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ABSTRACT

R

N
H

cts/trans =1/10

Organoselenium precursors of 3-aza-5-hexenyl radicals carrying a 1-hydroxyalkyl group in the 2-position were prepared by addition of
organometallic reagents to N-allyl-2-aziridinecarbonitrile, reduction of the resulting aziridine ketone, and regioselective benzeneselenol ring
opening of the aziridine. Reductive radical cyclization was highly selective, affording the corresponding trans-2,4-disubstituted pyrrolidine
(cisltrans ca. 1/10) as the major diastereomer. Recrystallization afforded material that was substantially more enriched in the trans isomer

(cisftrans < 1/25).

Radical carborcarbon bond-forming reactioAspecially
of the intramolecular type (radical cyclizations), are nowa-

However, it turns out that the selectivitgig'trans) in simple
disubstituted systems rarely exceeds 4/1 in favor of the

days so versatile that they are routinely considered in predominating isomeYWe therefore thought it would be
retrosynthetic analysis of complex organic molecules. Theseinteresting to try to develop a methodology that would allow
reactions are not only restricted to carbocycle construction preparation of either of theis and trans isomers of a

but also well suited for the preparation of various hetero-

particular system with higher selectivity. Thus, we recently

cycles such as tetrahydrofurans and pyrrolidines and deriva-found that trialkylaluminums directed radical cyclization of

tives thereof. However, a problem frequently encountered

in the application of these radical cyclization reactions is
that of diastereocontrdl.
By assuming a chairlike transition state, Beckwith and

Houk have provided a model that could predict the stereo-

chemical outcome of cyclization of variously substituted
5-hexenyl radicals (including oxa and aza derivatives).
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2-substituted 3-oxa-5-hexenyl radicals to occur in a highly  We envisioned suitable organoselenium radical precursors
cis-selective fashion (the unperturbed reactiontians could be prepared from readily availabN-allyl-2-aziridi-
selective} Similarly, cyclization of 2-substituted 3-aza-5- necarbonitrile 4) by addition of an organometallic reag&nt
hexenyl radicald (Scheme 1) was found to occur in a highly and hydrolysis of the resulting imine (Scheme 2).

Scheme 1 Scheme 2
P=Ph,pO - 7 P=H N—""" |)RMgBrorRL N
2) Hydrolysis
R Il\I R Il\I R Il\l N= R
P P P [¢]
Predominantely 1 Predominantely 4 5a R=Ph ) (92%)
2.4 - cis 2.4 - trans b R =2-thienyl (68%)

¢ R =n-pentyl (60%)

d R =i-propyl (52%)

e R =2-(1,3-dioxolan-2-yl)
cis-selective fashiongis/trans= 10/1—20/1) if the nitrogen ethyl (73%)
was carrying a bulky substituténfthe best results were
obtained with a diphenylphosphinoyl group), whereas cy-
clization of the corresponding N-unsubstituted radical pro-
vided thetrans-2,4-disubstituted pyrrolidine as the major
product. Sterically demanding 2-substituents afforded a large

excess ofrans-disubstituted pyrrolidine (Scheme digtrans employed, addition of a catalytic amount (0.1 equiv) of CuBr
< 1/20 for R= t-Bu and P= H). was found to give cleaner and higher yielding reactions
With less bulky substituents (R= methyl, n-hexyl, (compounds5c—e).1° Intermediate imines obtained from
isopropyl), thecis'transratio was usually close to 1/4 when  aqdition of aliphatic organometallic reagents were hydrolyzed
the reaction was carried out at 16. One notable exception during ammonium chloride workup. Those obtained from
was the case with a phenoxymethyl substituent (Scheme 1;aromatic reagents were hydrolyzed with lithium hydroxide
cigtrans = 1/14 for R = CH,OPh and P= H). We in methanol/water. The resulting ketoaziridines can be
hypothesized that this highans-selectivity could be due to  diastereoselectively reduced to the corresponding alcbhols
intramolecular hydrogen bondirigiavoring an equatorial  and a phenylseleno group introduced by benzeneselenol ring
orientation of the 2-substituent in a chairlike transition state opening of the aziridin@ (Scheme 3).
2 (Figure 1). After zinc complexation, aziridine keton&son sodium
borohydride reduction afforded only the corresponding

. | <throconfigured aziridine alcohol The following ring-

opening of the aziridine with benzeneselenol occurred

PhLi added to compound already at—78 °C. PhMgBr
was less reactive but provided a similar yield (92%) of
compound 5a. When aliphatic Grignard reagents were

H R H regioselectively from the sterically least hindered side to give
Ph—O%\- H-O ‘%\ erythro-configured amino alcoholg.
e /\/ He /\// Reductive radical cyclization of compoundsvas effected
oo .o in high yield by photolysis in benzene in the presence of
) 3 AIBN and tri-n-butyltin hydride. As shown in Table 1, the
Figure 1. Hydrogen bonding in the transition state of the radical dlast_ereomerlc mlxtures .Of 2’4_.dISUbStltl.“lted pyrrolidifes
fing closure. obtained were highly enriched in thensisomer (1/12<

cigtrans < 1/9). Although the level of selectivity does not
quite match the one obtained with a phenoxymethyl sub-
stituent in the 2-position (Figure 1, structi®ecis/trans =
1/14; vide supra), it is clear that cyclization of radical
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6a R=Ph (78%) 9 10
b R = 2-thienyl (85%)
¢ R =n-pentyl (88%) Figure 2. Oxazolidinones.

d R =i-propyl (43%)
e R =2-(1,3-dioxolan-2-yl)
ethyl (66%)

The ring closure shown in the first entry of Table 14R

PhSe A Ph) was also tried in a protic solverte(t-butyl alcohol).
fae — 1M However, the diastereoselectivity did not differ from that
N observed in benzene. Alstil NMR studies of the radical

OH precursor7a did not provide any evidence for hydrogen

bonding. This suggests that struct@réor a similar arrange-

7a R=Ph  (79%) ment where the hydroxyl is donating a proton) does not

b R = 2-thienyl (96%)

¢ R=n-pentyl (89%) contribute to preorganize the molecule prior to cyclization.
d R =i-propyl (65%) Rather, the observeians-directing effect of the auxiliary
e R =2-(1,3-dioxolan-2-yl) seems to be the result of increased steric bulk of the side

thyl (94% . L. .
ethyl (94%) chain. In an effort to somehow mimic the effect of intra-

molecular hydrogen bonding, amino alcoh®d was con-
verted into oxazolidinon® (Figure 2) by heating in dimethyl
carbonate with sodium hydride. Although reductive radical
cyclization produced mostly the diastereomer of oxazolidi-
nonelOwhere the 2,4-substituents of the pyrrolidine moiety
are orientedrans the cigtrans selectivity (1/6) could not
match the one seen in the cyclization of compoutal
Cyclization of compound/a was also carried out in the
presence of various aluminum-based Lewis acids that could
be expected to chelate to the amino alcohol moiety. However,
as compared with the unperturbed reaction, none of these

As an example, compour@a was N-tosylated, converted additives caused a notable change in the diastereoselectivity

to a xanthate, and then subjected to treatment with AIBN ©f radical cyclization.

and trin-butyltin hydride (Bartor-McCombie methot). In conclusion, we have found thateocyclization of
The product was a 1/9 mixture ofs andtrans Ntosyl-2- readily available organoselenium precursors of 3-aza-5-
benzyl-4-methylpyrrolidine, the spectral characteristics of hexenyl radicals carrying a 1-hydroxyalkyl group in the
which were in excellent agreement with those of authentic 2-position gives the corresponding Zréns-disubstituted
samples of the materiafs. pyrrolidines as the predominating productss(transratio

ca. 1/10). By recrystallization, the diastereoselectivity could
then be further improved. Since the hydroxyl auxiliary can
be easily removed, the methodology nicely complements
strategies for diastereocontrol that are based on variation in
the N-substituent (which provideis-2,4-disubstituted pyr-

precursors carrying a hydroxyl auxiliary in the side chain
are much mordransselective than they would be if the
hydroxyl was missing. As a further bonus of the hydroxyl
auxiliary, pyrrolidines3 were found to be highly crystalline.
Thus, recrystallization of crude compouBd from cyclo-
hexane and sublimation 8t afforded material substantially
more enriched in thgansisomer €igtrans < 1/25). Several
protocols (including radical deoxygenation and displacement
of a suitable sulfonate ester with lithium aluminum hydride)
could be considered for removal of the hydroxyl auxiliary.

Table 1. Diastereoselective Reductive Radical Cyclization of
3-Aza-5-hexenyl Phenyl Selenid&s

PIfSe J/ p-BuySaH rolidines with high selectivit§).
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