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Abstract: The enantioselective formal synthesis of Thienamycin and Imipenem has been realised 
through two-direction elongation of the chiral building block bis(hydroxymethyl)acetaldehyde 5. The 
generation of the two additional stereocentres has been carried out with excellent diastereoselectivity 
thanks to two sequential "protecting group controlled" nucleophilic additions. Another key step was 
represented by the regioselective oxidation of a primary-secondary 1,3-diol to the corresponding [3- 
hydroxyacid. 

The great importance of carbapenems as third generation [3-1actam antibiotics endowed with potent 

broad-spectrum activity, coupled with their unavailability by fermentation methodologies, has stimulated in 

the last fifteen years many synthetic efforts toward their total synthesis. 1 The most renown representatives of 

this class are Thienamycin 1 and Imipenem 2 (Scheme 1), which are differentiated only by the side-chain at 

C-3 (IUPAC numbering). The latter is currently widely used for clinical treatment of various infections. In the 

previous synthetic approaches, a particular emphasis has been put on the enantio- and diastereoselective 

preparation of key intermediates characterised by a monocyclic [5-1actam containing all the three chiral centres 

and a substituent at C-4 suitable for further assemblage of the five-membered ring. An example is given by 

compounds of general formula 3, which have been often used for the synthesis of 1 or 2. 2 

We have recently developed an efficient chemoenzymatic methodology for the synthesis of both 

enantiomers of asymmetrized b i s ( h y d r o x y m e t h y l ) a c e t a l d e h y d e s  (BHYMA*) of general formula 5. 3 

Stereoselective one-direction elongation has been later employed by us 4 in the preparation of [5-1actam 6, 
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which is also a known intermediate for Thienamycin synthesis. However, since 6 has yet no substituents at 
C-4, more steps are needed for its transformation into more advanced intermediates, like 3. Since these latter 
compounds can be in principle directly prepared by a two-direction elongation of 5, to give 4, prior to [3- 
lactam formation, we have now engaged in the development of such strategy. 

The general scope of two-direction elongation of 5, was recently preliminary investigated by us, 5 and we 
have found at least one efficient way (in term of diastereoselectivity) to convert 5 into each of the 8 possible 
stereoisomers of protected triols like 4. This was realised through two consecutive "protecting group 
controlled ' '6 nucleophilic additions or reductions. That is, when the two hydroxymethyl groups are masked 
with different protecting groups, one of them promoting ("chelating protecting group"), and the other one 
depressing ("not-chelating protecting group") the co-ordinating aptitude of oxygen, useful levels of 
diastereoselection could be achieved in additions to 5 (or to the aldehydes obtained after the first 
stereoselective elongation) under conditions which favour cyclic chelated transition states. 

There are in principle 8 ways to synthesise 4 from (S) or (R) BHYMA* by the "protecting group 
controlled asymmetric induction" approach. 7 Among them we present therein the one which seemed more 
attractive for the lower number of step and for the anticipated good diastereoselection (on the basis of our 
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previous study)(Scheme 2). 5,8 
BHYMA* (R) 9 was prepared from alcohol (R) 83,9 by modified Swern oxidation, TM and directly 

reacted with Me2CuLi to give, in good yield and with excellent diastereoselection, alcohol 10. It must be 
stressed that this elevated induction relies on the different co-ordinating ability of the oxygens of the two 
protected hydroxymethyl groups, which is in turn suitably modulated by the protecting groups. 6a Thus, it is 
only the PMBOM protected alcohol which takes place in chelation, while the bulky silyl ether has the function 

to shield one of the two carbonyl faces. 
At this point, in order to obtain the desired relative configuration in the second nucleophilic addition, we 

needed to elaborate the PMBOM containing arm, and to block the secondary alcohol with a "chelating" 
protecting group. For this purpose we took advantage of the orthogonality of the otherwise similar PMBOM 
and BOM groups. The resulting alcohol 11 was oxidized to the corresponding aldehyde and treated with 
allyltributyltin in the presence of MgBr2. This condensation turned out to proceed with good stereoselectivity 
(91:9). This outcome is remarkable, since in this case the stereocentres at the et and ~ position (relative to the 
aldehydic group) are expected to exercise opposite stereochemical controls ("mismatched" case) under 
chelation control. 10 Thus, the diastereoselective formation of 1211 indicates once again 5 that, as far as it 
concerns the allylation reaction, the influence of the ~ stereocentre is little. 

Having solved the stereochemical problem, the completion of the synthesis required the selective 

oxidation of the branch containing the primary alcoholic function, to give a [~-hydroxyacid derivative, well 
fitted for 13-1actam synthesis v/a Miller's biomimetic cyclization. 12 A crucial point was therefore represented 
by the distinction between the primary alcoholic function and the secondary one at C-4. During the synthesis 
of 6 we had solved a similar problem through a selective deprotection strategy, which, however, implied two 
additional steps. In order to find a better way, we thus searched for a method for the selective oxidation of diol 
13, obtained by desilylation of 12. After various efforts, we finally found that good yields could be achieved 
by using stoichiometric TEMPO+C1 - for the conversion into the ~-hydroxyaldehyde, followed by in situ 
treatment with NaC102 .13-15 The resulting ~-hydroxyacid was directly isolated as the methyl ester 14 after 
reaction with CH2N 2. This methyl ester was smoothly converted into O-methyl hydroxamate 15,16 which 
underwent Miller's cyclization 12 to afford 16. Finally, removal of BOM group by "push-pull ''17 reaction with 
ethanethiol and boron trifluoride, followed by reprotection as the tert-butyldimethylsilyl ether, furnished the 
known 2d azetidinone 18,18 whose two step conversion into 19, a well known intermediate for the synthesis of 
Thienamycin and Imipenem, 2 was already reported. The overall yield of 18 from 8 was a remarkable 22.7%. 

In conclusion, we have demonstrated that, thanks to the concept of "protecting group controlled" 
asymmetric induction, the two-direction elongation of BHYMA* can be utilised for the efficient enantio- and 
diastereoselective preparation of useful intermediates for the synthesis of carbapenem antibiotics. Application 
of this strategy for the synthesis of other biologically active compounds is in progress in our laboratories. 

We thank C.N.R. and M.U.R.S.T. for financial assistance. 
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