4-Acetoxy- and 4-Triflyloxy-2,6,6-trimethyl-2,4-cyclohexadienones as Nondimerizing Alternatives to 2,6,6-Trimethyl-2,4-cyclohexadienone. Efficient Synthesis of Several Bicyclo[2.2.2]octenone Derivatives

Ming-Shyong Yang, Shi-Yi Chang, Shyue-Sheng Lu, Polisetti Dharma Rao and Chun-Chen Liao*

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300 Fax + 886-3-5711082, E-mail: ccliao@faculty.nthu.edu.tw Received 2 December 1998

Abstract: 4-Acetoxy- and 4-triflyloxy-2,6,6-trimethyl-2,4-cyclohexadienones were employed as non-dimerizing alternatives to 2,6,6-trimethyl-2,4-cyclohexadienone in Diels-Alder reactions with substituted acetylenes which facilitated the synthesis of substituted bicyclo[2.2.2]octen-2,5-diones, bicyclo[2.2.2]octadienones and 5methylenebicyclo[2.2.2]octen-2-ones.

Key words: 2,4-cyclohexadienones, Diels-Alder reactions, vinyl triflates, bicyclo[2.2.2]octendiones, bicyclo[2.2.2]octadienones

During our studies on competitive photochemical rearrangements of bicyclo[2.2.2]octenone derivatives, a need for the synthesis of substituted bicyclo[2.2.2]octen-2,6diones 1, bicyclo[2.2.2]octadienones 2 and 5-methylenebicyclo[2.2.2]oct-7-en-2-ones 3 (Figure 1) has arisen. While there are no efficient general methods available for the preparation of bicyclo[2.2.2]oct-7-en-2,5-diones¹ which are immediate precursors of 5-methylenebicyclo[2.2.2]oct-7-en-2-ones, there exist reports on synthesis of bicyclo[2.2.2]octadienones via Diels-Alder reactions of 2,4-cyclohexadienones and acetylene derivatives.² In principle, it should be possible to prepare bicyclo[2.2.2]octadienones of the required type 2 via Diels-Alder reactions of appropriate acetylene derivatives with 2,6,6-trimethyl-2,4-cyclohexadienone (4). However, the tedious procedures involved in the preparation of 4 and its high propensity to dimerize have deterred us from using

this approach.³ It is pertinent to mention that despite the difficulties involved in the preparation and handling of 4, it has been used in the total synthesis of natural products on a number of occassions.⁴

During the search for an alternative to **4**, 4-acetoxy-2,6,6-trimethyl-2,4-cyclohexadienone (**5**) prepared by Soukup *et al.*,⁵ attracted our attention. Interestingly, although **5** is quite stable and accessible in large quantities its Diels-Alder chemistry has not been studied.^{6,7} We herein report the first use of 4-acetoxy-2,6,6-trimethyl-2,4-cyclohexadienone (**5**) and 4-triflyloxy-2,6,6-trimethyl-2,4-cyclohexadienone (**6**) as attractive alternatives to **4** in Diels-Alder reactions with substituted acetylenes and a novel approach to title compounds **1-3** starting from readily available 4-ketoisophorone (**7**) (Schemes 1-3).

Scheme 1

Compound 5 was prepared from 7 following the procedure developed by Soukup et al.⁵ The Diels-Alder reactions of 5 with substituted acetylenes such as ethyl propiolate (8a), dimethyl acetylenedicarboxylate (8b), phenylacetylene (8c) and diphenylacetylene (8d) were performed by heating 5 with two equivalents of an acetylene derivative at an appropriate temperature to obtain the adducts **9a-d** in excellent yields (Scheme 1).⁸ The regioselectivity observed in the reactions of 5 with 7a and 7c is noteworthy. Subsequent hydrolysis of 9a-d with potassium carbonate in ethanol or methanol at 0 °C proceeded smoothly to furnish the desired bicyclo[2.2.2]octendiones 1a-d in >93% yields.9 It should be mentioned that compounds of type **1** were prepared by others from hydroquinone and maleic anhydride in very low yields (16%).¹

Synlett 1999, No. 2, 225-227 ISSN 0936-5214 © Thieme Stuttgart · New York

After several unsuccessful attempts to convert **1a** into **2a**. it was finally decided to adopt Cacchi's procedure¹⁰ for the conversion of enolizable ketones into olefins. Accordingly, **1a-d** were converted into corresponding vinyl triflates 10a-d in >90% yield by treating 1a-d with LHMDS in THF at -78 °C and then with N-phenyltriflimide. Vinyl triflates 10a-d were then subjected to Cacchi's conditions (HCOOH, n-Bu₃N, Pd(PPh₃)₂Cl₂, DMF, 60-80 °C) to obtain the desired bicyclo[2.2.2]octadienones 2a-d in good overall yields (Scheme 2). However, a rethinking enlightened us with the idea that instead of starting with 5, the cyclohexadienone 6 could be employed to obtain the compounds 10a-d directly rather than in three steps. This hypothesis was immediately examined. The cyclohexadienone 6 was prepared from 4-ketoisophorone in >90%yield using the conditions employed for the conversion of **1a-d** into **10a-d**. Diels-Alder reactions of **6** with acetylenes 8a-d proceeded smoothly as expected to provide the adducts 10a-d in excellent yield.8 However, in the case of 8a, regioisomer 10e (12%) was also produced along with 10a (73%).

Scheme 2

Towards synthesis of 5-methylenebicyclo[2.2.2]oct-7-en-2-ones **3a-d**, compounds **1a-d** were treated with triphenylmethylenephosphorane in toluene at 60-80 °C. While **1a, 1c** and **1d** underwent smooth and selective Wittig olefination at the less hindered keto group, in the case of **1b** the ester group interfered and the major product was **11** (37%). The desired compound **3b** was obtained only in 25% yield (Scheme 3). The structures of all the new compounds were unambiguously established by their IR, ¹H and ¹³C NMR, DEPT and low- and high-resolution mass spectral data.

It is important to note that compounds **1a-d** with an active methylene group and two distinguishable keto groups should allow further transformations characteristic to these groups. Similarly, compounds **2a-d** with a vinyl triflate moiety should undergo facile Heck-type and Stille coupling reactions. In fact this transformation forms the corner stone of a common approach to quinane-based and cedranoid natural products being developed in our laboratory. Nevertheless, compounds **1** and **2** clearly hold substantial potential.

In conclusion, the present studies unravelled two new stable 2,4-cyclohexadienones as well as attractive and stable alternatives to highly useful but readily dimerizing and tedious to prepare 2,6,6-trimethyl-2,4-cyclohexadienone (4). In fact, both 5 (200 mM) and 6 (50 mM) can be prepared in large scale. The targeted compounds 1-3 were obtained in good overall yields by the present procedures and hence an efficient route for these types of compounds has been developed. Studies on competetive di- π -methane and oxa-di- π -methane rearrangements¹¹ of compounds 1-3 are in progress in our laboratory and the details will be published in the near future.

Acknowledgement

We thank the National Science Council (NSC) of the Republic of China for financial support to our research. PDR thanks the NSC for a post-doctoral fellowship.

References and Notes

- (a) Weitemeyer, C.; de Meijere, A. Angew. Chem. Int. Ed. Engl. 1976, 15, 686-687. (b) Hill, R. K.; Morton, G. H.; Peterson, J. R.; Walsh, J. A.; Paquette, L. A. J. Org. Chem. 1985, 50, 5528-5533. (c) Demuth, M.; Ritterskamp, P.; Weigt, E.; Schaffner, K. J. Am. Chem. Soc. 1986, 108, 4149-4154.
- (2) (a) Alder, K.; Flock, F. H.; Lessenich, H. Chem. Ber. 1957, 90, 1709-1720. (b) Becker, H.-D.; Ruge, B. J. Org. Chem. 1980, 45, 2189-2195.

- (3) (a) Brown, T. L., Curtin, D. Y.; Fraser, R. R. J. Am. Chem. Soc. 1958, 80, 4339-4341. (b) Quinkert, G.; Durner, G.; Klein, E.; Adam, F.; Haupt, E.; Leibfritz, R. Chem. Ber. 1980, 113, 2227-2248. (c) Bertrand, M.; Teisseire.; Pelerin, G. Tetrahedron Lett. 1980, 21, 2055-2056. (d) Berge, J. M.; Rey, M.; Dreiding, A. S. Helv. Chim. Acta 1982, 65, 2230-2241.
- (4) (a) Naf, F.; Ohloff, G. *Helv. Chim. Acta* 1974, *57*, 1868-1870.
 (b) Naf, F.; Decorzant, R.; Giersch, W.; Ohloff, G. *Helv. Chim. Acta* 1981, *64*, 1387-1397. (c) Oppolzer, W.; Briner, P. H.; Snoden, R. L.; *Helv. Chim. Acta* 1980, *63*, 967-969.
 (d) Bertrand, M.; Teisseire.; Pelerin, G. *Tetrahedron Lett.* 1980, *21*, 2051-2054. (e) Magee, T. V.; Stork, G.; Fludzinski, P. *Tetrahedron Lett.* 1995, *36*, 7607-7610.
- (5) Soukup, M.; Lukac, T.; Zell, R.; Roessler, F.; Steiner, K.; Widmer, E. *Helv. Chim. Acta* **1989**, *72*, 365-369.
- (6) Addition of sodium acetylide and double Michael addition reactions of corresponding trimethylsilyl ether were reported:
 (a) Widmer, E.; Zell, R.; Grass, H.; Marbet, R. *Helv. Chim. Acta* 1982, *65*, 958-967. (b) Hagiwara, H.; Yamada, Y.; Sakai, H.; Suzuki, T.; Ando, M. *Tetrahedron* 1998, *54*, 10999-11010.
- (7) Asymmetric hydrogenation of compound 5 and related derivatives of 4 was reported: Broger, E. A.; Yvo, C.; Schmid, R.; Siegfried, T. *Chem. Abst.* 1996, *124:260450*, 1215.
- (8) General procedure for Diels-Alder reactions of 5 and 6 with acetylene derivatives 8a-d. A mixture of 5/6 (5 mM) and 8 (10 mM) were heated for 24 h (at 80 °C for 8a,b and 120 °C for 8c,d). Removal of excess 8 under reduced pressure followed by column chromatography of the crude adduct on silica gel using 15% ethyl acetate in hexanes as eluent furnished the desired adducts 9a-d and 10a-e.

Spectral data of compound **9a**. IR (film): 3080, 2966, 1775, 1765, 1721, 1645 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 7.0 Hz, 1H), 5.70 (d, *J* = 2.8 Hz, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.38 (dd, *J* = 7.0, 2.8 Hz, 1H), 2.14 (s, 3H), 1.62 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.16 (s, 3H), 1.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 208.4, 167.8, 164.0, 156.0, 146.0, 137.4, 115.2, 60.6, 56.1, 52.0, 40.1, 27.5, 26.1, 21.0, 15.0, 14.0. EIMS (70 eV): m/z (relative intensity) 292 (M⁺, 1), 251(11), 223 (13), 180 (14), 177 (13), 135 (28), 70 (100).

HRMS (EI): Calcd for $C_{16}H_{20}O_5~(M^+)$ 292.1311, found 292.1310. Anal. Calcd. for $C_{16}H_{20}O_5$: C, 65.74; H, 6.96. Found: C, 65.84; H, 6.93.

Spectral data of compound **10a**. IR (film): 2980, 1727, 1653 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.44 (d, *J* = 6.6 Hz, 1H), 5.87 (d, *J* = 3.1 Hz, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.57 (dd, *J* = 6.6, 3.1 Hz, 1H), 1.70 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.25 (s, 3H), 1.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 206.7, 163.5, 154.7, 144.9, 137.5, 119.8, 118.4, 61.0, 57.2, 51.9, 39.9, 27.5, 26.6, 15.0, 14.0. FABMS: m/z (relative intensity) 383 (M⁺+1, 61), 337 (49), 267 (32), 159 (19), 137 (21), 91 (22), 70 (100). HRMS (FAB): Calcd for C₁₅H₁₈O₆F₃S (M⁺+1) 383.0776, found 383.0775.

(9) General procedure for hydrolysis of compounds 9a-d. A solution of an enol-actate 9 (2 mM) in 20 mL of ethanol (for 9a) or methanol (for 9b-d) was cooled to 0 °C. Then K₂CO₃ (1 mM) was added and stirring was continued until the completion of hydrolysis as indicated by TLC analysis (75 min for 9a and 10 min for 9b-d). Then the alcohol was removed under reduced pressure and the residue was diluted with ethyl acetate. Washed the contents with water and dried the organic layer over anhyd. Na₂SO₄. Removal of solvent followed by column chromato-grapy of thus obtained residue on silica gel using 25% ethyl acetate in hexanes as eluent furnished the products 1a-d.

Spectral data of compound **1a**. IR (film): 2970, 1728, 1710, 1705, 1630 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.26 (d, *J* = 7.0 Hz, 1H), 4.21 (q, *J* = 7.2 Hz, 2H), 3.30 (d, *J* = 7.0 Hz, 1H), 2.36 (d, *J* = 19.2 Hz, 1H), 2.18 (d, *J* = 19.2 Hz, 1H), 1.51 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.16 (s, 3H), 1.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 211.7, 205.9, 163.5, 140.0, 136.9, 62.1, 61.1, 51.7, 42.3, 42.0, 26.2, 25.3, 15.7, 14.0. EIMS (70 eV): m/z (relative intensity) 250 (M⁺, 31), 205 (22), 181 (19), 121 (21), 109 (21), 107 (21), 91 (26) 70 (100). HRMS (EI): Calcd for C₁₄H₁₈O₄ (M⁺) 250.1205, found 250.1205.

- (10) (a) Cacchi, S.; Morera, E.; Ortar, G. *Tetrahedron Lett.* 1984, 25, 4821-4824. (b) Cacchi, S.; Morera, E.; Ortar, G. Org. Synth. 1990, 68, 126-132.
- (11) Zimmerman, H. E.; Armesto, D. *Chem. Rev.* **1996**, *96*, 3065-3112.