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Abstract—A strategy for a total synthesis of lankacidin C 1 is outlined and the requisite building blocks synthesised. The
azetidinone 4 was prepared from methyl but-2-ynoate 6 via a route which features the stereoselective addition of a tributyltin
cuprate to the alkyne, an asymmetric aldol condensation and formation of the azetidinone by an intramolecular Mitsunobu
reaction. The aldehyde 3 was prepared from dimethyl malate 18 and the sulfone 3 from prop-2-ynol 27 again using asymmetric
aldol reactions as key steps. © 2001 Elsevier Science Ltd. All rights reserved.

The lankacidins, e.g. lankacidin C 1, are a small group
of antitumour antibiotics isolated from Streptomyces
which have been of some interest to synthetic chemists
because of their novel structures and biological activi-
ties.! Kende and ourselves independently conceived an
approach to the d-lactone component of the lankacidins
using a stereoselective acylation of a 4-substituted aze-
tidinone followed by rearrangement of a 3-(3-hydroxy-
alkyl)azetidinone to give the 8-lactone.* Kende subse-
quently completed a total synthesis of lankacidin C
based on this chemistry using an intramolecular addi-
tion of a protected cyanohydrin anion to an aldehyde,
a Stork-Takahashi cyclisation, to form the 17-mem-
bered ring.* We here describe an alternative strategy for
the synthesis of lankacidins together with total synthe-
ses of the necessary precursors.
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Based on earlier work, the azetidinone 2 was identified
as a possible precursor of lankacidin C.? Macrocyclic
analogues of the lankacidins had been prepared by
using a ketophosphonate—aldehyde condensation to
form the 12,13-double-bond,” and this chemistry is
known to be compatible with the presence of an azetidi-
none ring.2 However, the yields of the macrocycle were
only modest® and so it was decided to investigate an
alternative strategy for formation of this ring. The Stille
reaction has been used for macrocycle formation in
complex syntheses® and model studies, vide infra, indi-
cated that the formation of the 5,6-bond by a Stille
process could be an option for ring formation. The
2,18-bond would be formed by a stereoselective azetidi-
none acylation®? and the 12,13-double-bond could be
introduced connectively, e.g. via a Julia reaction. Based
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on this analysis, the azetidinone 4, the aldehyde—ester 3
and the vinylstannane 5 were identified as potential
precursors of lankacidin C 1.

The (4S5)-azetidinone 4 was prepared as outlined in
Scheme 1, a racemic epimer being available by a shorter
route.” Stereoselective conjugate addition® of a tri-
butyltin cuprate to methyl but-2-ynoate 6 gave the (E)-
vinylstannane 7 which was reduced to the alcohol 8.
Oxidation of the alcohol using Swern conditions (oxalyl
chloride, dimethyl sulfoxide) gave a mixture of the (E)-
and (Z)-aldehydes; however, manganese dioxide gave
the required (F)-aldehyde 9. An asymmetric aldol con-
densation with the chiral acetate, (R)-2-hydroxy-1,2,2-
triphenylethyl acetate (R)-17,° followed by methan-
olysis gave the methyl ester 11 which was treated with
iodine to give the (E)-vinyl iodide 12. The methyl ester
was then converted into the amide 13 which was
cyclised under Mitsunobu conditions!'® to give the aze-
tidinone 14. Oxidative removal of the p-methoxyphenyl
group gave the NH-azetidinone 15 which was repro-
tected as its N-tert-butyldimethylsilyl derivative 16,
shown to correspond to the (S)-enantiomer with an ee
of 90(+x5)% by correlation with known compounds.!!
Finally methylation gave the required azetidinone 4
containing ca. 10% of its epimer at C(3)."
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The ester—aldehyde 3 was prepared as shown in
Scheme 2. Selective reduction'®* and protection of
dimethyl malate 18 gave the mono-dimethoxytrityl
(DMT) ether 19. This was further protected as its
trimethylsilylethoxymethyl (SEM) ether 20 which was
converted into the aldehyde 22 by reduction—oxidation.
Aldol addition of (S)-2-hydroxy-1,2,2-triphenylethyl
acetate (S)-17° followed by methanolysis gave the
methyl ester 23 together with its epimer at C(3), ratio
75:25 which were separated by chromatography. The
major isomer 23 was then methylated stereoselectively'*
to give the anti-2-methyl-3-hydroxy-ester 24. After con-
version into the tert-butyldimethylsilyl ether 25, selec-
tive removal of the dimethoxytrityl ether gave the
primary alcohol 26 and oxidation using TPAP gave the
required aldehyde 3.

The vinylstannane 5 was prepared as outlined in
Scheme 3. Free-radical addition of tributyltin hydride
to propargyl alcohol 27 gave a mixture of (E)- and
(Z)-vinylstananes from which the major (E)-isomer 28
was separated by chromatography.!® Oxidation using
activated manganese dioxide gave the aldehyde 29
which was converted into the hydroxy—ester 30 by a
stereoselective aldol condensation with the acetate (S)-
17.° Methanolysis gave the methyl ester 31, ee 90(x5)%
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Scheme 1. Reagents and conditions: (i) Li(Bu;SnCuBr)-DMS, —78°C (92%); (ii) DIBAL-H (98%); (iii) MnQO,, acetone (100%); (iv)
(R)-17, 2LDA, MgBr, (98%); (v) MeONa, MeOH (85%); (vi) 1,, CCl, (87%); (vii) lithium p-methoxyphenylamide (70%); (viii)
PPh;, DEAD (90%); (ix) CAN, MeCN, H,O; (x) t-BuMe,SiCl, Et;N (74% from 14); (xi) LDA, Mel (95%).
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then DMTCI, EtN'Pr, (93%); (i) SEMCL, E{N'Pr, (100%); (iii)

DIBAL-H; (iv) TPAP, NMO, 4A sieves (85% from 20); (v) (S)-17, 2 LDA, MgBr,; (vi) MeONa, MeOH (63% from 22); (vii) 2
LDA, TMEDA, Mel (79%); (viii) ‘BuMe,SiOTT, 2,6-lutidine (98%); (ix) CLCHCO,H (83%); (x) TPAP, NMO, 4A sieves (86%).
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Scheme 3. Reagents and conditions: (i) Buy;SnH, AIBN, 100°C (83%; E:Z="77: 23); (ii) MnO,, acetone (98%); (iii) (S)-17, 2LDA,
MgBr,; (iv) MeONa, MeOH (95% from 29); (v) ‘BuMe,SiOTf, 2,6-lutidine (97%); (vi) DIBAL-H (83%); (vii) TPAP, NMO, 4A
sieves (87%); (viil) Ph;P=CMeCO,Et (98%); (ix) DIBAL-H (97% from 34); (x) MsCl, Et;N, then LiBr (79%); (xi) PhSO,Na, DMF

(98%).

(Mosher’s derivatives) which, after protection as its
tert-butyldimethylsilyl ether 32, was reduced to the
alcohol 33. Oxidation gave the aldehyde 34 which was
taken through to the (E)-af-unsaturated ester 3S.
Reduction gave the alcohol 36 and this was converted
into the sulfone 5 via the bromide 37.

Preliminary studies into the Stille condensation were
carried out using the azetidinone 4. For example, cou-
pling with the (E)-vinylstannane 28 was very efficient
using bisacetonitrile dichloropalladium(IT) as catalyst
and gave the conjugated diene 38 in 80% yield.
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The accompanying communication describes the assem-
bly of advanced macrocyclic precursors of lankacidin C
1 from the three building blocks 3, 4 and 5.
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