

Article

Subscriber access provided by University of Rochester | River Campus & amp; Miner Libraries

Mechanistic Study on Deoxydehydration and Hydrogenation of Methyl Glycosides to Dideoxy Sugars over ReO-Pd/CeO catalyst

Ji Cao, Masazumi Tamura, Ryu Hosaka, Akira Nakayama, Junya Hasegawa, Yoshinao Nakagawa, and Keiichi Tomishige

ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.0c02309 • Publication Date (Web): 16 Sep 2020 Downloaded from pubs.acs.org on September 20, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

ACS Catalysis

Mechanistic Study on Deoxydehydration and Hydrogenation of Methyl Glycosides to Dideoxy Sugars over ReO_x-Pd/CeO₂ Catalyst

Ji Cao^a, Masazumi Tamura^{*b}, Ryu Hosaka^c, Akira Nakayama^{c, d}, Jun-ya Hasegawa^c, Yoshinao Nakagawa^a and Keiichi Tomishige^{*a}

^aDepartment of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan

^bResearch Center for Artificial Photosynthesis, Advanced Research Institute for Natural Science and Technology, Osaka City University, 558-8585, Japan

°Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan

^dDepartment of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan

KEYWORDS Deoxydehydration, Heterogeneous catalysis, Sugar conversion, Methyl glycoside, Rhenium

ABSTRACT: We found that nonprotected methyl glycosides with *cis*-vicinal OH groups could be converted to the corresponding methyl dideoxy glycosides by deoxydehydration and consecutive hydrogenation (DODH+HG) over ReO_x-Pd/CeO₂ catalyst with gaseous H₂. In the study, the reactivity of the methyl glycosides in DODH was clearly lower than that of simple cyclic vicinal diols such as cis-1,2-cyclohexanediol and cis-1,2-cyclopentanediol, and the reactivity of the methyl glycosides was also different. Herein, we investigated the reactivity difference based on the kinetic studies and DFT calculations. The kinetic studies suggest that the reactivity difference between the methyl glycosides and the simple diols is derived from the OH group of methyl glycosides except the *cis*-vicinal diols, and that the reactivity difference among the methyl glycosides will be associated with the configuration of the substituents adjacent to the cis-vicinal diols, while the reaction mechanism of DODH is suggested to be basically similar judging from almost the same reaction orders with respect to substrate concentration and H₂ pressure in all substrates. The adsorption and transition states of methyl α -L-rhamnopyranoside and methyl α -L-fucopyranoside, which have large reactivity difference (methyl α -L-rhamnopyranoside >> methyl α -L-fucopyranoside), were estimated by DFT calculations with ReO_x/CeO_2 as the active site of ReO_x -Pd/CeO₂ catalyst, showing that the main difference is the activation energy in DODH of these substrates (65 kJ mol⁻¹ for methyl α -L-rhamnopyranoside and 77 kJ mol⁻¹ for methyl α -L-fucopyranoside), which was also supported by the results of the Arrhenius plots (63 kJ mol⁻¹ and 73 kJ mol⁻¹ for methyl α -L-rhamnopyranoside and methyl α -L-fucopyranoside, respectively). The activation energy was influenced by the torsional angle of the substituents adjacent to the cis-vicinal OH groups, which is derived from the interaction of the OH group adjacent to the cisvicinal OH groups and the surface hydroxy groups on CeO₂.

INTRODUCTION

Biomass and their derivatives are oxygen-rich compared with fossil resources, and carbohydrates are one of the main components of biomass¹. Selective reduction of the oxygen content is necessary to obtain valuable chemicals². Some of the catalytic transformation of carbohydrates commonly lose their original stereostructure³ despite that the stereostructure, particularly the chiral structures, was useful for the synthesis of valuable chemicals⁴. Some effective catalytic transformation methods of carbohydrate derivatives have been developed while maintaining their original stereostructure (Scheme 1). Muramatsu and co-workers found that an organotin catalyst provided high activity and regioselectivity for thiocarbonylation of nonprotected carbohydrates, and the obtained monothiocarbonates can be converted to the corresponding deoxy carbohydrates in good yields by Barton-McCombie reaction⁵ (Scheme 1, A). Gagné and co-workers reported the pioneering work on the effective reaction system of $B(C_6F_5)_3$ + tertiary silane and B(C₆F₅)₃ + catecholborane for selective transformation of silyl-protected sugar alcohols to chiral polyol synthons⁶ and reductive carbocyclization of silyl-protected unsaturated sugar alcohols to chiral cyclopentanes and cyclopropanes⁷ (Scheme 1, B). Huber and co-workers demonstrated a novel transformation of cellulose to levoglucosenone⁸, and furthermore substantiated transformation of levoglucosenone to chiral tetrahydrofurandimethanol and tetrahydropyran-2-methanol-5-ketone by hydrogenolysis⁹ (Scheme 1, C). Toste and co-workers reported on the deoxydehydration (DODH) of various polyhydroxylated lactones using CH₃ReO₃ or KReO₃ with Pd/C catalyst to afford the corresponding chiral lactones in moderate yields (~88%)¹⁰ (Scheme 1, D).

DODH reaction is a promising method to lower the oxygen content in carbohydrates and it can selectively transform vicinal OH groups to the corresponding C=C bond in a single step¹¹, and various homogeneous (such as Re¹²-, Ru¹³-

60

Scheme 1. Examples of effective catalytic transformation methods of sugar derivatives to chiral products.

(A) Regioselective synthesis of deoxy carbohydrates⁵ (Muramatsu group)

Mo¹⁴- and V¹⁵- based complexes) and heterogeneous (supported ReO_x¹⁶ or MoO_x¹⁷, bimetallic Pt-Re¹⁸, ReO_x nanoparticles¹⁹) catalysts have been actively investigated. Recently, we firstly reported that Pd-modified CeO₂-supported Re (ReO_x-Pd/CeO₂)²⁰ and Au-modified CeO₂-supported Re $(ReO_x-Au/CeO_2)^{21}$ were effective and stable heterogeneous catalysts for the direct and selective transformation of the cis-vicinal OH groups in methyl glycosides without protection of OH groups by using gaseous H₂, providing the corresponding methyl dideoxy glycosides and methyl unsaturated dideoxy glycosides, respectively with retention of the original stereostructure (Scheme 1, E). The catalysts could be reused more than 4 times without loss of activity and selectivity with 125 turnover number (TON) based on the total Re atom of the catalyst²⁰. These results are based on our previous finding of heterogeneous ReOx-Pd/CeO2 and ReOx-Au/CeO₂ catalysts, which are effective for DODH + hydrogenation (HG) or DODH of polyols to alkanes²² or alkenes²³, respectively, using gaseous H₂ as reductant. The turnover frequency (TOF) and TON per Re atom of ReOx-Pd/CeO2

ReO_x-Au/CeO

H₂, 1.4-diaxane.

413 K, 8 h

0

нn

HO

(90% yield)

(TOF: 300 h⁻¹ at 443 K; TON: 10000 at 453 K for 96 h) were more than one order larger than those of previously reported catalysts²². The methyl saturated or unsaturated dideoxy glycosides are the core structure of natural products and important intermediates²⁴ for the synthesis of rare sugars, chiral ligands, medicines (*e.g.*, antibiotics, antitumor agents). In addition, the methyl dideoxy glycosides can be further converted to corresponding partially deoxy chiral acyclic polyols with high yield and high stereoselectivity^{20,25}, which can be used for the production of fine chemicals (*e.g.*, cosmetics, food additives, surfactants) and polymers (*e.g.*, alkyd resins, polyurethanes, polyesters).

According to our previous researches on DODH of simple diols over ReO_x-Pd/CeO₂ or ReO_x-Au/CeO₂ catalysts^{20, 22b}, the isolated Re⁴⁺ species on CeO₂ of these catalysts is catalytically active. The valence of the Re species was determined by XPS and XAS analyses, and the structure of the active site was proposed based on kinetic studies and/or DFT calculations in DODH + HG of 1,4-anhydroerythritol as a model diol^{22b}. Pd or Au metals work as promoters for formation of the active Re⁴⁺ species via reduction of Re⁶⁺ species by H₂ activated by these metals. The CeO₂ support can suppress the over-reduction of Re species and stabilize the active isolated Re⁴⁺ species on the CeO₂ surface of the catalysts. The DODH reaction mechanism over the active Re4+ species formed on CeO2 support was proposed to have three elementary reaction steps^{22b} (Scheme 2): (i) Reduction of isolated Re⁶⁺ species to Re⁴⁺ species by activated H₂, (ii) coordination of the substrate with vicinal OH groups to the Re⁴⁺ species as diolate, and (iii) DODH of the diolate to form the corresponding alkenes and desorption of the produced alkene and regeneration of Re6+ center. In the case of DODH + HG of 1,4-anhydroerythritol^{22b}, the reaction orders with respect to the substrate concentrate and H₂ pressure were about zero, and the rate determining step is step (iii).

From the previous activity tests of methyl glycosides^{20,22b}, the reactivity is much lower than that of simple vicinal diols^{22b}, and the reactivity of methyl glycosides was changed by the type of methyl glycosides²⁰. These results suggest that there will be some causes for the reactivity difference

Scheme 2. Proposed reaction mechanism of deoxydehydration (DODH) + hydrogenation (HG) over ReO_x-Pd/CeO₂ catalyst^{22b}.

1

2

3

4

5

6

2

3

4

5

6

7

8

9

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

between the simple diols and methyl glycosides and that between the methyl glycosides. However, the causes are unclear, and compared with the simple diols, the methyl glycosides have other secondary OH groups, preliminary OH groups, and so on. In fact, to the best of our knowledge, there are no systematic research on the effect of the type and configuration of the substituents in pyranose- and furanose rings (such as OH, CH2OH, OCH3, CH3 group and so on) except for cis-vicinal OH groups to the reactivity in DODH reaction. Therefore, clarification of the decisive factors to dominate the reactivity of the methyl glycosides is of great 10 importance to elucidate the reaction mechanism of the 11 DODH of methyl glycosides and the catalysis of ReO_x-based 12 heterogeneous catalysts. We attempted to clarify the most im-13 portant factor in the DODH reaction of methyl glycosides based 14 on the systematic investigations, and it will provide useful in-15 formation on the catalyst design for the transformation of 16 sugar derivatives. 17

Herein, the kinetic parameters are determined in DODH + HG of methyl glycosides having *cis*-vicinal OH groups methyl α -D-mannopyranoside, methyl β -L-arabinopyranoside, methyl β -D-galactopyranoside and methyl α -L-(methyl β -Dribofuranoside, methyl rhamnopyranoside, fucopyranoside) and related substrates (cis-1,2-cyclopentanediol, cis-1,2-cyclohexanediol and 1,4-anhydroerythritol) with ReO_x-Pd/CeO₂ catalyst. Moreover, the structures of the diolate intermediate and its transition state of methyl glycoside stereoisomers were calculated by DFT calculation with the catalytically active isolated Re species on CeO₂^{22b}. The cause of the reactivity difference and the reaction mechanism of methyl glycosides were proposed based on the kinetics and DFT calculations.

RESULTS AND DISCUSSION

Screening of catalysts and reaction solvents in deoxvdehvdration (DODH) + hvdrogenation (HG) of methyl α -D-mannopyranoside. At first, catalyst compositions, main DODH-active metal oxides, hydrogenation-active metals and supports, were investigated in DODH +HG of methyl α -D-mannopyranoside as a model reaction (Scheme 3, Figures S1-S5). The effect of the catalyst compositions was similar to that in the case of DODH+HG of 1,4-anhydroerythritol to tetrahydrofuran²²: Re oxide is the most effective DODHactive metal oxide among various metal oxides (M'Ox; M'=V, Cr, Mn, Nb, Mo, W and Re) in terms of conversion and selectivity (Figure S1). Pd metal is an effective metal among various hydrogenation-active metals (M"=Co, Ni, Ru, Rh, Pd, Ag, Ir, Pt and Au) in terms of conversion and selectivity (Figure S2). CeO₂ was the most effective support among various metal oxides (MgO, γ -Al₂O₃, SiO₂, CaO, TiO₂, ZrO₂ and CeO₂) (Figure S3). Moreover, the optimized Re loading amount (2 wt%) (Figure S4) and Pd loading amount (Pd/Re ratio = 0.25) (Figure S5) of ReOx-Pd/CeO2 catalyst were also the

Scheme 3. DODH + HG of methyl α-D-mannopyranoside over ReOx-Pd/CeO2 catalyst.

same as those in DODH+HG of 1,4-anhydroerythritol. ReO_x-Pd/CeO₂ (Re=2 wt%, Pd/Re=0.25) catalyst was used in the following studies.

Next, the solvent effect was investigated in the same reaction with ReO_x -Pd/CeO₂ (Figure S6). 1,4-Dioxane was the best solvent based on the activity and selectivity among various solvents, while some organic solvents with low polarity such as ethers (1,2-dimethoxyethane and tetrahydrofuran), alcohols (1-pentanol and 3-pentanol) and dodecane were good ones, showing similar conversion with high selectivity to the target dideoxy product in DODH + HG of methyl α -Dmannopyranoside. On the other hand, the conversion is a little low in the case of methanol, and water solvent provided almost no conversion. The low reactivity of methyl α -D-mannopyranoside in water solvent is also supported by the results of hydrolysis and hydrogenation of methyl dideoxy glycosides over supported Pt catalyst²⁵, where hydrolysis of methyl 3,4-dideoxy-glycosides is more difficult than that of methyl 2,3-dideoxy-glycoisdes in water solvent, which is probably because of the presence of OH group at C2 position²⁷. One possible explanation of the result is the competitive adsorption of the solvents with the substrate. H₂O and methanol can be adsorbed on the catalyst surface by the OH group, and the adsorption of H₂O and methanol can suppress the adsorption of the substrates. Moreover, other reported DODH reaction systems^{12d-g} also showed that the alcohol solvents would suppress the DODH reaction, which results are similar to that of this solvent effect.

The tendency is similar to the case of DODH+HG of 1.4-anhydroerythritol over ReOx-Pd/CeO2 catalyst in our previous work^{22b}.Considering that the solubility of sugar derivatives is typically low in organic solvents and high in water solvent, applicability of water-contained solvents is important. The mixed solvents of 1,4-dioxane and water were tested. In the case of 10 wt% water-contained 1,4-dioxane (1,4-dioxane : water = 9:1), the reaction hardly proceeded. When the water content decreased to 3 wt% (1,4-dioxane : water = 29:1), the conversion (18%) was about half as low as that of only 1,4-dioxane (35%), and the selectivity to the product was a little low, which will be due to hydrolysis of the methyl α-D-mannopyranoside or its DODH product. Therefore, the catalyst tolerated a small amount of water, however, water is not a suitable solvent for the catalyst.

As above, the composition of ReO_x -Pd/CeO₂ (Re=2 wt%, Pd/Re=0.25) catalyst is the same as the case in DODH + HG of 1,4-anhydroerythritol²², which implies that the active species and reaction mechanism of the DODH + HG are fundamentally similar. However, there are large reactivity difference between methyl glycosides and simple diols²² as well as among various methyl glycosides²⁰. Therefore, the further researches with methyl glycosides and related substrates based on the kinetic studies and DFT calculations are necessary to tease out the reasons.

Time-courses of methyl glycosides with cis-vicinal OH groups and the related substrates. Time-courses of DODH + HG of methyl glycosides with *cis*-vicinal OH groups (methyl β -D-ribofuranoside, methyl α -L-rhamnopyranoside, methyl α -D-mannopyranoside, methyl β -L-arabinopyranoside, methyl β -D-galactopyranoside and methyl α cyclopentanediol and cis-1,2-cyclohexanediol) over ReOx-Pd/CeO2 (Re=2 wt%, Pd/Re=0.25) catalyst are shown in

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Figure 1. Time courses of DODH + HG of related substrates over ReO_x-Pd/CeO₂ (\bigcirc and black lines: conversion; \triangle and green lines: selectivity to dideoxy product; \square and red lines: selectivity to DODH product; \diamondsuit and blue lines: selectivity to other products, * \blacklozenge : selectivity to *trans*-1,2-cy-clohexanediol). Others contain methanol and degradation products. The detailed data are listed in Tables S1-S8. Reaction conditions: substrate 1.3 mmol, ReO_x-Pd/CeO₂ catalyst (0.05 g for *cis*-1,2-cyclohexanediol; 0.15 g for methyl β -D-ribofuranoside, methyl α -L-rhamnopyranoside, methyl α -D-mannopyranoside and methyl β -L-arabinopyranoside; 0.30 g for methyl β -D-galactopyranoside; 0.45 g for methyl α -L-fucopyranoside), 1,4-dioxane 10 g, 7.7 MPa H₂ at 413 K (initial 5.5 MPa H₂ at R.T.). L-fucopyranoside) and simple cyclic vicinal diols (*cis*-1,2-Figure 1. The reaction time and catalyst amount were changed based on the reactivity of the substrates. All the substrates smoothly reacted to give high conversion (>99%). Taking the catalyst amount and reaction time for >99% conversion into consideration, the reactivity order of the substrates is as follows: *cis*-1,2-cyclopentanediol (a) > *cis*-1,2-cyclohexanediol (b) > methyl β-D-ribofuranoside (c) > methyl α-L-rhamnopyranoside (d) >methyl α-D-mannopyranoside (e) ≈ methyl β-L-arabinopyranoside (f) > methyl β-D-galactopyranoside (g) > methyl α-L-fucopyranoside (h).

The selectivity to the corresponding dideoxy product is totally high (>85%), however, the tendency of the selectivity is a little different among these substrates. The selectivity to the target product from *cis*-1,2-cyclopentanediol is very high (>99%, Figure 1(a), detailed data are in Table S1), however, the selectivity to cyclohexane from *cis*-1,2-cyclohexanediol is a little low even at low conversion level (10%, Figure 1(b), detailed data are in Table S2), and the main byproduct is *trans*-1,2-cyclohexanediol. Generally speaking, the isomerization reaction of vicinal diols will proceed by dehydrogenation and subsequent hydrogenation. The stability of the five-membered ring ketones, e.g., cyclopentanone, is lower than that of six-membered ring ketones, e.g., cyclohexanone²⁸, which is due to the higher ring strain in the five-membered ring than that in the six-membered ring The selectivity difference between the reactions of cis-1,2cvclopentanediol and cis-1,2-cvclohexanediol could be explained by the stability of their ketone intermediates. The dehydrogenation of *cis*-1,2-cylcopentanediol may be more difficult to occur than that of 1,2-cyclohexanediol on ReO_x-Pd/CeO2 catalyst due to the lower stability of the intermediate of 2-hydroxycyclopentanone than 2-hydrxycyclohexanone²⁸.

Isomerized product was not detected in the cases of methyl glycosides including ones with a six-membered ring, which result is different behavior from that of 1,2-cyclohexanediol. In order to compare the difference of selectivity to isomerization product between simple cyclic diols and methyl glycosides, four six-membered ring substrates (trans-1,2-cyclohexanediol, *cis*-1,2-cyclohexanediol, methyl α -Dmannopyranoside, methyl α-D-glucopyranoside) are picked up, and their energy changes (ΔE) in dehydrogenation or isomerization are estimated by DFT calculation (Table S9). The results showed that ΔE from dehydrogenated intermediate to the corresponding isomers with respect to the substrate is different: the ΔE of cyclic diols from 2-hydroxycyclohexanone + H₂ (74.1 kJ mol⁻¹ for *trans*-1,2-cyclohexanediol, and 71.9 kJ mol-1 for cis-1,2-cyclohexanediol) is clearly smaller than the ΔE of methyl glycosides from 2-dehydrogenated methyl α -D-glucopyranoside + H₂ (99.2 kJ mol⁻¹ for methyl α -D-glucopyranoside, and 86.5 kJ mol⁻¹ for methyl α -D-mannopyranoside), suggesting the lower barrier for dehydrogenation of 1,2-cyclohexanediols. In addition, in the case of methyl glycosides as substrates, the ΔE of methyl α-D-mannopyranoside (86.5 kJ mol⁻¹) is quite lower than that of methyl α -D-glucopyranoside (99.2 kJ mol⁻¹), Therefore, it can be concluded that the epimerization is more difficult to occur in methyl glycosides than the simple 1,2-cyclohexanediols.

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

As for the selectivity, methyl β -D-ribofuranoside (Figure 1 1(c), detailed data are in Table S3) having a five-membered 2 ring showed high selectivity to the dideoxy product with a little byproduct, such as 1-pentanol and tetrahydrofurfuryl 3 alcohol (THFA). On the other hand, in the case of methyl gly-4 cosides having a six-membered ring, the selectivity depends 5 on the type of methyl glycosides. Methyl β-L-arabinopyra-6 noside showed high selectivity at any reaction time, and 7 high yield of the target dideoxy product (99% at 62 h) was 8 obtained (Figure 1(f), detailed data are in Table S6). Methyl 9 α -D-mannopyranoside and methyl β -D-galactopyranoside, 10 which are stereoisomers (Figures 1(e) and (g), detailed data 11 are in Table S5 and S7), provided the DODH product as an 12 intermediate (selectivity is 5~11%) below 30% conversion 13 level. However, since the DODH product is an intermediate 14 of the dideoxy product, the selectivity to the dideoxy prod-15 uct can increase with increasing the conversion level. Methyl α -L-rhamnopyranoside and methyl α -L-fucopyra-16 noside, which are also stereoisomers, showed high selectiv-17 ity to the dideoxy product at low conversion level and the 18 selectivity gradually decreased by the side reactions such as 19 hydrolysis and/or hydrogenolysis of C-O bonds (Figures 20 1(d) and (h), detailed data are in Tables S4 and S8). Among 21 all the methyl glycosides having a six-membered ring, me-22 thyl α -D-mannopyranoside and methyl β -D-galactopyra-23 noside showed higher selectivity to DODH product at low 24 conversion level than the other methyl glycosides, which 25 can be interpreted by the lower hydrogenation ability of 26 these two kinds of DODH products. Furthermore, the selec-27 tivity to DODH products decreased with reaction time, sug-28 gesting that the hydrogenation ability also depended on the concentration of the DODH products. 29

> As above, the selectivity to the target product is totally high, except at the very high conversion level for some methyl glycosides having a six-membered ring, which means that the side reactions will be much slower than the DODH reaction, and the difference of the substituents except *cis*vicinal OH groups and the configuration will not influence the selectivity so strongly. On the other hand, the reactivity of methyl glycosides is pretty different, and the substituents except *cis*-vicinal OH groups and the configuration may influence the adsorption state and transition state.

Kinetic studies on DODH + HG of various methyl glycosides and the related diols over ReOx-Pd/CeO2 cata**lyst.** To clarify the difference of the reactivity among the methyl glycosides and the related diols, precise investigation of the effect of kinetic parameters is essential. During the kinetic reaction, ReOx-Pd/CeO2 catalyst (more than 50 g) was prepared in one batch and used in order to eliminate the preparation errors of the catalysts. To measure the reaction rate more precisely, the initial H₂ pressure in autoclave was decreased from 5.5 MPa to 1.0 MPa at R.T. in the kinetic studies to decrease the conversion at 0 h (< 15%), and the reaction rate was estimated from the slope of the three points at different reaction times at low conversion level below 35% based on the formation amount of DODH product + dideoxy product. The reaction rate (mmol g_{cat}⁻¹ h⁻¹) was estimated by the following equation: Reaction rate (mmol $g_{cat} h^{-1} h^{-1}$ = (slope [mmol/h]/ (catalyst amount [g_{cat}]). The experimental error of the reaction rates was estimated by three times reactions with methyl α-D-mannopyranoside as a model substrate under the standard reaction conditions,

and the error range of the reaction rate was estimated to be about 3% (1.7±0.04 (Figure S7)).

Simple cyclic vicinal diols (*cis*-1,2-cyclopentanediol, 1,4anhydroerythritol and *cis*-1,2-cyclohexanediol) and methyl glycosides (methyl β -D-ribofuranoside, methyl α -L-rhamnopyranoside, methyl α -D-mannopyranoside, methyl β -Larabinopyranoside, methyl β -D-galactopyranoside and methyl α -L-fucopyranoside) were used as substrates for

Table 1. Reaction rates and reaction orders of the methyl glycosides and the related substrates over $ReO_{x}-Pd/CeO_2$ catalyst

Entry	Substrate	Reaction rate ^{<i>a</i>} Reaction order		n order
		/mmol $g_{cat}^{-1} h^{-1}$	Concentration ^b	H ₂ Pressure ^c
1*	но cis-1,2-Cyclopen- tanediol	20	-0.1	0.2
2*	HO OH 1,4-Anhydroeryth- ritol	9.0	-0.3	0.1
3*	Ho β	4.5	0.1	0.1
4	с <i>is</i> -1,2-Cyclohex- anediol	7.2	0.0	0.1
5	HO HO ÖH Methyl α-L-rham- nopyranoside	1.9	0.1	0.2
6	HO $(-)$ $($	1.7	-0.1	0.3
7	HO OH OH Methyl β-L-arabi- nopyranoside	1.7	0.0	0.2
8	$HO \qquad \qquad$	0.73	-0.1	0.2
9	HO ¹ , O _H O _H O _H OH Methyl α-L-fuco- pyranoside	0.38	0.0	0.3

Reaction conditions: ReO_x -Pd/CeO₂ catalyst 0. 15 g (Re=2 wt%, Pd/Re=0.25), substrate amount 1.3 mmol (*substrate amount 3.9 mmol), 1,4-dioxane 10 g, 7.7 MPa H₂ at 413 K (initial 1.0 MPa H₂ at R.T.), 413 K. ^{*a*}The detailed reaction rate data are shown in Figure S8, ^{*b*}the detailed data are shown in Figures S9 and S10, ^{*c*}the detailed data are shown in Figures S11 and S12.

measurement of the reaction rate, and the results shown are separated into substrates with a five-membered ring (entries 1-3) and substrates with a six-membered ring (entries 4-9) in Table 1 (detailed data are listed in Figure S8). The order of the reaction rates is as follows: cis-1,2-cyclopentanediol > 1,4-anhydroerythritol > *cis*-1,2-cyclohexanediol > methyl β -D-ribofuranoside > methyl α -L-rhamnopyranoside > methyl α -D-mannopyranoside \approx methyl β -L-arabinopyranoside > methyl β -D-galactopyranoside > methyl α -L-fucopyranoside. This order agrees well with that of the time-courses results in Figure 1. The simple cyclic vicinal diols gave higher reaction rate (7.2~20 mmol g_{cat}-1 h-1, entries 1, 2 and 4) than the methyl glycosides ($0.38 \sim 4.5 \text{ mmol } g_{cat}$ ¹ h⁻¹, entries 3 and 5-9). As for the substrates with a fivemembered ring, the reaction rate of 1,4-anhydroerythritol having a tetrahydrofuran ring (9.0 mmol g_{cat}⁻¹h⁻¹, entry 2) is about 1/2-fold lower than that of cis-1,2-cyclopentanediol (entry 1), which will be related to the presence of the O atom in the ring. On the other hand, methyl β -D-ribofuranoside having a tetrahydrofuran ring showed the reaction rate of 4.5 mmol g_{cat} ⁻¹ h⁻¹ (entry 3), which is about 1/2fold than that of 1,4-anhydroerythritol (9.0 mmol g_{cat}-1 h-1, entry 2). Considering the structure difference between methyl β-D-ribofuranoside and 1,4-anhydroerythritol (entries 2 and 3), the decrease of the reactivity will be derived from the methoxy group at C1 position and/or hydroxymethyl group at C4 position of the tetrahydrofuran ring in methyl β-D-ribofuranoside.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

59

60

26 Regarding the substrates with a six-membered ring, cis-27 1,2-cyclohexanediol (entry 4) showed higher reaction rate 28 than methyl glycosides (entries 5-9), which tendency is sim-29 ilar to that of substrates with a five-membered ring. The de-30 crease of the reactivity may be explained by the presence of 31 the O atom in the ring and the other substituents except cis-32 vicinal OH groups. Among the methyl glycosides having a six-membered ring (entries 4-9), there are reactive methyl 33 glycosides (methyl α -L-rhamnopyranoside, methyl α -D-34 mannopyranoside and methyl β-L-arabinopyranoside, en-35 tries 5-7) and less-reactive methyl glycosides (methyl β-D-36 galactopyranoside and methyl α -L-fucopyranoside, entries 37 8 and 9). The reactive methyl glycosides showed the reac-38 tion rate of 1.7-1.9 mmol g_{cat}⁻¹ h⁻¹ (entries 5-7), and the less-39 reactive methyl glycosides showed lower reaction rate 40 (0.73 and 0.38 mmol g_{cat} -1 h-1, entries 8 and 9). We focus on 41 the functional groups and the configuration of the substitu-42 ents adjacent to the *cis*-vicinal OH groups in the substrates. 43 The adjacent functional groups in the reactive methyl glyco-44 sides (entries 5-7) tend to be at the opposite side to the *cis*-45 vicinal OH groups, not at the same side. In contrast, one of 46 the adjacent functional groups in the less-reactive methyl glycosides (entries 8 and 9) tends to be at the same side to 47 the *cis*-vicinal OH groups: CH₂OH group (methyl β-D-galac-48 topyranoside, entry 8) and CH₃ group (methyl α-L-fucopy-49 ranoside, entry 9) at C6 position. These results suggest that 50 the adjacent functional group at the same side to the cis-vic-51 inal OH groups will decrease the reactivity of the DODH re-52 action. In addition, methyl β-L-arabinopyranoside and me-53 thyl α -D-mannopyranoside showed similar reaction rates 54 (1.7 mmol g_{cat} ⁻¹ h⁻¹, entries 6 and 7), although methyl α -D-55 mannopyranoside has a CH₂OH group at the C6 position, the 56 β-position of the *cis*-vicinal OH groups. The CH₂OH group in 57 the methyl α-D-mannopyranoside is located on the opposite 58

side of the *cis*-vicinal OH groups. Therefore, the similar reactivity of methyl α -D-mannopyranoside and methyl β -Larabinopyranoside can be interpreted by almost no interaction of the CH₂OH group in methyl α -D-mannopyranoside with the Re diolate.

Finally, the reactivity difference between the substates with a five-membered ring and those with a six-membered ring was compared. In the case of simple cyclic diols, the reaction rate of *cis*-1,2-cyclopentanediol (20 mmol g_{cat} ⁻¹ h⁻¹, entry 1) is 3-fold higher than that of *cis*-1,2-cyclohexanediol (7.2 mmol g_{cat} ⁻¹ h⁻¹, entry 4). This reaction rate difference is similar to that between the reactive methyl glycosides (1.7-1.9 mmol g_{cat} ⁻¹ h⁻¹, entry 5-7) and methyl β -D-ribo-furanoside having a five-membered ring (4.5 mmol g_{cat} ⁻¹ h⁻¹, entry 3) (about 3-fold). Therefore, the reactivity of the substrates with a five-membered ring, and the reactivity difference can be reflected by the difference of the ring structure, a six-membered ring or five-membered one.

According to our previous works on hydrogenolysis of glycerol and erythritol over metal oxide-modified noble metal catalysts²⁹, primary OH groups can be more easily adsorbed on the metal oxide species than secondary OH groups. The adsorption property of OH groups may influence the reactivity of methyl glycosides. The results of methyl α -L-rhamnopyranoside (entry 5) and methyl α -D-mannopyranoside (entry 6), which have the same functional groups except for the functional group at the C6 position (CH₃ group in methyl α -L-rhamnopyranoside (entry 5), CH₂OH group in methyl α -D-mannopyranoside (entry 6)) showed that the reactivities are similar, suggesting that the effect of the primary OH group in the CH₂OH group is not so large. Moreover, the reaction of 1,4-anhydroerytheritol in the presence of tetrahydrofurfuryl alcohol as a model alcohol having a primary OH group was performed with

Scheme 4. Effect of addition of primary alcohol in the DODH + HG of 1,4-anhydroerythritol over ReO_x -Pd/CeO₂ catalyst

(I): The DODH + HG of 1,4-anhydroerythritol over ReO_x-Pd/CeO₂ catalyst in the presence of THFA; (II): the DODH + HG of 1,4-anhydroerythritol over ReO_x-Pd/CeO₂ catalyst; (III): the DODH + HG of THFA over ReO_x-Pd/CeO₂ catalyst. The detailed reaction rate data are shown in Table S11. Reaction conditions: ReO_x-Pd/CeO₂ catalyst 0. 15 g (Re=2 wt%, Pd/Re=0.25), 3.9 mmol for each substrate, 1,4-dioxane 10 g, 7.7 MPa H₂ at 413 K (initial 1.0 MPa H₂ at R.T.), 413 K.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

Scheme 5. Effect of addition of dideoxy product in the DODH + HG of methyl α-D-mannopyranoside over ReO_x-Pd/CeO₂ catalyst

(I): The DODH + HG of methyl α -D-mannopyranoside over ReO_x-Pd/CeO₂ catalyst in the presence of dideoxy product; (II): the DODH + HG of methyl α -D-mannopyranoside over ReO_x-Pd/CeO₂ catalyst. The detailed data are shown in Table S12. Reaction conditions: ReO_x-Pd/CeO₂ catalyst 0. 15 g (Re=2 wt%, Pd/Re=0.25), methyl α -D-mannopyranoside 1.3 mmol, additive dideoxy product amount 0.6 mmol, 1,4-dioxane 10 g, 7.7 MPa H₂ at 413 K (initial 1.0 MPa H₂ at R.T.), 4 h, 413 K. ^aCalculated on inputted methyl α -Dmannopyranoside basis.

ReO_x-Pd/CeO₂ catalyst (Scheme 4(I), the detailed data are shown in Table S11). The reaction rate of 1,4-anhydroerytheritol was not so changed in the absence/presence of THFA (Scheme 4(I) and (II)). Certainly, it was confirmed that THFA did not react at all over ReO_x-Pd/CeO₂ catalyst (Scheme 4(III)). Therefore, primary OH group did not suppress the adsorption of the *cis*-vicinal OH groups, probably suggesting that the adsorption strength of the *cis*-vicinal OH groups is stronger than that of primary OH groups. This result also supported the similar reaction rates of methyl β-Larabinopyranoside and methyl α-D-mannopyranoside (1.7 mmol g_{cat}⁻¹ h⁻¹, entries 6 and 7, Table 1) despite the presence of CH₂OH group at the C6 position in methyl α-D-mannopyranoside.

There is a possibility that the produced dideoxy product influences the reactivity of methyl glycosides. In order to check the effect of the dideoxy product on the DODH reaction rate, the activity test of methyl α -D-mannopyranoside was carried out in the presence of the corresponding dideoxy product, methyl α -D-2,3-dideoxy mannopyranoside (Scheme 5(I), the detailed data are shown in Table S12). The conversion was similar to that of only methyl α -D-mannopyranoside (Scheme 5(II)). Therefore, the dideoxy product did not affect the reaction. Considering that the dideoxy product has 1,3-diol structure at C4 and C6 which can be adsorbed on the active site of Re⁴⁺ species, the adsorption strength of the *cis*-vicinal OH groups in the methyl glycosides on the active site will be larger than that of 1,3-diol.

Next, the reaction orders with respect to the substrate concentration and H₂ pressure were investigated with all the model substrates. The results are also listed in Table 1,

and the details are shown in Figure S8-S11. The experimental error of the reaction order was estimated based on the error range of the reaction rate (\sim 3%), and the reaction order of methyl α-D-mannopyranoside as a model substrate was estimated to be -0.1 ± 0.03 (Figure S7 (b)). The reaction orders with respect to the substrate concentration were estimated to be almost zero in all the substrates, which suggests that the coverage of the substrates on the active site is almost saturated under the reaction conditions because of the strong adsorption of methyl glycosides at *cis*-vicinal OH groups, and the rate-determining step is not the coordination of the substrate with the cis-vicinal OH groups to the Re⁴⁺ species as diolate (step (ii), Scheme 2). The reaction orders with respect to the H₂ pressure were estimated to be also almost zero in all the substrates, suggesting that the reaction related with hydrogen is not included in the rate-determining step. The result excludes the possibility that the rate-determining step is the step (i) in Scheme 2. These results agree with those of the previous works on the DODH + HG mechanism of 1,4-anhydroerythritol over ReOx-Pd/CeO2 catalyst^{22b}, demonstrating that the reaction mechanism of methyl glycosides is similar to the proposed one, and the rate-determining step is the DODH reaction and the elimination of alkene from the diolate adspecies on ReOx-Pd/CeO2 catalyst.

In order to clarify the reactivity difference among the methyl glycosides having a six-membered ring, we selected methyl α -L-rhamnopyranoside and methyl α -L-fucopyranoside as model substrates because these substrates are stereoisomers and the reactivity difference is very large (about 5-fold; methyl α -L-rhamnopyranoside: 1.9 mmol g_{cat}⁻¹ h⁻¹, methyl α -L-fucopyranoside: 0.38 mmol g_{cat}⁻¹ h⁻¹, Table 1, entry 5 and 9). The effect of the reaction temperature was

Figure 2. Arrhenius plots of DODH + HG of methyl α -L-rhamnopyranoside (\blacksquare) and methyl α -L-fucopyranoside (\bigcirc) over ReO_x-Pd/CeO₂ catalyst. Reaction conditions: ReO_x-Pd/CeO₂ catalyst 0.15 g (Re=2 wt%, Pd/Re=0.25), substrate 1.3 mmol, 1,4-

dioxane 10 g, 7.7 MPa H_2 (initial 1.0 MPa H_2 at R.T.), 403-423 K. The detailed data are shown in Table S13.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

57

58 59

60

investigated with these methyl glycosides. Arrhenius plots of these substrates provided linear lines (Figure 2, the detailed data are shown in Table S13). The Arrhenius plots provided similar Y intercepts of these substrates (19 \pm 1 for methyl α -L-rhamnopyranoside and 20±1 for methyl α -L-fucopyranoside). The apparent activation energies of methyl α -L-rhamnopyranoside and methyl α -L-fucopyranoside are estimated to be 63±4 and 73±4 kJ mol⁻¹, respectively. Considering that the reaction mechanism of these methyl glycosides is similar based on the kinetic studies as discussed above (Table 1), the reactivity difference between these methyl glycosides can be attributed to the difference of the apparent activation energies. These results suggest that the transition states or adsorption states in the DODH of methyl α-Lrhamnopyranoside and methyl α -L-fucopyranoside are different, which can be derived from the difference of substituents and their configuration adjacent to the cis-vicinal OH groups in these methyl glycosides.

DFT calculation of DODH reaction of methyl α-Lrhamnopyranoside and methyl α-L-fucopyranoside over ReO_x-Pd/CeO₂ catalyst. The adsorption state of the selected methyl glycosides (methyl α-L-rhamnopyranoside and methyl α-L-fucopyranoside, labeled as **1** and **2**, respectively) was estimated by DFT calculation with the isolated Re⁴⁺ species on CeO₂, which is the active site of ReO_x-Pd/CeO₂ catalyst^{22b}, and moreover, the transition state in DODH reaction of these two methyl glycosides was also determined. The periodic-boundary DFT with plane-wave basis set was employed in this investigation using the VASP pack-age (computational details are given in Experimental in SI).

31 Since the CeO₂ surface is exposed to high H₂ pressure. 32 fully hydrogenated surface is considered in this investiga-33 tion. To accommodate the monomeric ReO_x species on the 34 surface, three hydrogen atoms are removed from the sur-35 face and ReO_x species is placed on it to bind to three surface 36 O atoms. When comparing the stability of various ReO_x spe-37 cies with the different number of oxygen atoms ($x = 0 \sim 2$), 38 we found that the ReO_x (x = 1) species on three 0 atom of 39 CeO₂ is the most stable structure over the surface (see the 40 computational details in SI), which is in accordance with the 41 recent work³⁰. In this structure, which we refer to model-I hereafter (Figure S13), the oxidation state of Re atom is es-42 timated as +7 based on the number of reduced Ce³⁺ atoms 43 in the system. This oxidation state is different from the ex-44 perimental observations, where the active Re species in-45 volves the oxidation state of +4. Because of this, we also con-46 sider the model where one of the three bridging O atoms is 47 removed from model-I. In this model, which is referred as 48 model-II (Figure S13), the Re atom is bound to two surface 49 O atoms, and the oxidation state of Re is calculated to be +4, 50 which is in accordance with the experimental findings (see 51 Figure S13 for both structures). Using these two active site 52 models, we compare the stability of intermediate diolate ad-53 species of the substrate. In the case of substrate 1, we found 54 that the adsorption energy (E_{ad}) of the most stable diolate adspecies over model-II is -32 kJ mol⁻¹, while it is 126 kJ 55 mol⁻¹ for model-I (structures are given in Figure S13). 56

Therefore, the model-II would be the most plausible structure of active species of the ReO_x/CeO_2 catalyst.

According to our previous reports on DODH + HG of methyl glycosides²⁰, only the *cis*-vicinal OH groups in methyl glycosides can be selectively removed, however, trans-vicinal OH groups in methyl glycosides can be adsorbed on the active sites of ReO_x-Pd/CeO₂ catalyst as a diolate, which may suppress the reaction. Therefore, we calculated the adsorption energies of the selected stereoisomers (1 or 2) at *cis*vicinal OH groups and *trans*-vicinal OH groups. There are two conformations for each diolate structure (cis-vicinal OH groups and trans-vicinal OH groups) depending on the orientation. Four kinds of diolate adspecies were determined for the two methyl glycosides, and denoted as *cis*-A, *cis*-B, trans-A, trans-B (cis-A1, cis-B1, trans-A1, trans-B1 in Figure S14, and *cis*-A2, *cis*-B2, *trans*-A2, *trans*-B2 in Figure S15). Among these diolate adspecies, cis-A adsorption conformation showed the lowest E_{ad} (-32 kJ mol⁻¹ for *cis*-A1 and – 30 kJ mol⁻¹ for *cis*-A2), indicating that the adsorption of *cis*vicinal OH group is stronger than that of *trans*-OH group on ReO_x species. Hereafter, we only focus on the most stable conformation, cis-A.

Figure 3(a) shows the structure of diolate adspecies of **1**, and it is reclined to the surface involving the hydrogen bond with the surface hydroxy groups. The transition state structure for the cleavage of two C-O bonds is given in Figure 3 (b), and it exhibits asymmetric structure with respect to the dissociation of the two C-O bonds, and one bond length is 1.71 Å and the other is 2.01 Å. This could be mainly due to the stabilization of O2 (shown in the figure) which fills the vacancy site after releasing the DODH product, in addition to the hydrogen bond with the surface. The activation energy $E_{\text{barriar-1}}$ is calculated to be 65 kJ mol⁻¹, which is in good agreement with the experimental value of $E_{\text{a-1}} = 63$ kJ mol⁻¹.

Figure 3. Structures of (a) diolate, (b) transition state and (c) the final product of **1**, and (d) diolate, (e) transition state and (f) the final product of **2**. White, dark brown, red, gray

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

and green balls represent hydrogen, carbon, oxygen, rhenium and cerium atoms, respectively.

After releasing the DODH product, the ReO species is bound to three surface O atoms (Figure 3(c)).

Figure 3 (d-f) shows the structures of diolate adspecies, transition state, and the final product for methyl α -L-fucopyranoside. The structures of ReO/CeO₂ catalyst are similar to those of **1**. The E_{ad} of diolate adspecies is very close, -32 kJ mol⁻¹ for E_{ad-1} and -30 kJ mol⁻¹ for E_{ad-2} . A closer look into the transition structure of **2** shows that asymmetry with respect to the cleavage of the two C-O bonds is less pronounced, and the O2 atom is less stabilized in comparison to **1**. The calculated activation energy $E_{barriar-2}$ of 77 kJ mol⁻¹ is slightly higher than that of $E_{barriar-1}$, which is also in good agreement with the experimental value of $E_{a-2} = 73$ kJ mol⁻¹.

As a model calculation, the gas-phase DODH reaction of methyl glycosides with CH₃ReO₃ catalyst is investigated by using the Gaussian 09 package (Figure S16, and computational details are given in Experimental in SI). The DFT calculation for mechanism of the homogeneous CH3ReO3catalyzed DODH of glycols was carried out by Nicolas and Liu³¹, and the calculated structure around the Re center in the transition state was similar to those by our calculation. The activation energies of **1** and **2** are calculated as $\Delta E_{\text{TS-1}}$ = 87 kJ mol⁻¹ and ΔE_{TS-2} = 83 kJ mol⁻¹, respectively, indicating that the activation energies of these substrates on CH₃ReO₃ are very close to each other. The difference in the structures at the transition state over the active sites of ReO/CeO2 comes from the intricate interactions between the adjacent functional groups to cis-vicinal OH groups and the surface hydroxy groups.

Focusing on the structures of these methyl glycosides in

Figure 4. Extracted structures of the transition states of (a) **1** and (b) **2** over $\text{ReO}_x/\text{CeO}_2$ in Figure 3. White, dark brown, red, gray and green balls represent hydrogen, carbon, oxygen, rhenium and cerium atoms, respectively.

red, gray and green balls represent hydrogen, carbon, oxygen, rhenium and cerium atoms, respectively.

the transition state, the configuration and torsional angle are clearly different. The extracted transition structure and torsional angle on CH₃ReO₃ and ReO_x/CeO₂ are shown in Figures 4 and 5. The configuration of 1 and 2 over ReO_x/CeO_2 (Figure 4) was chair one. The torsional angle (*d*) with respect to the C-O bonds of the diolate is different: the $d_1(02-C3-C4-04)$ of **1** (72.4°) is similar to the $d_2(02-C3-C2-$ 03) of 2 (-73.7°), however the $d_1(01-C2-C1-O3)$ of 1 (-155.8°) is quite different from the d_2 (01-C4-C5-C6) of 2 (37.6°), and the difference is very large. In general, low torsional angle decreases the stability of the structure, meaning the de crease of stability of the transition state. Therefore, it can be concluded that the difference of the activation energy between 1 and 2 is derived from the stability difference of the transition states induced by the difference of the torsional angles, one of the steric effects.

On the other hand, in the case of CH₃ReO₃ (Figure 5), the configuration of 1 was chair one, however, that of 2 was boat one, which is different from that in the case of $\text{ReO}_x/\text{CeO}_2$. As for the torsional angle, **1** provided $d_1'(\text{O2-C3-}$ C4-O4) of 92.4° and *d*₁′(O1-C2-C1-O3) of -140.2°, which are similar to those in the case of $\text{ReO}_x/\text{CeO}_2$ ($d_1(02-C3-C4-O4)=$ 72.4°, $d_1(01-C2-C1-03) = -155.8°$). In contrast, **2** gave d_2 '(01-C4-C5-C6) of 49.1° and d_2 '(02-C3-C2-O3) of -167.8°, which are different from those in the case of $ReO_x/CeO_2(d_2(01-C4-C5-C6) = 37.6^\circ, d_2(02-C3-C2-O3) = -$ 73.7 °). The large torsional angle of $d_2'(02-C3-C2-03)$ (-167.8°) was formed by the conformation change from the boat to chair one, which can release the steric effect. This result was supported by the similar activation energies on CH₃ReO₃ catalyst (Figure S16). Therefore, the difference of activation energy over ReO_x/CeO_2 between 1 and 2 can be also explained by the result that the boat conformation was not formed on $\text{ReO}_x/\text{CeO}_2$, and the confinement is due to the interaction of the OH group (O3) with the OH groups on CeO₂ surface (Figure 3).

Based on the above results, the conformation of the adspecies of methyl glycosides on $\text{ReO}_x/\text{CeO}_2$ was confined by the interaction between the functional groups in methyl glycosides and the surface OH groups, and in the case of methyl α -L-fucopyranoside, the conformation confinement resulted in the low torsional angle, which will lead to high activation energy.

CONCLUSIONS

The screening of the active metal oxides, noble metals, supports and solvents in the DODH+HG of methyl glycosides showed that the same catalyst of ReO_x -Pd/CeO₂ (Re=2 wt%, Pd/Re=0.25) was effective for the reaction as in the case of DODH+HG of 1,4-anhydroerythritol.

Kinetic studies were performed with the ReO_x-Pd/CeO₂ catalyst by using various methyl glycosides with *cis*-vicinal OH groups (methyl β -D-ribofuranoside, methyl α -L-rhamnopyranoside, methyl α -D-mannopyranoside, methyl β -L-arabinopyranoside, methyl β -D-galactopyranoside and methyl α -L-fucopyranoside) and the related cyclic vicinal diols (*cis*-1,2-cyclopentanediol, 1,4-anhydroerythritol and *cis*-1,2-cyclohexanediol). The substituents adjacent to the *cis*-

vicinal diols and the configuration in methyl glycosides influenced the reactivity, but the selectivity of products was not changed. Moreover, the adsorption state and the tradition state were estimated by DFT calculations with structure isomers of methyl α -L-rhamnopyranoside and methyl α -L-fucopyranoside, which exhibit large reactivity difference (~5-fold). The difference of the reactivity is derived from that of the activation energy (65 kJ mol⁻¹ and 77 kJ mol⁻ ¹ for methyl α-L-rhamnopyranoside and methyl α-L-fucopyranoside), which was also supported by the kinetic results from Arrhenius plots (63 kJ mol⁻¹ and 73 kJ mol⁻¹ for methyl α -L-rhamnopyranoside and methyl α -L-fucopyranoside). We conclude that the reactivity difference of the methyl glycosides is mainly derived from that of the torsional angles, which is due to the intricate interaction between the OH group adjacent to the cis-vicinal OH groups and surface OH groups on CeO₂.

ASSOCIATED CONTENT

Supporting Information

This material is available free of charge via the Internet at http://pubs.acs.org.

Reagent information and experimental details; activity test results for the screening of catalysts and solvents; time-courses; raw kinetic data; the structures for DFT calculation.

AUTHOR INFORMATION

Corresponding Author

*mtamura@osaka-cu.ac.jp

*tomi@erec.che.tohoku.ac.jp

Notes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by Grand-in-aid for Challenging Exploratory (18K18965), and partially supported by Grant-in-Aid for Scientific Research (S) (18H05247) from JSPS and Cooperative Research Program of Institute for Catalysis, Hokkaido University (Proposal 19A1006). Ji Cao thanks the China Scholarship Council for the financial support. Part of the calculations was performed on supercomputers at RCCS (Okazaki), RIIT (Kyushu Univ.), and the Center for Computational Materials Science, Institute for Materials Research (Tohoku University, Proposal No. 19S0006).

REFERENCES

(1) (a) Danishefsky, S. J.; Bilodeau, M. T., Glycals in Organic Synthesis: The Evolution of Comprehensive Strategies for the Assembly of Oligosaccharides and Glycoconjugates of Biological Consequence. Angew. Chem. Int. Ed. 1996, 35, 1380-1419. (b) Harris, J. M.; Keranen, M. D.; O'Doherty, G. A., Syntheses of D-and L-Mannose, Gulose, and Talose via Diastereoselective and Enantioselective Dihydroxylation Reactions. J. Org. Chem. 1999, 64, 2982-2983. (c) Allen, J. R.; Harris, C. R.; Danishefsky, S. J., Pursuit of Optimal Carbohydrate-Based Anticancer Vaccines: Preparation of A Multiantigenic Unimolecular Glycopeptide Containing the Tn, MBr1, and Lewisy Antigens. J. Am. Chem. Soc. 2001, 123, 1890-1897. (d) Montero, A.; Mann, E.; Herradón, B., Preparation of Sugar Amino Acids by Claisen-Johnson Rearrangement: Synthesis and Incorporation into Enkephalin Analogues. Eur. J. Org. Chem. 2004, 2004, 3063-3073. (e) Boysen, M. M., Carbohydrates as Synthetic Tools in Organic Chemistry. Chem. Eur. J. 2007, 13, 8648-8659. (f) Henderson, A. S.; Bower, J. F.; Galan, M. C., Carbohydrates as

Enantioinduction Components in Stereoselective Catalysis. *Org Biomol Chem* **2016**, *14*, 4008-4017. (g) Nahain, A. A.; Ignjatovic, V.; Monagle, P.; Tsanaktsidis, J.; Ferro, V., Heparin Mimetics with Anticoagulant Activity. *Med. Res. Rev.* **2018**, *38*, 1582-1613.

(2) (a) Stephanopoulos, G., Challenges in Engineering Microbes for Biofuels Production. Science 2007, 315, 801-804. (b) Haveren, J. v.; Scott, E. L.; Sanders, J., Bulk Chemicals from Biomass. *Biofuels*, Bioprod. Biorefin. 2008, 2, 41-57. (c) Dhepe, P. L.; Fukuoka, A. Cellulose Conversion under Heterogeneous Catalysis. ChemSusChem 2008, 1, 969-975. (d) Saxena, R. C.; Adhikari, D. K.; Goyal, H. B., Biomass-Based Energy Fuel through Biochemical Routes: A review. Renew. Sust. Energ. Rev. 2009, 13, 167-178. (e) Kobayashi, H.; Komanoya, T.; Guha, S. K.; Hara, K.; Fukuoka, A., Conversion of cellulose into renewable chemicals by supported metal catalysis. Appl. Catal. A 2011, 409, 13-20. (f) Melero, J. A.; Iglesias, J.; Garcia, A., Biomass as Renewable Feedstock in Standard Refinery Units. Feasibility, Opportunities and Challenges. Energ. Environ. Sci. 2012, 5, 7393-7420. (g) Kobayashi, H.; Fukuoka, A., Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem. 2013, 15, 1740-1763. (h) Yang, Z. Q.; Wu, Y. Q.; Zhang, Z. S.; Li, H.; Li, X. G.; Egorov, R. I.; Strizhak, P. A.; Gao, X., Recent Advances in Co-Thermochemical Conversions of Biomass with Fossil Fuels Focusing On the Synergistic Effects. Renew. Sust. Energ. Rev. 2019, 103, 384-398. (i) Tursi, A., A Review on Biomass: Importance, Chemistry, Classification, and Conversion. Biofuel Res. J. 2019, 6, 962-979. (j) Leonard, M. D.; Michaelides, E. E.; Michaelides, D. N., Energy Storage Needs for the Substitution of Fossil Fuel Power Plants with Renewables. Renew. Energ. 2020, 145, 951-962.

(3) (a) Moreau, C.; Belgacem, M. N.; Gandini, A., Recent Catalytic Advances in the Chemistry of Substituted Furans from Carbohydrates and in the Ensuing Polymers. Top. Catal. 2004, 27, 11-30. (b) Huber, G. W.; Iborra, S.; Corma, A., Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044-98. (c) Tanksale, A.; Wong, Y.; Beltramini, J.; Lu, G., Hydrogen Generation from Liquid Phase Catalytic Reforming of Sugar Solutions using Metal-Supported Catalysts. Int. J. Hydrogen Energ. 2007, 32, 717-724. (d) Binder, J. B.; Raines, R. T., Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. J. Am. Chem. Soc. 2009, 131, 1979-85. (e) Ruppert, A. M.; Weinberg, K.; Palkovits, R., Hydrogenolysis Goes Bio: from Carbohydrates and Sugar Alcohols to Platform Chemicals. Angew. Chem. Int. Ed. 2012, 51, 2564-601. (f) Bender, T. A.; Dabrowski, J. A.; Gagne, M. R., Homogeneous catalysis for the production of low-volume, highvalue chemicals from biomass. Nat. Rev. Chem. 2018, 2, 35-46. (g) Yang, W.; Du, X.; Liu, W.; Wang, Z.; Dai, H.; Deng, Y., Direct Valorization of Lignocellulosic Biomass into Value-Added Chemicals by Polyoxometalate Catalyzed Oxidation under Mild Conditions. Ind. Eng. Chem. Res. 2019, 58, 22996-23004.

(4) Tamura, M.; Nakagawa, Y.; Tomishige, K., Reduction of sugar derivatives to value chemicals ~utilization of asymmetric carbons~. *Catal. Sci. Technol.* **2020**, 10, 3805-3824.

(5) Muramatsu, W.; Tanigawa, S.; Takemoto, Y.; Yoshimatsu, H.; Onomura, O., Organotin-Catalyzed Highly Regioselective Thiocarbonylation of Nonprotected Carbohydrates and Synthesis of Deoxy Carbohydrates in A Minimum Number of Steps. *Chem. Eur. J.* **2012**, *18*, 4850-4853.

(6) Adduci, L. L.; Bender, T. A.; Dabrowski, J. A.; Gagne, M. R., Chemoselective conversion of biologically sourced polyols into chiral synthons. *Nat. Chem.* **2015**, *7*, 576-581.

(7) (a) Bender, T. A.; Dabrowski, J. A.; Gagne, M. R., Delineating The Multiple Roles of $B(C_6F_5)_3$ in the Chemoselective Deoxygenation of Unsaturated Polyols. *ACS Catal.* **2016**, *6*, 8399-8403. (b) Bender, T. A.; Dabrowski, J. A.; Zhong, H.; Gagne, M. R., Diastereoselective $B(C_6F_5)_3$ -Catalyzed Reductive Carbocyclization of Unsaturated Carbohydrates. *Org. Lett.* **2016**, *18*, 4120-3. (c) Lowe, J. M.; Seo, Y.; Gagne, M. R., Boron-Catalyzed Site-Selective

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

48

49

50

51

52

53

54

55

56

57 58 59

60

Reduction of Carbohydrate Derivatives with Catecholborane. *ACS Catal.* **2018**, *8*, 8192-8198.

(8) Cao, F.; Schwartz, T. J.; McClelland, D. J.; Krishna, S. H.; Dumesic, J. A.; Huber, G. W., Dehydration of cellulose to levoglucosenone using polar aprotic solvents. *Energ. Environ. Sci.* **2015**, *8*, 1808-1815.

(9) (a) Karanjkar, P. U.; Burt, S. P.; Chen, X. L.; Barnett, K. J.; Ball, M. R.; Kumbhalkar, M. D.; Wang, X. H.; Miller, J. B.; Hermans, I.; Dumesic, J. A.; Huber, G. W., Effect of carbon supports on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-methanol. *Catal. Sci. Technol.* 2016, *6*, 7841-7851. (b) Krishna, S. H.; McClelland, D. J.; Rashke, Q. A.; Dumesic, J. A.; Huber, G. W., Hydrogenation of levoglucosenone to renewable chemicals. *Green Chem.* 2017, *19*, 1278-1285.

(10) Larson, R. T.; Samant, A.; Chen, J.; Lee, W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D., Hydrogen Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates. *J. Am. Chem. Soc.* **2017**, *139*, 14001-14004.

(11) (a) Dethlefsen, J. R.; Fristrup, P., Rhenium-Catalyzed Deoxydehydration of Diols and Polyols. *ChemSusChem* 2015, *8*, 767-75. (b) Petersen, A. R.; Fristrup, P., New Motifs in Deoxydehydration: Beyond the Realms of Rhenium. *Chem. Eur. J.* 2017, *23*, 10235-10243. (c) Wozniak, B.; Li, Y. H.; Tin, S.; de Vries, J. G., Rhenium-Catalyzed Deoxydehydration of Renewable Triols Derived from Sugars. *Green Chem.* 2018, *20*, 4433-4437. (d) DeNike, K. A.; Kilyanek, S. M., Deoxydehydration of Vicinal Diols by Homogeneous Catalysts: A Mechanistic Overview. *R. Soc. Open Sci.* 2019, *6*, 191165. (e) Donnelly, L. J.; Thomas, S. P.; Love, J. B., Recent Advances in the Deoxydehydration of Vicinal Diols and Polyols. *Chem. Asian J.* 2019, *14*, 3782-3790. (f) Tshibalonza, N. N.; Monbaliu, J.-C. M., The deoxydehydration (DODH) reaction: a versatile technology for accessing olefins from bio-based polyols. *Green Chem.* 2020, 22, 4801-4848.

28 (12) (a) Arceo, E.; Ellman, J. A.; Bergman, R. G., Rhenium-29 Catalyzed Didehydroxylation of Vicinal Diols to Alkenes using A 30 Simple Alcohol as A Reducing Agent. J. Am. Chem. Soc. 2010, 132, 11408-11409. (b) Li, X.; Wu, D.; Lu, T.; Yi, G.; Su, H.; Zhang, Y., Highly 31 Efficient Chemical Process to Convert Mucic Acid into Adipic Acid 32 and DFT Studies of the Mechanism of the Rhenium-Catalyzed 33 Deoxydehydration. Angew. Chem. Int. Ed. 2014, 53, 4200-4204. (c) 34 Michael McClain, J.; Nicholas, K. M., Elemental Reductants for the 35 Deoxydehydration of Glycols. ACS Catal. 2014, 4, 2109-2112. (d) Raju, S.; Moret, M.-E.; Klein Gebbink, R. J. M., Rhenium-Catalyzed 36 Dehydration and Deoxydehydration of Alcohols and Polyols: 37 Opportunities for the Formation of Olefins from Biomass. ACS 38 Catal. 2014, 5, 281-300. (e) Larson, R. T.; Samant, A.; Chen, J.; Lee, 39 W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D., Hydrogen 40 Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates. J. Am. Chem. Soc. 41 2017, 139, 14001-14004. (f) Shakeri, J.; Hadadzadeh, H.; 42 Farrokhpour, H.; Weil, M., A Comparative Study of the Counterion 43 Effect on the Perrhenate-Catalyzed Deoxydehydration Reaction. 44 Mol. Catal. 2019, 471, 27-37. (g) Li, J.; Lutz, M.; Klein Gebbink, R. J. 45 M., N,N,O-Coordinated tricarbonylrhenium precatalysts for the aerobic deoxydehydration of diols and polyols. Catal. Sci. Technol. 46 2020, 10, 3782-3788. 47

(13) Murru, S.; Nicholas, K. M.; Srivastava, R. S. Ruthenium (II) sulfoxides-catalyzed hydrogenolysis of glycols and epoxides. *J. Mol. Catal. A: Chem.* **2012**, 363–364, 460–464.

(14) Dethlefsen, J. R.; Lupp, D.; Teshome, A.; Nielsen, L. B.; Fristrup, P., Molybdenum-Catalyzed Conversion of Diols and Biomass-Derived Polyols to Alkenes Using Isopropyl Alcohol as Reductant and Solvent. *ACS Catal.* **2015**, *5*, 3638-3647.

(15) Petersen, A. R.; Nielsen, L. B.; Dethlefsen, J. R.; Fristrup, P., Vanadium-Catalyzed Deoxydehydration of Glycerol Without an External Reductant. *ChemCatChem* **2018**, *10*, 769-778.

(16) (a) Denning, A. L.; Dang, H.; Liu, Z.; Nicholas, K. M.; Jentoft, F. C., Deoxydehydration of Glycols Catalyzed by Carbon-Supported

Perrhenate. ChemCatChem 2013, 5, 3567-3570. (b) Sun, R.; Zheng, M.; Li, X.; Pang, J.; Wang, A.; Wang, X.; Zhang, T., Production of renewable 1,3-pentadiene from xylitol via formic acid-mediated deoxydehydration and palladium-catalyzed deoxygenation reactions. Green Chem. 2017, 19, 638-642. (c) Lin, J.; Song, H.; Shen, X.; Wang, B.; Xie, S.; Deng, W.; Wu, D.; Zhang, Q.; Wang, Y., Zirconiasupported rhenium oxide as an efficient catalyst for the synthesis of biomass-based adipic acid ester. Chem Commun 2019, 55, 11017-11020. (d) MacQueen, B.; Barrow, E.; Rivera Castro, G.; Pagan-Torres, Y.; Heyden, A.; Lauterbach, J., Optimum Reaction 1,4-Anhydroerythritol Conditions for and Xvlitol Hydrodeoxygenation over a ReOx-Pd/CeO2 Catalyst via Design of Experiments. Ind. Eng. Chem. Res. 2019, 58, 8681-8689. (e) MacQueen, B.; Ruiz-Yi, B.; Royko, M.; Heyden, A.; Pagan-Torres, Y. J.; Williams, C.; Lauterbach, J., In-Situ Oxygen Isotopic Exchange Vibrational Spectroscopy of Rhenium Oxide Surface Structures on Cerium Oxide. J. Phys. Chem. C 2020, 124, 7174-7181.

(17) (a) Sandbrink, L.; Beckerle, K.; Meiners, I.; Liffmann, R.; Rahimi, K.; Okuda, J.; Palkovits, R., Supported Molybdenum Catalysts for the Deoxydehydration of 1,4-Anhydroerythritol into 2,5-Dihydrofuran. *ChemSusChem* **2017**, *10*, 1375-1379. (b) Xi, Y.; Lauterbach, J.; Pagan-Torres, Y.; Heyden, A., Deoxydehydration of 1,4-Anhydroerythritol over Anatase TiO₂(101)-Supported ReO_x and MoO_x. *Catal. Sci. Technol.* **2020**, 10, 3731-3738.

(18) Nijem, S.; Dery, S.; Carmiel, M.; Horesh, G.; Garrevoet, J.; Spiers, K.; Falkenberg, G.; Marini, C.; Gross, E., Bimetallic Pt–Re Nanoporous Networks: Synthesis, Characterization, and Catalytic Reactivity. *J. Phys. Chem. C* **2018**, *122*, 24801-24808.

(19) Jang, J. H.; Sohn, H.; Camacho-Bunquin, J.; Yang, D. L.; Park, C. Y.; Delferro, M.; Abu-Omar, M. M., Deoxydehydration of Biomass-Derived Polyols with a Reusable Unsupported Rhenium Nanoparticles Catalyst. *ACS Sustain. Chem. Eng.* **2019**, *7*, 11438-11447.

(20) Tamura, M.; Yuasa, N.; Cao, J.; Nakagawa, Y.; Tomishige, K., Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. *Angew. Chem. Int. Ed.* **2018**, *57*, 8058-8062.

(21) Cao, J.; Tamura, M.; Nakagawa, Y.; Tomishige, K., Direct Synthesis of Unsaturated Sugars from Methyl Glycosides. *ACS Catal.* **2019**, *9*, 3725-3729.

(22) (a) Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K., Hydrodeoxygenation of Vicinal OH Groups over Heterogeneous Rhenium Catalyst Promoted by Palladium and Ceria Support. *Angew. Chem. Int. Ed.* **2015**, *54*, 1897-1900. (b) Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K., Performance, Structure, and Mechanism of ReO_x–Pd/CeO₂ Catalyst for Simultaneous Removal of Vicinal OH Groups with H₂. *ACS Catal.* **2016**, *6*, 3213-3226.

(23) (a) Tazawa, S.; Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K., Deoxydehydration with Molecular Hydrogen over Ceria-Supported Rhenium Catalyst with Gold Promoter. *ACS Catal.* **2016**, *6*, 6393-6397. (b) Nakagawa, Y.; Tazawa, S.; Wang, T.; Tamura, M.; Hiyoshi, N.; Okumura, K.; Tomishige, K., Mechanistic Study of Hydrogen-Driven Deoxydehydration over Ceria-Supported Rhenium Catalyst Promoted by Au Nanoparticles. *ACS Catal.* **2017**, *8*, 584-595.

(24) (a) Danishefsky, S. J.; Armistead, D. M.; Wincott, F. E.; Selnick, H. G.; Hungate, R. The Total Synthesis of Avermectin A1a. *J. Am. Chem. Soc.* **1989**, 111, 2967–2980. (b)Danishefsky, S. J.; Bilodeau, M. T. Glycals in Organic Synthesis: The Evolution of Comprehensive Strategies for the Assembly of Oligosaccharides and Glycoconjugates of Biological Consequence. *Angew. Chem., Int. Ed.* **1996**, 35, 1380–1419. (c) Křen, V.; Řezanka, T., Sweet antibiotics – the role of glycosidic residues in antibiotic and antitumor activity and their randomization. *FEMS Microbiol. Rev.* **2008**, 32,858–859.

(25) Krishna, S. H.; Cao, J.; Tamura, M.; Nakagawa, Y.; De Bruyn, M.; Jacobson, G. S.; Weckhuysen, B. M.; Dumesic, J. A.; Tomishige, K.; Huber, G. W., Synthesis of Hexane-Tetrols and -Triols with Fixed Hydroxyl Group Positions and Stereochemistry from Methyl Glycosides over Supported Metal Catalysts. *ACS Sustain. Chem. Eng.* **2020**, *8*, 800-805.

(26) Corma, A.; Iborra, S.; Velty, A., Chemical Routes for the Transformation of Biomass into Chemicals. *Chem. Rev.* **2007**, 107, 2411–2502.

(27) Krishna, S. H.; Schmidt, Z. R.; Weckhuysen, B. M.; Dumesic, J. A.; Huber, G. W., Catalytic Production of Hexane-1, 2, 5, 6-Tetrol from Bio-Renewable Levoglucosanol in Water: Effect of Metal and Acid Sites on (Stereo)-Selectivity. *Green Chem.* **2018**, *20*, 4557-4565.

(28) Tamagawa, K.; Hilderbrandt, R. L.; Shen, Q., Molecular-Structure of Cyclopentanone by Gas-Phase Electron-Diffraction. *J. Am. Chem. Soc.* **1987**, *109*, 1380-1383.

(29) (a) Chen, K.; Mori, K.; Watanabe, H.; Nakagawa, Y.; Tomishige, K., C–O Bond Hydrogenolysis of Cyclic Ethers with OH Groups over Rhenium-Modified Supported Iridium Catalysts. *J. Catal.* **2012**, *294*, 171-183. (b) Amada, Y.; Watanabe, H.; Hirai, Y.; Kajikawa, Y.; Nakagawa, Y.; Tomishige, K., Production of Biobutanediols by The Hydrogenolysis of Erythritol. *ChemSusChem* **2012**, *5*, 1991-1999.

(30) Xi, Y. J.; Yang, W. Q.; Ammal, S. C.; Lauterbach, J.; Pagan-Torres, Y.; Heyden, A., Mechanistic Study of the Ceria Supported, Re-Catalyzed Deoxydehydration of Vicinal OH Groups. *Catal. Sci. Technol.* **2018**, *8*, 5740-5752.

(31) Liu, P.; Nicholas, K. M., Mechanism of Sulfite-Driven, MeReO₃-Catalyzed Deoxydehydration of Glycols. *Organometallics* **2013**, *32*, 1821-1831.

SYNOPSIS TOC

