Synthesis, Reactions and Spectroscopy of 3-Benzoyl-6-phenylpyridazines of Expected Biological Activity

Yvette A. Issac

Chemistry Department, Faculty of Science, Benha University, Benha, Egypt

* Reprint requests to Dr. Y. A. Issac. Fax: 00202/4012245

Z. Naturforsch. 54b, 1048-1054 (1999); received December 29, 1998

Pyridazine Derivatives, Biological Activity

Oxidative decyanation of phenyl(6-phenylpyridazin-3-yl)acetonitrile (1) in methanol yielded 3-benzoyl-6-phenylpyridazine (2). Phenyl(6-phenyl-pyridazin-3-yl)methanol (3) has been obtained via NaBH₄ reduction of ketone 2. Reaction of 2 with hydroxylamine or its O-alkyl analogue has been found to yield 3-benzoyloxime-6-phenylpyridazine (4) and alkyloximes (5), respectively. Treatment of 4 with a mixture of acetic acid and sulfuric acid afforded ketone 2 again and not the rearranged products (6 or 7). Beckmann rearrangement has however been achieved for 3-benzoyl(O-ethyloxime)-6-phenylpyridazine (5a) and oxime 4 giving solely 3-carboxanilide-6-phenylpyridazine (6), 4-Benzoyloxime-3-phenyl-6-chloropyridazine (17) has been synthesized from the corresponding ketone 16.

Introduction

Pyridazine derivatives appear to be of interest due to their pharmacological activities such as gastric antisecretory, antiulcer [1], hypolipidemic [2] and antihistaminic activities [3-5]. Because of this, much efforts have been devoted to synthesize various of pyridazines in order to enhance their pharmacological activity.

Here we wish to report the synthesis of 3-benzoyl-6-phenylpyridazine (2) together with its corresponding derivatives. Also, the preparations of the related chloropyridazinyl derivatives are presented. Similar pyridazinyl ketones of type 2 have been reported in a patent [6], and recent literature reports indicate that they could be obtained *via* oxidative decyanation [7–10] of their corresponding acetonitrile derivatives 1 in the presence of triethylbenzylammonium chloride (TEBA) as phase transfer catalyst. The latter method was adopted in our study for synthesis of our target compound 2.

Results and Discussion

The required starting diarylacetonitrile 1 was prepared from 6-phenyl-3-chloropyridazine and phenylacetonitrile as previously described [1]. Treatment of the latter nitrile with TEBA in methanol and sodium hydroxide under air oxygen afforded the ketone 2 in good yield *via* the following mechanism. The structure of benzoyl phenylpyridazine 2 together with its chemical reactions outlined below (Scheme 1) was confirmed by IR, ¹H NMR, mass spectra and elemental analysis (Table I and Experimental).

Thus, treatment of **2** with sodium borohydride in methanol at room temperature yielded the corresponding alcohol **3** in almost quantitative yield. The ¹H NMR spectrum of the latter revealed two characteristic doublets with J = 4 Hz at δ 6.05 and 4.96 assignable to the OH and CH protons respectively.

Also, treatment of **2** with hydroxylamine hydrochloride in the presence of sodium hydroxide afforded the oxime **4** in an excellent yield (95%). The isolated oxime appears to exist as a mixture of two tautomeric forms. This conclusion comes from tlc analysis of this product which revealed the presence of two spots with close R_f values. The ¹H NMR spectrum showed two signals at $\delta = 12.14$ and 11.9. The integration of these two signals cor-

0932-0776/99/0800-1048 \$06.00 © 1999 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com D

No. (method)	Yield (%)	M.p. (°C) (recrystallization	Molecular formula	Eler	nental a calcd/fou	nalysis Ind	Pv	ridazine		¹ H NMR (CDCl ₃) δ (ppm) Other
(,	(,	solvent)	(MWt)	С	Н	N	H-4 (d, 1H)	H-5 (d, 1H)	J _{4,5} (Hz)	
2	96	125–126 (toluene)	C ₁₇ H ₁₂ N ₂ O (260.30)	78.44 78.50	4.65 4.59	10.76 10.70	8.51	8.32	10	8.20-8.31 (m, 2H, Ph-2,6), 8.08-8.16 (m, 2H, Ph-3,5), 7.66-7.81 (m, 1H, Ph-4), 7.61-7.65 (m, 5H, Ph-pyridazi- ne) ^a
3	94	157–159 (ethanol)	C ₁₇ H ₁₄ N ₂ O (262.31)	77.84 77.50	5.38 5.27	10.68 10.47	8.06	7.80	8	7.22-8.04 (m, 10H, Ph), 6.05 (d, $J = 4$ Hz, 1H, OH), 4.96 (d, $J = 4$ Hz, 1H, CHOH)
4	95	187–188 (toluene)	C ₁₇ H ₁₃ N ₃ O (275.31)	74.17 74.42	4.76 4.75	15.26 15.10	8.35	8.00	9	8.22-8.30 (m, 2H, Ph-2,6), 7.59-7.68 (m, 3H, Ph-3,4,5), 7.42-7.53 (m, 5H, Ph-pyridaz- ine),
										11.9 (s, 1H, OH) ^b , 12.14 (s, 1H, NH) ^c
5a (A) (B)	79 37	150–152 (ethanol)	C ₁₉ H ₁₇ N ₃ O (303.37)	75.23 75.58	5.65 5.69	13.85 13.87	8.16 7.96	7.93 7.80	9	8.16–8.28 (m, 2H, Ph-2,6), 7.22–7.71 (m, 8H, Ph), 4.12– 4.28 (m, 2H, OCH ₂), [1.36, 1.32 (t, $J = 7$ Hz, 3H, CH ₃)] ^{3,d}
5b (A) (B)	74 83	134–136 (cyclohexane)	C ₁₈ H ₁₅ N ₃ O (289.34)	74.72 74.93	5.23 5.29	14.52 14.26	8.22 7.85	7.91 7.76	9	8.10–8.22 (m, 2H, Ph-2,6), 7.38–7.62 (m, 8H, Ph), [4.09,4.01 (s, 3H, OCH ₃)] ^e
6	68	207–208 (acetonitrile)	$C_{17}H_{13}N_{3}O_{(275,31)}$	73.56 73.77	4.81 4.78	15.13 14.95 ^f	8.46	8.52	9	(see Fig. 1)
8a	62	188 - 189 (methanol)	$C_{23}H_{18}N_4$ (350.42)	78.83 78.72	5.18 5.03	$16.00 \\ 15.98$				
8b	69	227 - 228 (methanol)	C ₂₃ H ₁₇ N ₄ Cl (384.86)	71.78 71.62	4.45 4.41	14.56 14.36	8.76	8.18	10	7.43–7.97 (m, 14H, Ph), 7.95 (s, 1H, NH) ^g
8c	89	132-134 (methanol)	$C_{23}H_{17}N_4Cl$ (384.86)	71.78 71.57	4.45 4.21	14.56 14.16				
9	82	140–142 (cyclohexane)	$\begin{array}{c} C_{17}H_{13}N_2Cl\\ (280.76) \end{array}$	72.73 72.96	4.67 4.58	9.98 9.97	7.91	7.78	9	8.06–8.18 (m, 2H, Ph-2,6), 7.29–7.62 (m, 8H, Ph), 6.59 (s, 1H, CHCl).
10a	62	122-124 (cyclohexane)	C ₁₉ H ₁₉ N ₃ (289.37)	78.86 78.70	6.62 6.43	14.52 14.51	8.27	8.03	8	7.72-8.01 (m, 2H, Ph-2,6), 7.41-7.76 (m, 5H, Ph-pyridaz- ine), 7.12-7.34 (m, 3H, Ph-3,4,5), 4.73 (s, 1H, PhCH), 2.24 (s, 6H, CH ₃).
10b	67	186–187 (cyclohexane)	$C_{21}H_{21}N_3$ (315.41)	79.97 80.31	6.71 6.32	13.32 13.13				
10c	79	212-213 (ethanol)	C ₂₂ H ₂₃ N ₃ (329.44)	80.21 80.65	7.84 6.82	12.75 12.45	8.06	8.02	8	7.71-7.85 (m, 2H, Ph-2,6), 7.46-7.55 (m, 5H, Ph-pyridaz- ine), 7.21-7.34 (m, 3H, Ph-3,4,5), 4.85 (s, 1H, PhCH), 2.21-2.51 (m, 4H, piperidine H- 2,6) 1.41-1.62 (m, 6H, piperidine H- 3.4 5)
10d	66	144–145 (ethanol)	$C_{23}H_{19}N_3$ (337.42)	81.87 81.73	5.68	12.45 12.15				-,)
11	83	138–39 (ethanol)	$\begin{array}{c} (357.42) \\ C_{17}H_{16}N_4 \\ (276.34) \end{array}$	73.89 73.70	5.84 5.58	20.27 19.95	8.31	7.82	9	8.14–8.23 (m, 1H, NH), 7.34–7.66 (m, 10H, Ph), 6.71 (d, <i>J</i> = 4Hz, 1H, PhCH), 4.62 (d, <i>J</i> = 5, 2H, NH ₂)
12	89	320-322 (DMF:H ₂ O) (8:1)	$\begin{array}{c} C_{34}H_{28}N_6\\(520.63)\end{array}$	78.43 77.99	5.42 5.17	16.14 15.96	8.71-8.22	(4H,m)		8.26–8.31 (m, 2H, NH-NH), 7.45–8.00 (m, 20H, Ph), 6.7 (d, <i>J</i> = 4Hz, 2H, PhCH) ^[a]

Table I. Analytical and spectral data of compounds 2-12.

^a Recorded from deuteriodimethylsulfoxide; ^b 4B; ^c 4A; ^d (0.5 : 9.5); ^e (2 : 8); ^f calculated $C_{17}H_{13}N_3O + 1/8 H_2$; ^g exchangeable with D₂O.

responds to one proton and their ratio is 1:9 respectively. Furthermore, the structure of product **4** is evidenced by its IR spectrum which reveals a broad absorption band near $\nu = 2840 \text{ cm}^{-1}$, assignable to strongly intramolecular hydrogen bonded OH or HN⁺ group. Attempts to separate the two isomers were met with failure. Accordingly, the isolated oxime **4** was considered to exist as a mixture of the two forms the zwitterionic **4A** and the *Z* isomer **4B** which is predominant as indicated by the foregoing ¹H NMR data.

The assignment of the Z isomer of the product **4** was further confirmed by its alkylation and re-

4A (10%)

arrangement of O-alkyl derivatives obtained. Thus, treatment of **4** with diethyl or dimethyl sulfates in aqueous sodium hydroxide afforded the O-alkyloximes **5a,b** respectively. The latter could be also obtained *via* an alternative route involving treatment of ketone **2** with the corresponding alkoxylamine hydrochloride in ethanol and in the presence of 10% sodium hydroxide. As expected, both compounds, **5a,b**, showed a mixture from two isomers (Table I). The structure of the latter products was consistent with their IR, ¹H NMR and the elemental analysis in addition to the mass spectrum of **5a** which revealed m/z = 303 (84%), corresponding to the molecular ion peak (see Experimental).

Treatment of **5a** with polyphosphoric acid afforded the dealkylated [11] and the rearranged product N,6-diphenylpyridazine-3-carboxyamide **6** which was identified by comparison with an authentic sample of **7** prepared from benzoyl chloride and 3-phenyl-6-aminopyridazine, The com-

parison included tlc, m.p., IR, in addition to the 2D-NMR analysis. The results obtained, clearly demonstrate that compound 6 was the product of a Beckmann rearrangement of 5a and not compound 7. The structure of 6 was established by the following facts; a) its m.p. (207-208 °C) was different from that of compound 7 (m.p. 231-232 °C), b) IR spectra of both compounds showed different NH and CO stretching frequencies, thus, compound 6 showed bands at v = 3343 (NH) and 1682 cm⁻¹ (CO), while compound 7 showed stretching frequencies at $\nu = 3478$ (NH) cm⁻¹, 1722 (CO) cm^{-1} . c) both compounds showed different signals in ¹H NMR and ¹³C NMR, e.g., compound 6 showed (CO) at $\delta = 161.3$, while compound 7 at δ 166.6 ppm, d) from 2D-HC correlation, using the HMBC pulse sequence [12]. Compound 6 showed a correlation between H-4 of pyridazine (d, 8.4) and CO ($\delta = 161.3$) while compound 7 showed a correlation between CO $(\delta = 166.6)$ and the benzovl *ortho* protons at $(\delta =$ 8.14). Total assignments of proton and carbon signals for both compounds are illustrated in Fig. 1 and 2. The structure of 6 was also confirmed by its mass spectrum which showed a molecular ion peak at m/z = 275 (99%).

The foregoing results, when taken collectively, substantiate the Z configuration assigned for, both, the O-alkyloximes **5a**,**b** and their precursors **4**.

Also, oxime 4 was subjected to a mixture of acetic and sulfuric acid in order to achieve a Beckmann rearrangement. Under these very mild conditions, deoximation was achieved, and ketone 2was obtained instead of any expected rearranged product 6 or 7. It is worth to note that deoximation usually takes place under drastic conditions with very strong reducing, oxidizing or expensive reagents [13]. However we achieved this rearrange-

Fig. 1. Proton and carbon assignments of compounds **6** based on HMBC experiments.

125 8 120.1 (8.1) H H (76) H (8.5) 0 18 3 H (7.6) H (8.1) H 166.6 128 5 128.2 (7.6) **H** 132.4 132 5 125 155.6 (7.6) H 129 120 6 135.8

Fig. 2. Proton and carbon assignments of compound **7** based on HMBC experiments.

ment upon treatment of 4 with polyphosphoric acid to give 6 (Scheme 1).

An even more convenient access to 3-benzoyl-N-arylhydrazone-6-phenylpyridazine **8a-c** was established by treatment of our target ketone **2** with substituted phenylhydrazine hydrochloride in presence of sodium acetate and methanol giving high yields of hydrazones **8**.

Transformation of alcohol **3** into the corresponding chloride **9** was achieved in a satisfactory yield employing thionyl chloride in dry toluene at room temperature.

According to the literature [14], the action of secondary aliphatic amines to $4-\alpha$ -chlorobenzylpvridazine was found to result in an attack at the heteroaromatic system. On the other hand, attack of said aliphatic amines gives 4-a-aminobenzylpyridazine in addition to 20% of isomeric tele-substitution products (4-benzyl-5-aminopyridazines [14]. In contrast, $3-\alpha$ -chlorobenzylpyridazine derivative 9 has shown to be attacked exclusively at the benzvlic carbon atom (¹H NMR signals for pyridazinyl H-4,5 in addition to analysis of the reaction mixture by t1c), so, treatment of the chloro derivative 9 with secondary aliphatic, aromatic or cyclic amines showed a pronounced regioselectivity in the smooth replacement of chlorine by N-nucleophiles leading quantitatively to the corresponding amino derivatives 10a-d. The structure of the products is consistent with their IR and ¹H NMR in addition to mass spectrum of 10b which revealed m/z = 315 (0.6%).

Much efforts have been devoted to synthesis of the hydrazine **11**. Unfortunately 90% yield of the disubstituted derivative **12** always was obtained in addition to a poor yield of compound **11** despite of the use of different reaction conditions. Finally, we have succeeded to obtain compound **11** in good yield (83%) by adding a solution of compound **9** in methanol dropwise to a stirred hydrazine hydrate solution at room temperature. The elemental analysis and spectroscopic data of compounds **11** and **12** are compatible with the assigned structures (Table I).

In continuation of our work, and due to the pharmacological potential of pyridazines [15,16], we extended our efforts towards the synthesis of ketone 16 with a 6-chloro substituent at the pyridazine ring, (Scheme 2). Therefore, we prepared α -(3-phenyl-6-chloropyridazin-4-yl)phenylacetonitrile (15) in good yield by reaction of 3-phenyl-4,6-dichloropyridazine (13) via adaption of a published procedure [8] to give either compound 14 or 15. To deduce which compound had actually been obtained, the product was subjected to reductive dehalogenation (ammonium formate/Pd/ C), and the product was compared with nitrile 1 (Scheme 1). A remarkable difference between the two nitriles was observed (using tlc, m.p., spectroscopic analysis) which indicated that our product is 15 and not 14, so the chlorine at C-4 was replaced during the reaction and not at C-6. The IR spectrum of compound 15 revealed an absorption band at v = 2221 (CN) cm⁻¹, while its ¹H NMR showed a singlet at $\delta = 8.11$ (pyridazine H-5), a multiplet at 6.92-7.07 (Ph H-2,6), a multiplet at 7.21–7.61 (Ph H-3,4,5 and C_6H_5 at pyridazine) and a singlet at 5.93 (benzyl proton) [cf. Experimental].

Thus, the diarylacetonitrile **15** was conveniently accessible to synthesize ketone **16**. We have so far failed in the preparation of an analytically pure sample owing to its poor stability, so the crude chloropyridazinyl ketone **16** was reacted with hydroxylamine hydrochloride in the presence of so-dium hydroxide to afford oxime **17**.

Experimental

Melting points are uncorrected. Elemental analyses were performed on a Carlo Erba 1106 analyzer. IR spectra were measured using Perkin Elmer 298 spectrophotometer. The ¹H NMR spectra were recorded on an Varian Gemini 200 MHz instrument, ¹³C NMR spectra were recorded at 50 MHz on XL 200; 2D-HC correlation was obtained on Bruker 360 MHz using a HMBC pulse sequence, according to [12]. Mass spectra were recorded on Shimadzu, GC MS-QP 1000 EX instrument. All reactions were monitored by thin layer chromatography, carried out on 0.2 mm silica gel 60F₂₅₄ (Merck) plates.

The analytical and spectral data of compounds 2-12 are compiled in Table I and the experimental, compounds 15-17 at the experimental part.

3-Benzoyl-6-phenylpyridazine (2): A solution of 10.84 g (40 mmol) of 1 [1], 15 ml of 30% NaOH and 0.80 g (3.5 mmol) triethylbenzylammonium chloride in 200 ml of methanol was stirred at 45 °C for 12 h and air was pumped through it. Then, 200 ml water was added, and the precipitate was crystallized from toluene. Yield: 10.1 g (96%); – IR: $\nu = 1673$ (CO).

Brought to you by | New York University Bobst Library Technical Services Authenticated Download Date | 7/16/15 12:34 AM

Phenyl(6-phenylpyridazin-3-yl)methanol (3): To a solution of 2.60 g (10 mmol) of 2 in 50 ml of methanol 0.10 g (2.5 mmol) of sodium borohydride was added within 15 min and the reaction mixture was stirred at room temperature for 2 h. The mixture was acidified with 2 N sulfuric acid, then methanol was removed *in vacuo*. The icecooled solution was made alkaline with 50% aqueous sodium hydroxide. The precipitate was recrystallized from ethanol. Yield: 2.48 g (94%); – IR: $\nu = 3159$ (OH).

3-Benzoyloxime-6-phenylpyridazine (4): A solution of 2.60 g (10 mmol) of 2 in 20 ml of methanol was added to a solution of 2.08 g (30 mmol) of hydroxylamine hydrochloride in 10 ml of water, and 10 ml of 10% sodium hydroxide. The mixture was refluxed for 45 min. After cooling 100 ml water was added and the precipitate was crystallized from toluene. Yield: 2.61 g (95%).

Reaction of oxime **4** with acetic and sulfuric acids: A mixture of 1.4 g (5 mmol) of **4**, 100 ml of acetic acid and 50 ml of sulfuric acid was refluxed for 4 h, the mixture was cooled, then 100 g of ice was aded, then neutralized with ammonium hydroxide. The precipitate was crystallized from toluene. Yield: 0.85 g (65%) of ketone **2**.

3-Benzoyl-(O-alkyloxime)-6-phenylpyridazines (**5a,b**) (Method A): A solution of 2.60 g (10 mmol) of **2** in 20 ml of ethanol containing 30 mmol of appropriate alkoxylamine hydrochloride, 10 ml of water, and 10 ml of 10% sodium hydroxide was refluxed for 1.5 h, work up according to **4**. Yield: 2.41 g (79%) of **5a** and 2.13 g (74%) of **5b**, respectively. – MS (70 ev): for **5a**, m/z (%), 303 (84), 302 (100), 274 (65), 258 (31), 244 (94), 104 (381), 77 (98), 51 (67).

Method B: The appropriate dialkylsulfate (30 mml) was added in portions to a stirred solution of 2.75 g (10 mmol) of 4 in 20 ml of ethanol and 10 ml of 10% sodium hydroxide. Stirring was continued for 1 h at room temperature, the excess dialkylsulfate was evaporated *in vacuo*, then 100 ml of water was added. The separated precipitate was crystallized from the appropriate solvent. Yield: 1.14 g (37%) of **5a** and 2.41 g (83%) of **5b**.

3-Carboxanilide-6-phenylpyridazine (6): A mixture of (10 mmol) of **4** or **5a** and 30 g of polyphosphoric acid was kept at 110 °C with stirring for 1 h, the mixture was cooled, 100 g of ice was added and the isolated product was crystallized from acetonitrile. Yield: 1.98 g (72%) and 1.87 g (68%) respectively. – 2-D¹H NMR, ¹³C NMR: (Fig. 1). – MS (70 ev): m/z (%), 275 (99), 274 (81), 182 (2), 156 (25), 120 (2), 104 (100), 92 (6), 78 (6), 77 (59), 53 (99). *N-(6-Phenylpyridazin-3-yl)benzamide* (7): This compound was obtained as colourless crystals from ethanol. m.p. 231–232 °C. – 2-D¹H NMR, ¹³C NMR (Fig. 2).

 $\begin{array}{c} C_{17}H_{13}N_3O~(275.31)\\ Calcd & C~74.17 & H~4.76 & N~15.26\%,\\ Found & C~73.91 & H~4.54 & N~15.08\%. \end{array}$

3-Benzoyl-N-arylhydrazone-6-phenyl-

pyridazines (8a-c) (General procedure): A solution of phenylhydrazine hydrochloride or its m-, pchloro analogue (10 mmol) and 2 g of sodium acetate in 10 ml of water was added to 2.60 g (10 mmol) of 2 in 30 ml of methanol, then the mixture was refluxed for 1 h. The precipitate was crystallized from the appropriate solvent to yield 2.52 g (62%), 3.11 g (69%), 3.41 g (89%) of 8a,8b or 8c respectively. – IR: $\nu = 3078$ (NH).

 α -(6-Phenylpyridazin-3-yl)benzylchloride (9): Thionyl chloride (2 ml) was added to a stirred suspension of 2.62 g (10 mmol) of **3** in 100 ml of dry toluene at 0 °C within 15 min. The mixture was allowed to warm up to room temperature and then stirred for 3 h. A saturated solution of aqueous sodium hydrogen carbonate was added at 0 °C. The aqueous layer was extracted with dichloromethane, the combined organic extracts were dried over anhydrous sodium sulfate, and then concentrated *in vacuo*. The residue was crystallized from cyclohexane to yield 1.72 g (82%).

 α -(6-Phenylpyridazin-3-yl)benzylamines (**10a-d**): (General procedure): A mixture of 1.40 g (5 mmol) of **9** and 20 mmol of the appropriate amine in 15 ml of ethanol was refluxed for 5–7 h. After cooling, the precipitate was crystallized from appropriate solvent to yield 0.89 g (62%), 1.52 g (67%), 1.29 g (79%), or 1.19 g (66%) of **10a**, **10b**, **10c** or **10d** respectively. – MS (70 ev): of **10b**, m/z(%) 315 (0.6), 271 (16), 246 (100), 245 (35), 115 (12), 77(8), 70(2).

 α -(6-Phenylpyridazin-3-yl)benzylhydrazine (11): To a stirred sample of 30 ml of hydrazine hydrate a solution of 1.40 g (5 mmol) of **9** in 10 ml of methanol was added dropwise at room temperature within 30 min. The stirring was continued for 3 h. The excess hydrazine and ethanol were evaporated *in vacuo*. The residue was crystallized from ethanol. Yield: 1.14 g (83%). – IR: $\nu = 3192$ (NH), $\nu = 3057$ (NH₂). – MS (70 ev): m/z(%) 276 (20), 275 (2), 199 (12), 121 (100), 119 (10), 77 (35).

N,*N*'-*Bis*[α -(6-phenylpyridazin-3-yl)benzyl]hydrazine (**12**): A mixture of 2.8 g (10 mmol) of **9** and 10 ml of hydrazine hydrate in 20 ml of ethanol was refluxed for 2 h. The excess hydrazine hydrate and solvent were removed in vacuo. The residue was crystallized from DMF and water (8:1). Yield: 2.31 g (89%). – IR: $\nu = 3300 - 3050$ (NH-NH).

 α -(3-Phenyl-6-chloropyridazin-4-yl)phenylacetonitrile (15): To a stirred solution of 2.9 g (18.33 mmol) of phenylacetonitrile in 40 ml of dry toluene 1.9 g (47.5 mmol) of sodium amide was added in portions at 0 °C. Then 5.63 g (25 mmol) of 3-phenyl-4,6-dichloropyridazine was added. The mixture was worked up according to ref. [8]. Yield: 5.6 g (70%) m.p. 138–139 °C (ethanol), – IR: ν = 2221 (CN). – ¹H NMR (DMSO-d₆): δ = 8.11 (s, 1H, pyridazine H-5), 6.92-7.07 (m, 2H, Ph-2,6), 7.21-7.61 (m, 8H, Ph-3,4,5, C₆H₅-pyridazine), 5.93 (s, 1H, PhCH).

 $C_{18}H_{12}ClN_3$ (305.77) Calcd C 70.71 H 3.96 N 13.74%. Found C 71.00 H 3.89 N 13.75%.

4-Benzoyl-3-phenyl-6-chloropyridazine (16): A solution of 3.06 g (10 mmol) of 15, 15 ml of 30% NaOH and 0.23 g (1 mmol) of triethylbenzylammonium chloride in 50 ml of methanol then the mixture was worked up analogous to the preparatione of 2. Yield: 2.8 g (83%) m.p 70- 71 °C. – IR: $\nu = 1669 \text{ (C=O)}. - {}^{1}\text{H} \text{ NMR} \text{ (DMSO-d_6)}: \delta =$ 8.21(s, 1H, pyridazine H-5), 7.67-7.39 (m, 10H, Ph).

4-Benzovloxime-3-phenyl-6-chloropyridazine

(17): A solution of 1.47 g (5 mmol) of 16 in 20 ml of methanol was added to a solution of 1.04 g (15 mmol) of hydroxylamine hydrochloride in 5 ml of water and 5 ml of 10% sodium hydroxide then the mixture was worked up analogous to the preparation of 4. Yield: 1.12 g (72%) m.p. > 300 °C (DMF). – IR: $\nu = 3220 (OH)$. – ¹H NMR (DMSO d_6): $\delta = 8.33$ (s, 1H, pyridazine H-5), 7.79–7.42 (m, 10H, Ph), 12.11 (s, 1H, OH).

C17H12ClN3O	(309.75)		
Calcd	C 65.91	H 3.90	N 13.57%,
Found	C 65.72	H 3.50	N 13.50%.

Acknowledgement

Thanks are due to Institute of Organic Chemistry, Karl Franzens University, Graz-Austria, for elemental and 2D-NMR analyses.

- [1] T. Yamada, T. Nobuhara, H. Shimamura, K. Yoshihara, A. Yamaguchi, M. Ohki, Chem. Pharm. Bull. 29, 3433 (1981).
- [2] M. J. Ashton, A. Ashford, A. H. Loveless, D. Ridell, J. Salmon, G. V. W. Stevenson, J. Med. Chem. 27, 1245 (1984) and references cited therin.
- [3] A. Kleenmann, J. Engel, "Pharmazeutische Wirkstoffe", 2nd Ed., G. Thieme Verlag, Stuttgart (1982).
- [4] W. Donald, US Pat. 906, 984, C. A. 122, 31542 (1994).
- [5] S. Yang, JP 06, 298, 917, C. A. **122**, 291815 (1994).
 [6] I. Garland, L. Hatton, W. Leeds, E. Parnell, Ger. Offen 2557956, C. A. 85, 177470 (1976).
- [7] C. K. F. Hermann, Y. P. Sachdeva, J. F. Wolfe, Heterocycl. Chem. 24, 1061 (1987).
- [8] G. Heinisch, T. Langer, Synth. Commun. 24 (6), 773 (1994).

- [9] H. Yamanaka, S. Ohba, Heterocycles **31**, 895 (1990).
- [10] G. Heinisch, T. Langer, J. Heterocycl. Chem. 30, 1685 (1993).
- [11] E. Schmitz, G. Lutze, K. Kirschlee, P. Hubner, Bull. Soc. Chem. Belg. 101, 6 (1992)
- [12] A. Bax, M. F. Summers, J. Am. Chem. Soc. 108, 2093 (1986).
- [13] R. Sanabria, R. Miranda, V. Lara, F. Delgado, Synth. Commun. 24 (19), 2805 (1994) and references cited therein.
- [14] G. Heinisch, R. Waglechner, Monatsh. Chem. 115, 1171 (1984).
- [15] J. David, R. Thomas, D. Diane, US Pat. 242528, C. A. 124, 232476 (1995).
- [16] M. Guy, C. M. Julian, J. David, US Pat. 261452, C. A. 124, 290273 (1995).