 <1

g 

7c 9.8
e
 4.0

e 
<1

g 

8b 0.19
f
  0.15

e
 

h 

5’-biotin labelled DNA sequences used (the hairpin loop is underlined): 
a
 5’-biotin-

CGAATTCGTCTCCGAATTCG-3’. 
b
 5’-biotin-CATATATATCCCCATATATATG-

3’. 
c
 5’-biotin-CGCGCGCGTTTTCGCGCGCG-3’. 

d
 Taken from reference [25]. 

e
 

Primary binding constant for fitting to a two-site binding model. 
f
 Binding constant for 

fitting to a one-site binding model. 
g
 Non-specific binding. 

h
 There is not enough signal 

to noise ratio to get a binding constant for this hairpin oligonucleotide. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 13 

(A)

7b_AATT

0 100 200 300 400
0

20

40

60

Time (second)

R
e
s
p

o
n

s
e
 (

R
U

)

 

7c_AATT

0 100 200 300 400
0

20

40

60

Time (second)

R
e
s
p

o
n

s
e
 (

R
U

)

 

7b_(AT)4

0 100 200 300 400
0

20

40

60

Time (second)

R
e
s
p

o
n

s
e
 (

R
U

)

 

7c_(AT)4

0 100 200 300 400
0

20

40

60

Time (second)

R
e
s
p

o
n

s
e
 (

R
U

)

 

(B)

0 210 -05 410 -05 610 -05 810 -05 110 -04
0

1

2

3

AATT

(AT)4

(CG)4

Compound 7b

[ligand]

r

0 210 -05 410 -05 610 -05 810 -05 110 -04
0.0

0.5

1.0

1.5

2.0

AATT

(AT)4

(CG)4

Compound 7c

[ligand]

r

 

0 210 -05 410 -05 610 -05 810 -05
0.0

0.5

1.0

1.5

2.0

(AT)4

AATT

Compound 8b

[ligand]

r

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 14 

Figure 2. (A) Sensorgrams for the interaction of 7b (left panel) and 7c (right panel) 

with the AATT and (AT)4 hairpin oligonucleotides using increasing concentrations of 

ligand (from bottom to top) in the range 5×10
-8

 M to 5.76×10
-5 

M [7b_AATT and 

7c_(AT)4] and 2.5×10
-7

 M to 8×10
-5

 M [7b_(AT)4 and 7c_AATT]. (B) Binding curves 

of 7b, 7c, and 8b to AATT (●), (AT)4 (■), and (CG)4 (▲) DNA hairpins. The SPR 

response (RU) from the steady-state region of the sensorgrams was converted to r 

(moles of bound compound per mole of DNA hairpin duplex; r = RU / RUmax) and was 

plotted against the unbound compound concentration ([ligand] = flow solution). The 

data were fitted to a two-site binding model (except 8b_AATT which was fitted to a 

one-site binding model) using equation (1) (see experimental section). 

 

3. Discussion 

Two series of N-substituted bisguanidines derived from the N-phenylbenzamide and the 

1,3-diphenylurea scaffolds (7a-h and 8a-c, respectively) were synthesized and evaluated 

as antitrypanosomal and antimalarial agents. The aim of this research was to improve 

the antiprotozoal activity of the leads I and II by introducing N-alkyl and N-alkoxy 

substituents on the guanidine moieties. As far as T. brucei is concerned, this was 

achieved successfully with the introduction of Et and
 i

Pr substituents to get low 

nanomolar range IC50s (7b and 7c, respectively). A similar effect, although less 

pronounced, was obtained with the 1,3-diphenylurea derivatives 8b and 8c. 

Interestingly, the trypanocidal activity enhancement effect due to alkyl substitution was 

dependant on the size of the alkyl group. Hence, methyl groups were detrimental to the 

activity (e.g. compare 7a vs. I and 8a vs. II) whereas the larger isopropyl substituent 

gave lower IC50 values in comparison with the leads. These results indicate that, in this 

series, big and/or lipophilic alkyl substituents are favourable for antitrypanosomal 

activity (Figure 2). Remarkably, these SAR results are opposite to the findings reported 

by Arafa et al with a series of linear triaryl bisguanidines [17]. In contrast, small alkyl 
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groups appeared to be favourable to increase the antimalarial activity of the urea (Me > 

Et > 
i
Pr) and the benzamide (Et > 

i
Pr) derivatives as previously reported [17]. The 

introduction of alkoxy substituents on the guanidine groups (7d, 7f, 7g) was detrimental 

to both antitrypanosomal and antimalarial activities although N-hydroxy substituents 

were somewhat better tolerated (IC50 < 5 µM). These results are consistent with those 

observed for fused ring bisguanidines [15]. In general, the difference in SAR between 

antitrypanosomal and antimalarial action probably reflects the presence of different 

cellular targets for both antiparasitic activities (Figure 2).  

The excellent in vivo efficacy of 7b and 7c in the mouse model of first stage HAT is 

linked to favourable drug-like properties (i.e. bioavailability, lead likeness, Lipinski rule 

of 5) as observed with I (Table 3). Considering that compound I was 100% curative by 

oral dosage in this mouse model, further in vivo studies with 7b and 7c are clearly 

warranted. In contrast, urea derivatives 8b and 8c were weakly active in the STIB900 

model and showed acute toxicity issues in vivo. This was somewhat unexpected as both 

compounds displayed low cytotoxicity against rat L6-cells (> 100 µM) resulting in high 

selectivity indices in vitro (SI > 1200). However, the drug-like properties calculated for 

8b and 8c are clearly less than optimum (Table 3) and may explain the poor efficacy of 

these compounds in vivo.  

Among the new compounds reported here, two molecules derived from the N-

phenylbenzamide scaffold, 7b and 7c, bound strongly to AT-rich DNA. No correlation 

between DNA binding and in vitro activity was observed which was not unexpected as 

this is a general trend that has been reported previously with related bisguanidines and 

other dicationic minor groove binders [11]. However, it was also noted in these reports 

that weak DNA binding results in reduced antitrypanosomal activity [15, 28, 31, 32]. 
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Hence, the level of DNA binding displayed by 7b and 7c is consistent with the 

existence of a DNA target (even though this may not be the sole target).  

 

 

 

Figure 2. SAR Results for Antitrypanosomal and Antimalarial In Vitro Activities of 

Bisguanidine Derivatives. The linker of the compounds reported in this study are 

indicated as bold faces (X = NHCO, NHCONH). Other linkers are shown here for 

comparative purpose (data reported in reference [11]). 
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Table 3. Calculated Physical and Chemical Properties and Estimation of Solubility and 

Permeability of Orally Active Compounds. 

Cmpd TPSA cLogP LogD Bioavail.
a
 

Lead 

likeness
b 

Lipinski  

rule of 5
c
 

In vivo 

efficacy
d 

I 157.9 0.28 -2.16 ■ ■ ■ ● 
e 

II 169.9 0.33 -2.19 ■ ■ ■ nd
f 

7a 129.9 0.83 -1.77 ■ ■ ■ nd 

7b 129.9 1.55 -1.08 ■ ■ ■ ● 
g 

7c 129.9 2.38 -0.27 ■ ■ ■ ● 
g 

7d 148.4 1.16 0.90 ■ ■ ■ nd 

7e 148.4 1.87 1.58 ■ ■ ■ nd 

7f 148.4 4.60 4.26 ■ ■ ■ nd 

7g 166.8 2.96 2.67 ■ ■ ■ nd 

7h 170.4 0.40 0.19 ■ ■ ■ nd 

8a 141.9 0.89 -1.80 ■ ■ ■ nd 

8b 141.9 1.60 -1.11 ■ ■ ■ ● 
g 

8c 141.9 2.43 -0.30 ■ ■ ■ ● 
g 

 

Calculations were performed with ChemAxon software Instant JChem 6.1.5 using 

Chemical Terms expressions (http://www.chemaxon.com). 
a 

Bioavailability (at least 6 

subresults are satisfied): mass ≤ 500 (+), logP ≤ 5 (+), H-donor count ≤ 5 (+), H-

acceptor count ≤ 10 (+), rotatable bond count ≤ 10 (+), PSA ≤ 200 (+), fused aromatic 

ring count ≤ 5. 
b 

Lead likeness: mass ≤ 450 & logD7.4 ≥ -4 & logD7.4 ≤ 4 & ring count ≤ 

4 & rotatable bond count ≤ 10 & H-donor count ≤ 5 & H-acceptor count ≤ 8. 
c 

Lipinski 

Ro5 (4 of 4): mass ≤ 500 & logP ≤ 5 & H-donor count ≤ 5 & H-acceptor count ≤ 

10. 
d
 STIB900 mouse model of acute HAT. 

e
 Oral administration. 

f
 Not determined. 

g
 ip 

administration. 

 

 

 

http://www.chemaxon.com/
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4. Conclusions 

In this study we have shown that the N-alkylation of the guanidine moiety is an 

effective strategy to enhance the antiparasitic activity of leads I and II against T. b. 

rhodesiense, whilst it is detrimental to the antimalarial action and DNA binding affinity. 

Low nanomolar IC50 values against T. b. rhodesiense were obtained with ethyl and 

isopropyl substituents (7b, 7c, 8b, and 8c). However, only 7b and 7c showed in vivo 

efficacy (100% cures) in the STIB900 mouse model of acute HAT. Hence, N-alkylated 

bisguanidines derived from the N-phenylbenzamide scaffold are very promising DNA 

binders with in vivo antitrypanosomal activities that outperform the triaryl class of 

bisguanidines [16, 17]. Because of their favourable drug-like properties, further studies 

of these molecules are warranted.  

Interestingly, several SAR differences against T. brucei were observed (i.e. guanidine 

substituent effect) with respect to other bisguanidine classes indicating that no general 

trend can be drawn for this class of dicationic compounds. It seems that potent 

antitrypanosomal activity depends on the complementary match between the central 

diphenyl scaffold and the substituted (or not) guanidine moieties.  

 

5. Experimental 

5.1. Chemistry 

5.1.1. General 

All dry solvents were purchased from Aldrich or Fluka in Sure/Seal bottles. All 

reactions requiring anhydrous conditions or an inert atmosphere were performed under a 

positive pressure of argon. All reactions were monitored by HPLC–MS or Thin Layer 
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Chromatography (TLC) using silica gel 60 F254 plates (Merck). Chromatography was 

performed with Isolute SI prepacked columns. 
1
H and 

13
C NMR spectra were recorded 

on a Bruker Advance 300, Varian Inova 400, or Varian Inova 500 spectrometer. 

Chemical shifts of the 
1
H NMR spectra were internally referenced to TMS ( 0 ppm) for 

CDCl3 or the residual proton resonance of the deuterated solvents: D2O ( 4.79 ppm), 

CD3OD ( 3.31 ppm) and DMSO ( 2.50 ppm). Signal splitting patterns are described 

as: singlet (s), broad singlet (br s), doublet (d), triplet (t), quadruplet (q), multiplet (m), 

or combination thereof. J values are given in Hz. Melting points were determined in 

open capillary tubes with a SMP3–Stuart Scientific apparatus or Mettler Toledo MP70 

melting point system, and are uncorrected. All compounds are >95% pure by HPLC or 

combustion analysis otherwise noted. Elemental analysis was performed on a Heraeus 

CHN–O Rapid analyser. Analytical results were within ± 0.4 % of the theoretical values 

unless otherwise noted. Analytical HPLC–MS was run with an Xbridge C18–3.5 µm 

(2.1×100 mm) column on a Waters 2695 separation module coupled with a Waters 

Micromass ZQ spectrometer using electrospray ionization (ESI
+
). The following HPLC 

conditions were used: column temperature = 30 ºC, gradient time = 5 min, H2O/CH3CN 

(10:90 → 90:10) (HCO2H 0.1 %), flow rate = 1 mL/min, UV detection: photodiode 

array (λ = 190−400 nm). Accurate mass were measured with an Agilent Technologies 

Q–TOF 6520 spectrometer using electrospray ionization.  

5.1.2. General procedure for the synthesis of bis(ethoxycarbonylthioureas) (3, 4) 

To a solution of diamine 1 or 2 (1 equiv.) in dry CH2Cl2 (15 mL) cooled to 0 ºC and 

under argon atmosphere, was added slowly an excess of ethoxycarbonyl isothiocyanate 

(2.2 equiv.). The reaction mixture was stirred at room temperature overnight and the 
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precipitate was collected by filtration. The precipitate was rinsed with hexane to yield 

the ethoxycarbonylthioureas 3 and 4 with good yields. 

5.1.2.1. Ethyl N-((4-((4- 

((((ethoxycarbonyl)amino)methanethioyl)amino)phenyl)carbamoyl)phenyl)carbamothio

yl)carbamate (3). The reaction of 1 (1.0 g, 4.4 mmol) with ethoxycarbonyl 

isothiocyanate (1.1 mL, 9.7 mmol) following the general procedure yielded 3 as white 

solid (2.1 g, 96%). 
1
H NMR (300 MHz, DMSO-d6) δ 11.72 (s, 1H, NH), 11.49 (s, 1H, 

NH), 11.36 (s, 1H, NH), 11.22 (s, 1H, NH), 10.33 (s, 1H, NH), 7.97 (d, J = 9.0, 2H, 

ArH), 7.80 (m, 4H, ArH), 7.54 (d, J = 9.0, 2H, ArH), 4.22 (q, J = 7.1, 2H, O-CH2-), 

4.21 (q, J = 7.1, 2H, O-CH2-), 1.26 (t, J = 7.1, 3H, CH3), 1.25 (t, J = 7.1, 3H, CH3). 
13

C 

NMR (75 MHz DMSO-d6) δ 178.6 (C=O), 164.8 (2 × C=O), 153.6 (C=N), 153.5 

(C=N), 141.0, 137.2, 133.5, 132.0, 128.2, 125.0, 123.7, 120.3, 62.2 (O-CH2-), 62.1 (O-

CH2-), 14.2 (2 × CH3). Mp > 300 °C. HPLC (UV) > 95%. LRMS (ES
+
) m/z = 490.11 

(M+H). 

5.1.2.2. Ethyl N-((4-(((4- 

((((ethoxycarbonyl)amino)methanethioyl)amino)phenyl)carbamoyl)amino)phenyl)carba

mothioyl)carbamate (4). The reaction of 2 (1.17 g, 5.76 mmol) with ethoxycarbonyl 

isothiocyanate (1.2 mL, 10.6 mmol) following the general procedure yielded 4 as white 

solid (2 g, 82%). 
1
H NMR (400 MHz, DMSO-d6) δ 11.44 (s, 2H, NH), 11.20 (s, 2H, 

NH), 8.78 (s, 2H, NH), 7.47 (s, 8H, ArH), 4.21 (q, J = 7.1, 4H, O-CH2), 1.26 (t, J = 7.1, 

6H, CH3). 
13

C NMR (101 MHz, DMSO-d6) δ 178.5 (C=O), 153.6 (C=S), 152.5 (C=S), 

137.7 (2 × Ar-C), 132.0 (2 × Ar-C), 125.3 (Ar, 4 × CH), 118.1 (Ar, 4 × CH), 62.0 (2 × 

O-CH2-), 14.2 (2 × CH3). Mp > 300 °C. HPLC (UV) > 95%. LRMS (ES
+
) m/z = 505.39 

(M+H). 
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5.1.3. General procedure for the synthesis of N-alkylguanidines (5a-c, 6a-c) and N-

alkoxy guanidines (5d-h). 

To a solution of 4 equivalents of alkylamine  (i.e., methylamine, ethylamine, 

isopropylamine) or hydroxylamine (i.e., O-methylhydroxylamine hydrochloride, O-

ethylhydroxylamine, O-benzylhydroxylamine) in dry CH2Cl2 (5 mL) under argon 

atmosphere, was added diisopropylethylamine (DIPEA, 6 equiv.). The reaction mixture 

was stirred 15 minutes at room temperature. The reaction mixture was cooled with an 

ice-bath and bis(ethoxycarbonylthiourea) 3 or 4 (1 equiv.) and 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDAC, 4 equiv.) were added successively. The 

reaction mixture (which turned from white to light brown color) was stirred at room 

temperature for 12 h. The reaction mixture was diluted with CH2Cl2 (10 mL) and 

washed successively with water (3 × 10 mL) and brine (10 mL). The organic phase was 

dried (MgSO4) and the solvent evaporated under vacuum. The product was purified as 

specified in each case.  

5.1.3.1. 4-(3-Ethoxycarbonyl-2-methylguanidino)-N-(4-(3-ethoxycarbonyl-2-

methylguanidino)phenyl)benzamide (5a) 

Compound 5a was obtained following the general procedure with 3 (800 mg, 1.6 

mmol), DIPEA (1.71 mL, 9.84 mmol), EDAC (1.26 g, 6.56 mmol) and methylamine (2 

M solution in THF, 3.28 mL, 6.56 mmol). The product was purified by precipitation 

with EtOAc and washed with Et2O to yield 5a as white solid (495 mg, 64%). 
1
H NMR 

(400 MHz, CDCl3) δ 10.55 (br s, 1H, NH), 8.67 (br s, 1H, NH), 7.86 (d, J = 8.6, 2H, 

ArH), 7.69 (d, J = 8.3, 2H, ArH), 7.18 (m, 2H, ArH), 7.13 (d, J = 8.6, 2H, ArH), 4.85 

(br s, 2H, NH), 4.14 (q, J = 7.1, 4H, O-CH2-), 2.94 (s, 3H, N-CH3), 2.89 (s, 3H, N-CH3), 

1.29 (m, 6H, -CH3). 
13

C NMR (75 MHz, DMSO-d6) δ 164.8 (C=O), 163.4 (C=O), 163.2 
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(C=O), 159.1 (C=N), 158.6 (C=N), 141.4 (Ar-C), 136.3 (Ar-C), 132.8 (Ar-C), 129.7 

(Ar-C), 128.2 (Ar-CH), 124.9 (Ar-CH), 122.4 (Ar-CH), 120.6 (Ar-CH), 59.7 (-OCH2-), 

59.6 (-OCH2-), 28.4 (-NCH3), 28.1 (-NCH3), 14.7 (CH3), 14.6 (CH3). Mp 127–130 °C. 

HPLC (UV) = 96 %. LRMS (ES
+
) m/z = 484.46 (M+H). 

5.1.3.2. 4-(2-Ethyl-3-ethoxycarbonylguanidino)-N-(4-(2-ethyl-3-

ethoxycarbonylguanidino)phenyl)benzamide (5b) 

Compound 5b was obtained following the general procedure with 3 (500 mg, 1.0 

mmol), DIPEA (1.1 mL, 6.1 mmol), EDAC (784 mg, 4.1 mmol) and ethylamine 

hydrochloride (331 mg, 4.1 mmol). The product was purified by silica chromatography 

(10 g SI prepacked column) with CH2Cl2/EtOAc (9:1) to yield 5b as white solid (419 

mg, 81%). 
1
H NMR (300 MHz, CDCl3) δ 10.66 (br s, 1H, NH), 8.49 (br s, 1H, NH), 

7.86 (d, J = 7.5, 2H, ArH), 7.68 (d, J = 8.5, 2H, ArH), 7.14 (m, 5H, ArH + NH), 4.76 

(br s, 1H, NH), 4.14 (q, J = 7.1, 4H, -OCH2-), 3.39 (m, 4H, -NCH2-), 1.28 (t, J = 7.1, 

6H, CH3), 1.20 (t, J = 6.9, 3H, CH3), 1.11 (t, J = 7.1, 3H, CH3).
 13

C NMR (75 MHz, 

CDCl3) δ 165.5 (C=O), 136.9 (2 × Ar-C), 129.1 (Ar, 2 × CH), 126.6 (Ar, 2 × CH), 

124.0 (Ar, 2 × CH), 122.1 (Ar, 2 × CH), 61.6 (-OCH2-), 61.2 (-OCH2-), 36.4 (2 × -

NCH2), 15.0 (CH3), 14.8 (CH3), 14.6 (2 × CH3). Mp 170–171 °C. HPLC (UV) > 90%. 

HRMS (ES
+
) required for C25H33N7O5: 511.2541 (found: 511.2543). 

5.1.3.3. 4-(3-Ethoxycarbonyl-2-isopropylguanidino)-N-(4-(3-ethoxycarbonyl-2-

isopropylguanidino)phenyl)benzamide (5c). 

Compound 5c was obtained following the general procedure with 3 (800 mg, 1.6 

mmol), DIPEA (1.7 mL, 9.8 mmol), EDAC (1.26 g, 6.56 mmol) and isopropylamine 

(0.57 mL, 6.56 mmol). The product was purified by silica chromatography (10 g SI 

prepacked column) with CH2Cl2/EtOAc (100/0→90/10) to yield 5c as white solid (690 

mg, 77%). 
1
H NMR (300 MHz, CDCl3) δ 10.57 (br s, 1H, NH), 8.48 (br s, 1H, NH), 
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7.89 (d, J = 7.9, 2H, ArH), 7.70 (d, J = 8.3, 2H, ArH), 7.13 (m, 4H, ArH), 4.59 (br s, 

1H, NH), 4.27 (br m, 2H, -CH-), 4.15 (q, J = 7.1, 4H, -OCH2-), 1.30 (m, 6H, CH3), 1.20 

(d, J = 6.4, 6H, CH3), 1.11 (d, J = 6.4, 6H, CH3). 
13

C NMR (75 MHz, CDCl3) δ 165.5 

(C=O), 164.7 (2 × C=O), 158.2 (2 × C=N), 137.0 ( 2 × Ar-C), 132.2 (2 × Ar-C), 129.2 

(Ar, 2 × CH), 126.6 (Ar, 2 × CH), 124.0 (Ar, 2 × CH), 122.2 (Ar-CH), 61.6 (-OCH2-), 

61.1 (-OCH2-), 43.1 (-CH-), 43.0 (-CH-), 23.1 (2 × CH3), 23.0 (2 × CH3), 14.8 (CH3), 

14.6 (CH3).  Mp 136–138 °C. HPLC (UV) > 95%. HRMS (ES
+
) required for 

C27H37N7O5: 539.2856 (found: 539.2849). 

5.1.3.4. 4-(3-Ethoxycarbonyl-2-methoxyguanidino)-N-(4-(3-ethoxycarbonyl-2-

methoxyguanidino)phenyl)benzamide (5d) 

Compound 5d was obtained following the general procedure with 3 (500 mg, 1.0 

mmol), DIPEA (1.1 mL, 6.1 mmol), EDAC (784 mg, 4.1 mmol) and methoxyamine 

hydrochloride (341 mg, 4.1 mmol). The product was purified by silica chromatography 

(5 g SI prepacked column) with CH2Cl2/EtOAc (9:1) to yield 5d as white solid (226 mg, 

43%). 
1
H NMR (300 MHz, CDCl3) δ 9.17 (br m, 1H, NH), 8.84 (br s, 1H, NH), 8.02 (br 

s, 2H, NH), 7.80 (d, J = 8.7, 2H, ArH), 7.76 (br s, 1H, NH), 7.53 (d, J = 8.7, 4H, ArH), 

7.43 (d, J = 8.7, 2H, ArH), 4.23 (q, J = 7.0, 2H, O-CH2-), 4.20 (q, J = 7.0, 2H, O-CH2-), 

3.83 (s, 3H, O-CH3), 3.77 (s, 3H, O-CH3), 1.39 (m, 6H, CH3). 
13

C NMR (75 MHz, 

CDCl3) δ 165.1 (C=O), 153.5 (2 × C=O), 145.2 (Ar-C), 144.2 (C=N), 142.2 (C=N), 

135.4 (Ar-C), 132.6 (Ar-C), 127.8 (Ar-C), 128.2 (Ar, 2 × CH), 121.0 (Ar, 2 × CH), 

119.7 (Ar, 2 × CH), 118.4 (Ar, 2 × CH), 62.7 (2 × O-CH2), 62.1 (2 × O-CH3), 14.4 (2 × 

CH3). Mp 190–191 °C. HPLC (UV): 97%. HRMS (ES
+
) required for C23H29N7O: 

515.2128 (found: 515.2134). 

5.1.3.5. 4-(2-Ethoxy-3-ethoxycarbonylguanidino)-N-(4-(2-ethoxy-3-

ethoxycarbonylguanidino)phenyl)benzamide (5e) 
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Compound 5e was obtained following the general procedure with 3 (500 mg, 1 mmol), 

DIPEA (1.1 mL, 6.1 mmol), EDAC (784 mg, 4.1 mmol) and ethoxyamine 

hydrochloride (397 mg, 4.1 mmol). The product was purified by silica chromatography 

(5 g SI prepacked column) with CH2Cl2/EtOAc (9:1) to yield 5e as white solid (299 mg, 

55%). 
1
H NMR (300 MHz, CDCl3) δ 9.17 (br s, 1H, NH), 8.84 (br s, 1H, NH), 8.04 (br 

s, 2H, NH), 7.79 (d, 2H, J = 8.8, ArH), 7.78 (s, 1H, NH), 7.53 (d, J = 8.8, 4H, ArH), 

7.44 (d, J = 8.6, 2H, ArH), 4.24 (m, 4H, O-CH2-), 4.05 (m, 4H, O-CH2-), 1.32 (m, 12H, 

CH3). 
13

C NMR (75 MHz, CDCl3) δ 165.2 (C=O), 153.5 (2 × C=N), 144.6 (Ar-C), 

143.9 (C=O), 142.3 (C=O), 135.6 (Ar-C), 132.4 (Ar-C), 128.2 (Ar, 2 × CH), 127.7 (Ar-

C), 121.0 (Ar, 2 × CH), 119.4 (Ar-CH), 118.2 (Ar-CH), 69.7 (-OCH2-), 69.5 (-OCH2-), 

62.6 (-OCH2-), 62.4 (-OCH2-), 14.7 (CH3), 14.4 (CH3). Mp 181–183 °C. HPLC (UV): 

95%. LRMS (ES
+
) m/z = 544.17 (M+H). 

5.1.3.6. 4-(2-Benzyloxy-3-ethoxycarbonylguanidino)-N-(4-(2-benzyloxy-3-

ethoxycarbonylguanidino)phenyl)benzamide (5f) 

Compound 5f was obtained following the general procedure with 3 (800 mg, 1.6 mmol), 

DIPEA (1.7 mL, 9.8 mmol), EDAC (1.26 g, 6.56 mmol) and benzyloxyamine (0.76 mL, 

6.56 mmol). The product was purified by silica chromatography (5 g SI prepacked 

column) with EtOAc/MeOH (100/0→90/10) to yield 5f as white solid (875 mg, 80%). 

1
H NMR (300 MHz, CDCl3) δ 9.18 (br s, 1H, NH), 8.84 (br s, 1H, NH), 8.00 (br m, 2H, 

NH), 7.78 (d, J = 8.7, 2H, ArH), 7.67 (br s, 1H, NH), 7.52 (m, 4H, ArH), 7.47 – 7.30 

(m, 12H, ArH), 5.03 (s, 2H, -OCH2-), 5.00 (s, 2H, -OCH2-), 4.23 (q, J = 7.1, 4H, -

OCH2-), 1.32 (t, J = 7.1, 3H, CH3), 1.31  (t, J = 7.1, 3H, CH3). 
13

C NMR (75 MHz, 

CDCl3) δ 164.9 (C=O), 153.3 (2 × C=O), 144.8 (C=N), 144.0 (C=N), 143.9 (Ar-C), 

142.1 (Ar-C), 137.5 (Ar-C), 137.3 (Ar-C), 135.4 (Ar-C), 132.3 (Ar-C), 128.8 (Ar, 2 × 

CH), 128.8 (Ar, 2 × CH), 128.43 (Ar, 2 × CH), 128.37 (Ar, 2 × CH), 128.2 (Ar, 2 × 
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CH), 127.6 (Ar-CH), 120.8 (Ar, 2 × CH), 119.5 (Ar-CH), 118.2 (Ar-CH), 76.3 (O-CH2-

), 76.2 (O-CH2-), 62.5 (O-CH2-), 62.3 (O-CH2-), 14.2 (CH3). Mp 156–158 °C. HPLC 

(UV) = 95%. LRMS (ES
+
) m/z = 668.68 (M+H). 

5.1.3.7. 4-(3-Ethoxycarbonyl-2-((tetrahydro-2H-pyran-2-yl)oxy)guanidino)-N-(4-(3-

ethoxycarbonyl-2-((tetrahydro-2H-pyran-2-yl)oxy)guanidino)phenyl)benzamide (5g) 

Compound 5g was obtained following the general procedure with 3 (650 mg, 1.3 

mmol), DIPEA (1.5 mL, 8.6 mmol), EDAC (1.1 g, 5.7 mmol) and O-(tetrahydro-2H-

pyran-2-yl)hydroxylamine [33] (670 mg, 5.7 mmol). The product was purified by 

precipitation in EtOAc to yield 5g as white solid (560 mg, 60%). 
1
H NMR (400 MHz, 

CDCl3) δ 9.21 (br s, 1H, NH), 8.88 (br s, 1H, NH), 7.97 (s, 2H, NH), 7.88 (s, 1H, NH), 

7.79 (d, J = 8.8, 2H, ArH), 7.54 (m, 4H, ArH), 7.44 (d, J = 9.0, 2H, ArH), 5.14 (dd, J = 

5.8, 2.2, 1H, O-CH-O), 5.10 (dd, J = 6.0, 2.1, 1H, O-CH-O), 4.24 (m, 4H, O-CH2-), 

3.94 (m, 2H, -CH2-), 3.63 (m, 2H, -CH2-), 2.48 (m, 2H, -CH2-), 1.86 (m, 4H, -CH2-), 

1.61 (m, 6H, -CH2-), 1.34 (m, 6H, CH3). 
13

C NMR (100 MHz, CDCl3) δ 165.3 (C=O), 

153.5 (2 × C=O), 146.0 (C=N), 145.3 (C=N), 142.1 (Ar-C), 135.5 (Ar-C), 132.7 (Ar-C), 

128.3 (Ar, 2 × CH), 128.0 (Ar-C), 121.1 (Ar, 2 × CH) , 119.8 (Ar, 2 × CH), 118.6 (Ar, 2 

× CH), 101.8 (O-CH-O), 101.7 (O-CH-O), 64.3 (O-CH2-), 64.2 (O-CH2-), 62.9 (O-CH2-

), 62.7 (O-CH2-), 29.6 (-CH2-), 29.5 (-CH2-), 25.4 (-CH2-), 21.0 (-CH2-), 20.9 (-CH2-), 

14.5 (2 × CH3). Mp 116–118 °C. HPLC (UV) = 95%. LRMS (ES
+
) m/z = 656.59 

(M+H).  

5.1.3.8. 1,3-Bis(4-(3-ethoxycarbonyl-2-methylguanidino)phenyl)urea (6a) 

Compound 6a was obtained following the general procedure with 4 (800 mg, 1.6 

mmol), DIPEA (1.66 mL, 9.52 mmol), EDAC (1.21 g, 6.36 mmol) and methylamine (2 

M solution in THF, 3.18 mL, 6.36 mmol). The crude product was triturated in Et2O to 
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yield 6a as white solid (707 mg, 73%). 
1
H NMR (300 MHz, DMSO-d6) δ 9.63 (br s, 2H, 

NH), 7.45 (d, J = 8.4, 4H, ArH), 7.19 (d, J = 8.4, 4H, ArH), 3.94 (q, J = 7.1, 4H, O-

CH2-), 2.78 (m, 6H, N-CH3), 1.15 (t, J = 7.1, 6H, CH3) [34]. 
13

C NMR (75 MHz, 

DMSO-d6) δ 163.7 (C=O), 159.6 (2 × C=O), 153.1 (2 × C=N), 137.9 (2 × Ar-C), 131.2 

(2 × Ar-C), 126.0 (Ar, 4 × CH), 118.5 (Ar, 4 × CH), 59.9 (2 × O-CH2-), 28.4 (2 × N-

CH3), 15.0 (2 × CH3). Mp >  280 °C (dec.). HPLC (UV) = 98%. LRMS (ES
+
) m/z = 

499.44  (M + H). 

5.1.3.9. 1,3-Bis(4-(2-ethyl-3-ethoxycarbonylguanidino)phenyl)urea (6b) 

Compound 6b was obtained following the general procedure with 4 (800 mg, 1.6 

mmol), DIPEA (1.6 mL, 9.5 mmol), EDAC (1.23 g, 6.4 mmol) and ethylamine 

hydrochloride (518 mg, 6.4 mmol). The product was purified by silica chromatography 

(5 g SI prepacked column) with CH2Cl2/MeOH (100/0→95/5) to yield 6b as white solid 

(418 mg, 60%). 
1
H NMR (300 MHz, DMSO-d6) δ 8.69 (s, 2H, NH), 7.44 (d, J = 8.2, 

4H, ArH), 7.20 (d, J = 8.2, 4H, ArH), 3.94 (q, J = 7.0, 4H, -OCH2-), 3.28 (m, 4H, -

NCH2-), 1.15 (t, 6H, J = 7.0, CH3), 1.10 (t, 6H, J = 7.0, CH3) [34]. 
13

C NMR (75 MHz, 

DMSO-d6) δ 163.5 (C=O), 158.4 (2 × C=O), 152.5 (2 × C=N), 137.0 (2 × Ar-C), 131.2 

(2 × Ar-C), 125.5 (Ar, 4 × CH), 118.6 (Ar, 4 × CH), 59.6 (2 × -OCH2-) , 35.6 (2 × -

NCH2-), 14.8 (2 × CH3), 14.7 (2 × CH3). Mp 190–191 °C. HPLC (UV) > 95%. LRMS 

(ES
+
) m/z  =  527.58 (M+H). 

5.1.3.10. 1,3-Bis(4-(3-ethoxycarbonyl-2-isopropylguanidino)phenyl)urea (6c) 

Compound 6c was obtained following the general procedure with 4 (300 mg, 0.6 

mmol), DIPEA (0.64 mL, 3.69 mmol), EDAC (472 mg, 2.5 mmol) and isopropylamine 

(0.21 mL, 2.46 mmol). The product was purified by silica chromatography (5 g SI 

prepacked column) with CH2Cl2/MeOH (100/0→95/5) to yield 6c as white solid (228 
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mg, 67%). 
1
H NMR (300 MHz, CDCl3) δ 10.52 (br s, 1H, NH), 8.41 (br s, 2H, NH), 

7.43 (brm, 4H, ArH), 7.03 (d, J = 8.0, 4H, ArH), 4.70 – 4.38 (br s, 2H, NH), 4.25 – 4.22 

(br s, 2H, -CH-), 4.18 (q, J = 7.0, 4H, O-CH2), 1.28 (t, J = 7.0, 6H, CH3), 1.11 (m, 12H, 

CH3). 
13

C NMR (75 MHz, CDCl3) δ 164.4 (C=O), 158.4 (2 × C=O), 153.2 (2 × C=N), 

138.5 (2 × Ar-C), 129.9 (2 × Ar-C), 126.8 (Ar,  4 × CH), 120.5 (Ar, 4 × CH), 61.6 (2 × 

O-CH2-), 43.2 (2 × -CH-), 23.1 (4 × CH3), 14.8 (2 × CH3). Mp > 130 °C (dec.). HPLC 

(UV) > 95%. LRMS (ES
+
) m/z = 555.58 (M+H). 

 

5.1.4. General procedure for the synthesis of diguanidines 7a-7h and 8a-8c 

The reaction was performed in a Kimax glass tube sealed with a screw stopper. To a 

solution of bis-3-ethoxycarbonyldiguanidine (5a-g, 6a-c) in MeOH (1 mL) was added 

0.1 M aqueous KOH (2 mL). The tube was stoppered and the reaction mixture was 

stirred at 80 ºC for 3–12 h. The reaction mixture was transferred to a round-bottomed 

flask and the solvents were evaporated under vacuum. The product was precipitated 

from water and triturated with a spatula to give the diguanidine as free base. The 

guanidine product was collected by filtration on a fritted plate (Nº 3).  

Formation of the diguanidinium dihydrochloride salts. To a solution of the diguanidine 

in MeOH (1 mL) was added HClg-saturated 1,4-dioxane solution (3 mL). The reaction 

mixture was stirred at room temperature for 1 h and the volatiles were removed under 

vacuum. The residue was triturated in Et2O to give the diguanidinium dihydrochloride 

salts as colorless solids.  

5.1.4.1. 4-(2-Methylguanidino)-N-(4-(2-methylguanidino)phenyl)benzamide (7a) 
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Following the general procedure, the reaction of 5a (136 mg, 0.28 mmol) with 1 M 

KOH gave the free base of 7a as white solid (90 mg, 94%).  
1
H NMR (300 MHz, 

DMSO-d6) δ 9.91 (s, 1H, NH), 7.84 (d, J = 8.0, 2H, ArH), 7.69 (d, J = 8.0, 2H, ArH), 

7.13 (br s, 2H, NH), 6.89 (m, 4H, ArH), 5.96 (br s, 4H, NH2), 2.70 (s, 3H, -CH3), 2.68 

(s, 3H, -CH3). 
13

C NMR (75 MHz, DMSO-d6) δ 165.3 (C=O), 154.2 (C=N), 153.1 

(C=N), 134.9 (2 × Ar-C), 129.0 (Ar, 2 × CH), 126.2 (2 × Ar-C), 123.9 (Ar, 2 × CH), 

122.6 (Ar, 2 × CH), 121.6 (Ar-CH), 28.2 (N-CH3), 28.1 (N-CH3). Mp > 300 °C. HPLC 

(UV) = 93%. LRMS (ES
+
) m/z = 340.45. 

5.1.4.2. 4-(2-Ethylguanidino)-N-(4-(2-ethylguanidino)phenyl)benzamide (7b) 

Following the general procedure, the reaction of 5b (350 mg, 0.68 mmol) with 1 M 

KOH gave the free base of 7b (205 mg, 81%). 
1
H NMR (400 MHz, DMSO-d6) δ 9.89 

(s, 1H, NH), 7.83 (d, J = 8.2, 2H, ArH), 7.67 (d, J = 8.4, 2H, ArH), 6.88 (m, 4H, ArH), 

3.16 (m, 4H, N-CH2-), 1.09 (m, 6H, CH3). 
13

C NMR (101 MHz, DMSO-d6) δ 165.1 

(C=O), 160.1 (Ar-C), 154.3  (Ar-C), 152.9 (C=N), 152.0 (C=N), 134.7 (Ar-C), 128.7 

(Ar, 2 × CH), 125.8 (Ar-C), 123.6 (Ar, 2 × CH), 122.4 (Ar, 2 × CH), 121.3 (Ar, 2 × 

CH), 35.6 (N-CH2-), 35.4 (N-CH2-), 15.0 (CH3), 14.7 (CH3). Mp 134–135 °C. HPLC 

(UV) = 92%. LRMS (ES
+
) m/z = 368.49 (M+H).  

Dihydrochloride salt of 7b: white solid (182 mg). HPLC (UV) = 92%. 
1
H NMR (300 

MHz, DMSO-d6) δ 10.51 (s, 1H, NH), 10.31 (s, 1H, NH), 9.83 (s, 1H, NH), 8.32 (s, 1H, 

NH), 8.10 (d, J = 8.4, 2H, ArH), 8.00 (br s, 3H, NH), 7.92 (d, J = 8.1, 2H, ArH), 7.68 

(br s, 2H, NH), 7.35 (d, J = 8.1, 2H, ArH), 7.21 (d, J = 8.4, 2H, ArH), 3.30 (m, 4H, N-

CH2-), 1.14 (t, J = 7.3, 6H, CH3). 
13

C NMR (75 MHz, DMSO-d6) δ 164.5 (C=O), 154.9 

(C=N), 154.3 (C=N), 139.5 (Ar-C), 137.7 (Ar-C), 130.9 (Ar-C), 130.6 (Ar-C), 129.3 
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(Ar, 2 × CH), 125.3 (Ar, 2 × CH), 122.4 (Ar, 2 × CH), 121.4 (Ar, 2 × CH), 36.5 (N-

CH2), 36.2 (N-CH2), 14.2 (-CH3), 14.1 (-CH3). 

5.1.4.3. 4-(2-Isopropylguanidino)-N-(4-(2-isopropylguanidino)phenyl)benzamide (7c) 

Following the general procedure, the reaction of 5c (300 mg, 0.56 mmol) with 1 M 

KOH gave the free base of 7c (157 mg, 71%) which was transformed into the 

dihydrochloride salt of 7c. Dihydrochloride of 7c: white solid (106 mg). 
1
H NMR (300 

MHz, DMSO-d6) δ 10.51 (s, 1H, NH), 10.28 (s, 1H, NH), 9.80 (s, 1H, NH), 8.35 (br s, 

1H, NH), 8.10 (d, J = 8.5, 2H, ArH), 8.03 (br s, 3H, NH), 7.91 (d, J = 8.5, 2H, ArH), 

7.64 (br s, 2H, NH), 7.34 (d, J = 8.0, 2H, ArH), 7.20 (d, J = 8.0, 2H, ArH), 3.94 (br m, 

2H, -CH-), 1.19 (t, J = 6.2, 12H, CH3). 
13

C NMR (75 MHz, DMSO-d6) δ 164.5 (C=O), 

154.2 (C=N), 153.5 (C=N), 139.6 (Ar-C), 137.5 (Ar-C), 130.7 (Ar-C), 130.7 (Ar-C), 

129.3 (Ar, 2 × CH), 125.1 (Ar-CH), 122.2 (Ar-CH), 121.3 (Ar-CH), 43.8 (-CH-), 43.4 (-

CH-), 22.3 (2 × CH3), 22.2 (2 × CH3). Mp 206–208 °C. HPLC (UV) = 96%.  LRMS 

(ES
+
) m/z  = 396.47 (M + H). 

5.1.4.4. 4-(2-Methoxyguanidino)-N-(4-(2-methoxyguanidino)phenyl)benzamide (7d) 

Following the general procedure, the reaction of 5d (200 mg, 0.39 mmol) with 1 M 

KOH gave the free base of 7d as white solid (100 mg, 69%). 
1
H NMR (300 MHz, 

DMSO-d6) δ 9.78 (br s, 1H, NH), 7.81 (d, J = 7.1, 2H, ArH), 7.73 – 7.56 (br s, 1H, NH), 

7.53 (d, J = 7.2, 2H, ArH), 7.40 (d, J = 7.2, 2H, ArH), 7.28 (d, J = 7.1, 2H, ArH), 5.40 

(s, 2H, NH2), 5.21 (s, 2H, NH2), 3.62 (s, 3H, O-CH3), 3.59 (s, 3H, O-CH3). 
13

C NMR 

(75 MHz, DMSO-d6) δ 164.6 (C=O), 151.5 (C=N), 150.7 (C=N), 144.6 (Ar-C), 137.4 

(Ar-C), 131.8 (Ar-C), 128.4 (Ar, 2 × CH), 125.5 (Ar-C), 121.0 (Ar, 2 × CH), 117.2 (Ar-

CH), 115.9 (Ar-CH), 60.6 (O-CH3), 60.5 (O-CH3). Mp 205–208 °C. HPLC (UV) > 

95%.  LRMS (ES
+
) m/z  = 372.48 (M+H).  
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Dihydrochloride of 7d: white solid (79 mg). 
1
H NMR (300 MHz, DMSO-d6) δ 11.61 (br 

s, 1H), 10.63 (s, 1H), 10.58 (s, 1H), 10.24 (s, 1H), 8.40 (s, 2H), 8.14 (s, 2H), 8.11 (d, J = 

8.4, 2H, ArH), 7.93 (d, J = 8.3, 2H, ArH), 7.40 (d, J = 8.1, 2H, ArH), 7.25 (d, J = 8.1, 

2H, ArH), 3.74 (s, 3H, O-CH3), 3.71 (s, 3H, O-CH3). 
13

C NMR (75 MHz, DMSO-d6) δ 

164.6 (C=O), 156.3 (C=N), 155.5 (C=N), 138.7 (Ar-C), 138.0 (Ar-C), 131.3 (Ar-C), 

129.7 (Ar-C), 129.3 (Ar, 2 × CH), 125.4 (Ar, 2 × CH), 122.6 (Ar, 2 × CH), 121.3 (Ar, 2 

× CH), 64.5 (O-CH3), 64.4 (O-CH3). HPLC (UV) > 95%. 

5.1.4.5. 4-(2-Ethoxyguanidino)-N-(4-(2-ethoxyguanidino)phenyl)benzamide (7e) 

Following the general procedure, the reaction of 5e (30 mg, 0.05 mmol) with 1 M KOH 

gave the free base of 7e as white solid. 
1
H NMR (500 MHz, DMSO-d6) δ 9.75 (s, 1H, 

NH), 8.09 (s, 1H, NH), 7.80 (d, J = 8.9, 2H, ArH), 7.58 (s, 1H, NH), 7.52 (d, J = 8.9, 

2H, ArH), 7.39 (d, J = 8.9, 2H, ArH), 7.27 (d, J = 8.9, 2H, ArH), 5.31 (s, 2H, NH2), 

5.14 (s, 2H, NH2), 3.83 (m, 4H, O-CH2), 1.20 (m, 6H, CH3). 
13

C NMR (126 MHz, 

DMSO-d6) δ 164.5 (C=O), 151.3 (C=N), 150.5 (C=N), 144.7 (Ar-C), 137.5 (Ar-C), 

131.7 (Ar-C), 128.4 (Ar, 2 × CH), 125.4 (Ar-C), 121.0 (Ar, 2 × CH) , 117.1 (Ar, 2 × 

CH), 115.8 (Ar, 2 × CH), 67.6 (O-CH2), 67.4 (O-CH2), 14.7 (2 × CH3). Mp 184–186 °C.  

HPLC (UV) > 95%.  LRMS (ES
+
) m/z = 400.39 (M + H).  

Dihydrochloride of 7e: white solid (19 mg, 85% for 2 steps). 
1
H NMR (300 MHz, 

DMSO-d6) δ 11.41 (br s, 1H), 10.50 (s, 1H), 10.42 (br s, 1H), 10.09 (s, 1H), 8.23 (br m, 

2H), 8.09 (d, J = 8.6, 4H), 7.91 (d, J = 8.8, 2H), 7.40 (d, J = 8.6, 2H), 7.25 (d, J = 8.8, 

2H), 3.94 (d, J = 7.0, 4H), 1.26 (t, J = 7.0, 6H). 

5.1.4.6. 4-(2-(Benzyloxy)guanidino)-N-(4-(2-(benzyloxy)guanidino)phenyl)benzamide 

(7f) 
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Following the general procedure, the reaction of 5f (200 mg, 0.39 mmol) with 1 M 

KOH gave the free base of 7f as white solid (140 mg, 95%). 
1
H NMR (400 MHz, 

DMSO-d6) δ 9.75 (s, 1H, NH), 8.10 (s, 1H, NH), 7.78 (d, J = 8.8, 2H, ArH), 7.60 (s, 1H, 

NH), 7.50 (d, J = 9.0, 2H, ArH), 7.45 – 7.40 (m, 4H, ArH), 7.39 – 7.31 (m, 6H, ArH), 

7.32 – 7.25 (m, 2H, ArH), 7.22 (d, J = 9.0, 2H, ArH), 5.43 (s, 2H, NH2), 5.26 (s, 2H, 

NH2), 4.88 (s, 2H, O-CH2-), 4.84 (s, 2H, O-CH2-). 
13

C NMR (100 MHz, DMSO-d6) δ 

164.5 (C=O), 151.5 (C=N), 150.7 (C=N), 144.6 (Ar-C), 139.25 (Ar-C), 139.16 (Ar-C), 

137.4 (Ar-C), 131.7 (Ar-C), 128.4 (Ar, 2 × CH), 128.1 (Ar, 2 × CH), 128.0 Ar, 2 × CH), 

127.95 (Ar, 2 × CH), 127.91 (Ar-CH), 127.3 (Ar-CH), 127.2 (Ar-C), 125.4 (Ar, 2 × 

CH), 121.0 (Ar, 2 × CH), 117.1 (Ar, 2 × CH), 115.9 (Ar, 2 × CH), 74.32 (O-CH2), 

74.25 (O-CH2-). Mp 110–113 °C. HPLC (UV) = 95%.  LRMS (ES
+
) m/z = 524.56 (M + 

H). 

Dihydrochloride of 7f: white solid (95 mg). HPLC (UV) = 98%. 
1
H NMR (300 MHz, 

DMSO-d6) δ 11.54 (s, 2H), 10.55 (s, 1H), 10.53 (s, 2H), 10.20 (s, 1H), 8.26 (s, 2H), 

8.08 (d, J = 8.6, 2H, ArH), 7.91 (d, J = 8.8, 2H, ArH), 7.52 (m, 4H, ArH), 7.41 (m, 6H, 

ArH), 7.29 (d, J = 8.6, 2H, ArH), 7.15 (d, J = 8.8, 2H, ArH), 4.96 (s, 2H, O-CH2), 4.92 

(s, 2H, O-CH2). 
13

C NMR (75 MHz, DMSO-d6) δ 164.6 (C=O), 156.6 (C=N), 155.6 

(C=N), 139.1 (Ar-C), 137.9 (Ar-C), 135.2 (Ar-C), 135.0 (Ar-C), 129.8 (Ar-C), 129.53 

(Ar, 4 × CH) , 129.48 (Ar, 4 × CH), 129.2 (Ar, 2 × CH), 128.7 (Ar, 2 × CH), 128.4 (Ar, 

2 × CH), 125.1 (Ar, 2 × CH), 122.0 (Ar-C), 121.3 (Ar, 2 × CH), 78.1 (O-CH2-), 77.8 

(O-CH2). 

5.1.4.7. 4-(2-(Tetrahydro-2H-pyran-2-yl)oxy)guanidino-N-((4-(2-(tetrahydro-2H-pyran-

2-yl)oxy)guanidino)phenyl)benzamide (7g) 

Following the general procedure, the reaction of 5g (200 mg, 0.39 mmol) with 1 M 

KOH gave the free base of 7g as white solid (170 mg, 85%). 
1
H NMR (400 MHz, 
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DMSO-d6) δ 9.78 (s, 1H, NH), 8.31 (s, 1H, NH), 7.79 (d, J = 8.8, 2H, ArH), 7.73 (s, 1H, 

NH), 7.52 (d, J = 9.0, 2H, ArH), 7.38 (d, J = 8.8, 2H, ArH), 7.26 (d, J = 9.0, 2H, ArH), 

5.48 (s, 2H, NH2), 5.27 (s, 2H, NH2), 4.96 (t, J = 3.7, 1H, O-CH-O), 4.92 (t, J = 3.8, 1H, 

O-CH-O), 3.81 (m, 2H, -CH2-), 3.43 (m, 2H, -CH2-), 1.86 (m, 2H, -CH2-), 1.65 (m, 4H, 

-CH2-), 1.49 (m, 6H, -CH2-).  
13

C NMR (100 MHz, DMSO-d6) δ 165.2 (C=O), 152.8 

(C=N), 152.1 (C=N), 145.4 (Ar-C), 138.1 (Ar-C), 132.4 (Ar-C), 129.1 (Ar, 2 × CH), 

126.1 (Ar-C), 121.7 (Ar, 2 × CH), 117.9 (Ar, 2 × CH), 116.6 (Ar, 2 × CH), 99.9 (2 × O-

CH-O), 62.0 (2 × O-CH2), 29.9 (-CH2-), 29.8 (-CH2-), 25.9 (2 × -CH2-), 20.1 (-CH2-), 

20.0 (-CH2-). Mp > 300 °C. HPLC (UV) > 95%.  LRMS (ES
+
) m/z  = 512.67 (M + H). 

5.1.4.8 4-(2-Hydroxyguanidino)-N-(4-(2-hydroxyguanidino)phenyl)benzamide 

dihydrochloride (7h) 

A solution of 7g (100 mg, 0.2 mmol) in MeOH (1 mL) and HClg-saturated 1,4-dioxane 

solution (2 mL) was stirred at room temperature for 12 h. The volatiles were removed 

under vacuum, Et2O was added and the solid was triturated with a spatula to give the 

dihydrochloride of 7h as white powder (69 mg, 69%). 
1
H NMR (300 MHz, DMSO-d6) 

δ 11.25 (s, 1H), 10.83 (s, 1H), 10.49 (s, 1H), 10.36 (s, 2H), 10.12 (s, 1H), 9.95 (s, 1H), 

8.20 (s, 2H), 8.08 (d, J = 8.3, 2H, ArH), 7.89 (d, J = 8.4, 2H, ArH), 7.34 (d, J = 8.2, 2H, 

ArH), 7.20 (d, J = 8.4, 2H, ArH). 
13

C NMR (75 MHz, DMSO-d6) δ 164.9 (C=O), 157.4 

(C=N), 156.4 (C=N), 139.6 (Ar-C), 137.9 (Ar-C), 130.6 (Ar-C), 129.6 (Ar, 4 × CH), 

125.3 (Ar-C), 121.7 (Ar, 4 × CH). Mp > 300 °C. HPLC (UV) > 95%.  LRMS (ES
+
) m/z  

= 344.57 (M + H). 

5.1.4.9. 1,3-Bis(4-(2-methylguanidino)phenyl)urea (8a) 

Following the general procedure, the reaction of 6a (132 mg, 0.4 mmol) with 1 M KOH 

gave the free base of 8a (107 mg, 81%) which was transformed into the dihydrochloride 
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of 8a. Dihydrochloride of 8a: white solid (95 mg). 
1
H NMR (500 MHz, DMSO-d6) δ 

9.8 (s, 2H, NH), 9.6 (br s, 2H, NH), 7.7 (m, 6H, NH3), 7.5 (d, J = 8.8, 4H, ArH), 7.1 (d, 

J = 8.8, 4H, ArH), 2.8 (d, J = 4.9, 6H, NCH3). 
13

C NMR (126 MHz, DMSO-d6) δ 155.9 

(2 × C=O), 152.7 (2 × C=N), 138.7 (2 × Ar-C), 128.5 (Ar, 4 × CH), 126.3 (2 × Ar-C), 

118.6 (Ar, 4 × CH), 28.2 (N-CH3). Mp 277–278 °C. HPLC (UV) = 95%. LRMS (ES
+
) 

m/z = 383.60 (M + H). 

5.1.4.10. 1,3-Bis(4-(2-ethylguanidino)phenyl)urea (8b) 

Following the general procedure, the reaction of 6b (200 mg, 0.38 mmol) with 1 M 

KOH gave the free base of 8b as white solid (132 mg, 91%). 
1
H NMR (400 MHz, 

DMSO-d6)
 
δ 8.25 (br s, 2H, NH), 7.23 (d, J = 8.7, 4H, ArH), 6.65 (d, J = 8.7, 4H, ArH), 

5.25 (br s, 2H), 4.76 (br s, 4H), 3.12 (d, J = 7.2, 4H, O-CH2-), 1.06 (t, J = 7.2, 6H, CH3). 

13
C NMR (101 MHz, DMSO) δ 152.9 (C=O), 151.3 (2 × C=N), 145.5 (2 × Ar-C), 132.7 

(2 × Ar-C), 123.0 (Ar, 4 × CH), 119.3 (Ar, 4 × CH), 35.2 (2 × N-CH2-), 15.1 (2 × CH3). 

Mp 211–212 °C. HPLC (UV) > 98%.  LRMS (ES
+
) m/z  = 383.53 (M+H).  

Dihydrochloride of 8b: white solid (79 mg). 
1
H NMR (400 MHz, DMSO-d6) δ 9.81 (s, 

2H, NH), 9.57 (s, 2H, NH) 7.83 (s, 2H, NH), 7.60 (br s, 4H) 7.53 (d, J = 8.7, 4H, ArH), 

7.14 (d, J = 8.7, 4H, ArH), 3.25 (m, 4H, N-CH2-), 1.12 (t, J = 7.1, 6H, CH3).  
13

C NMR 

(100 MHz, DMSO-d6) δ 155.0 (2 × C=N), 152.7 (C=O), 138.7 (2 × Ar-C), 128.6 (Ar, 4 

× CH), 126.3 (2 × Ar-C), 118.7 (Ar, 4 × CH), 36.3 (2 × N-CH2), 14.3 (2 × CH3). HPLC 

(UV) = 98%. 

5.1.4.11. 1,3-Bis(4-(2-isopropylguanidino)phenyl)urea (8c) 

Following the general procedure, the reaction of 6c (300 mg, 0.56 mmol) with 1 M 

KOH gave the free base of 8c as white solid (157 mg, 71%). 
1
H NMR (400 MHz, 

DMSO-d6) δ 8.30 (m, 2H), 7.23 (d, J = 8.7, 4H, ArH), 6.65 (d, J = 8.7, 4H, ArH), 4.98 
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(br s, 6H), 3.83 (hept, J = 6.4, 2H, -CH-), 1.09 (d, J = 6.4, 12H, -CH3).  
13

C NMR (100 

MHz, DMSO-d6) δ 152.9 (C=O), 150.7 (2 × C=N), 145.2 (2 × Ar-C), 132.8 (Ar-C), 

123.0 (Ar, 4 × CH), 119.3 (Ar, 4 × CH), 41.4 (2 × N-CH), 23.0 (4 × CH3). Mp 206–207 

ºC. HPLC (UV) = 96 %. LRMS (ES
+
) m/z  = 396.47 (M + H).  

Dihydrochloride salt of 8c: White solid (105 mg). 
1
H NMR (300 MHz, DMSO-d6) δ 

9.72 (br s, 2H), 9.44 (br s, 2H), 7.82 (m, 2H), 7.53 (d, J = 8.5, 4H, ArH), 7.48 (br s, 4H) 

7.14 (d, J = 8.5, 4H, ArH), 3.87 (m, 2H), 1.17 (d, J = 6.2, 12H). 
13

C NMR (75 MHz, 

DMSO-d6) δ 154.2 (C=O), 152.7 (2 × C=N), 138.6 (2 × Ar-C), 128.7 (2 × Ar-C), 126.0 

(Ar, 4 × CH) 118.7 (Ar, 4 × CH), 43.4 (2 × N-CH), 22.3 (4 × CH3). HPLC (UV) = 97%. 

 

5.2. Biology 

5.2.1. In vitro antiprotozoal activity 

Susceptibility assays against T. b. rhodesiense (strain STIB900) and cytotoxicity assays 

against rat myoblast L6-cells were performed using an Alamar blue-based assay [23, 

35]. Detailed experimental procedures were described in a previous paper [36]. The in 

vitro antimalarial activity against the chloroquine sensitive strain of P. falciparum NF54 

was determined using the [
3
H]hypoxanthine incorporation assay [24] as previously 

reported [36].  

5.2.2. In vivo activity against T. b. rhodesiense: STIB900 mouse model of stage 1 HAT 

Four female NMRI mice were used per experimental group. Each mouse was inoculated 

i.p. with 10
4
 bloodstream forms of STIB900, respectively. Heparinized blood from a 

donor mouse with approximately 5 × 10
6
 /mL parasitaemia was suspended in PSG to 

obtain a trypanosome suspension of 1 × 10
5
 /mL. Each mouse was injected with 0.25 
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mL. Compounds were formulated in 100% DMSO, diluted 10-fold in distilled water or 

as specified by the supplier. Compound treatment was initiated 3 days post-infection on 

four consecutive days for all administration routes (i.p., p.o.) in a volume of 0.1 mL/10 

g. Three mice served as infected-untreated controls. They were not injected with the 

vehicle alone since we have established in our laboratory that these vehicles do not 

affect parasitaemia nor the mice (data not shown). Parasitaemia was monitored using 

smears of tail-snip blood twice a week after treatment for two weeks followed by once a 

week until 60 days post-infection. Mice were considered cured when there was no 

parasitaemia relapse detected in the tail blood over the 60-day observation period. Mean 

relapse days (MRD) were determined as day of relapse post-infection of mice. 

All the in vivo efficacy studies in mice were conducted at the Swiss Tropical and Public 

Health Institute (Basel) according to the rules and regulations for the protection of 

animal rights ("Tierschutzverordnung") of the Swiss "Bundesamt für Veterinärwesen". 

They were approved by the veterinary office of Canton Basel-Stadt, Switzerland. 

 

5.3. DNA Binding: Surface Plasmon Resonance Studies 

5.3.1. Compounds, DNA and buffers 

SPR experiments were performed at 25 ºC with a Biacore X–100 apparatus (GE 

Healthcare, Biacore AB, Uppsala, Sweden) in MES buffer (10 mM 2-(N-

morpholino)ethanesulfonic acid, 1 mM EDTA, 100 mM NaCl, 0.005% surfactant P20, 

pH 6.25). The 5’-biotin labeled DNA hairpins were purchased from Sigma-Aldrich with 

HPLC purification. The DNA hairpin sequences included 5’-biotin-

CGAATTCGTCTCCGAATTCG, 5’-biotin-CATATATATCCCCATATATATG, and 

5’-biotin-CGCGCGCGTTTTCGCGCGCG (the loop region is underlined) referred as 
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AATT, (AT)4, and (CG)4, respectively. The hydrochloride salts of compounds 7b, 7c, 

and 8b were dissolved in MES buffer and these stock solutions (C = 5 mM)  were used 

to prepare the different dilutions for the binding experiments.  

5.3.2. DNA Immobilization 

The DNA hairpins were immobilized independently on three streptavidin-derivatized 

gold chips (SA chip from Biacore containing 2 flow cells) by injection of a 25 nM 

hairpin DNA solution with a flow rate of 1 µL/min until a response of about 400 RU 

was reached. Flow cell 1 was used as reference while flow cell 2 was immobilized with 

the different DNA hairpins.  

5.3.3. Binding Experiments 

Typically, a series of different concentrations of compounds 7b, 7c, and 8b was injected 

onto the chip at 25 ºC with a flow rate of 20 µL/min for a period of 5 min followed by a 

dissociation period of 5 min. After the dissociation process, the chip surface was 

regenerated with a 20 µL injection of 200 mM NaCl and 10 mM NaOH solution, 

injection tube rinsing, and multiple 1 min buffer injections. The number of binding sites 

and the binding constants at equilibrium were obtained by fitting SPR results to a one 

site (K2 = 0) or two-site binding model according to equation 1: 

r = RU/RUmax = (K1Cf + 2K1K2Cf
2
) / (1 + K1Cf + 2K1K2Cf

2
)   (1) 

where r is the moles of bound compound per mole of DNA hairpin duplex, K1 and K2 

are microscopic binding constants, and Cf is the free compound concentration at 

equilibrium [29, 37]. 
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