Note

Reaction of methyl 2,3-anhydro-4,6-*O*-benzylidene- α -D-allopyranoside with ethanolamine and 1,4,7,10-tetraoxa-13-azacyclopentadecane

GABOR TOTH*

NMR Laboratory of the Institute for General and Analytical Chemistry, Technical University Budapest, Gellért tér 4, H-1111 Budapest (Hungary)

WOLFGANG DIETRICH,

Department of Chemistry, Ruhr-University Bochum, Pf. 102148, D-4630 Bochum 1 (F.R.G.)

Péter Bakó, László Fenichel, and László Töke

Department of Organic Chemical Technology, Technical University Budapest, H-1521 Budapest (Hungary)

(Received March 10th, 1987; accepted for publication, May 2nd, 1987)

Chiral crown derivatives have gained importance for the resolution of racemates and as ligands in ion-selective electrodes¹. We have reported several crown ethers where the chirality originated from a monosaccharide moiety²⁻⁵ and now report on novel sugar-azacrown ethers obtained from methyl 2,3-anhydro-4,6-O-benzylidene- α -D-allopyranoside (1).

Rigid *trans*-fused bicyclic derivatives of 2,3-anhydropyranosides react regioselectively during nucleophilic ring-opening⁶. Thus, according to the Fürst–Plattner rule, the anhydroallose derivative 1 will yield mainly 2-substituted *altro* derivatives on reaction with amines⁷, the 3-substituted *gluco* derivatives being minor products.

Reaction of 1 with ethanolamine (2-aminoethanol) gave 71% of 2 but, with 1,4,7,10-tetraoxa-13-azacyclopentadecane, the crown derivatives 3 and 4 were obtained in yields of 31 and 27%, respectively, and 25% of methyl 4,6-O-benzyl-idene- α -D-glucopyranoside was detected. The structures of 2-5 were established on the basis of ¹H- and ¹³C-n.m.r. data (Tables I and II). The ¹³C-¹H heteronuclear shift-correlated experiments⁸ indicated that the previous⁹ assignment of ¹³C resonances for C-2 and C-3 should be reversed. The value (0.8 Hz) of $J_{1,2}$ for methyl 4,6-O-benzylidene- α -D-altropyranoside significantly differs from that (3.6 Hz) of the gluco isomer¹⁰. Thus, 2 ($J_{1,2}$ 0.9 Hz) has the *altro* configuration. A 2-substituted

^{*}Author for correspondence.

altrose structure is also indicated by the H-2 signal, which appears at highest field (2.99 p.p.m.), and the $J_{2,3} = J_{3,4} = 2.9$ Hz coupling constants also support the altroside structure. The $J_{1,2}$ value (3.6 Hz) for 4 is characteristic for methyl 4,6-O-benzylidene- α -D-glucopyranoside¹⁰. As a consequence of the 3-deoxy-3-azacrown structure, H-3 is the most shielded proton. The gluco structure is also supported by $J_{2,3} = J_{3,4} = 10.3$ Hz, which indicates that the 2,3-substituents are equatorial. The ¹H chemical shift data for the two products formed by the reaction of 1 with phthalimide¹¹ were quite different from our data, due to the anisotropic effect of the imide carbonyl groups, but the J values were similar. However, the assignments¹¹ of C-2 and C-5 in the gluco isomer, and C-3 and C-5 in the altro isomer, should be reversed.

The ¹³C-n.m.r. data for 2-4 further supported the structures assigned on the basis of data¹² for methyl 4,6-O-benzylidene- α -D-gluco- (5) and -altro-pyranoside (6). Significant up-field shifts were observed for the C-2,3,4,5 signals of 6. The

TA	B	LE	I
----	---	----	---

Compound	Chemic	cal shift s (δ)							
	H-1	H-2	H-3	H-4	H-5	H-6	H-6'	<i>H</i> -7	MeO
1	4.87	3.46	3.50	3.93	4.17	3.66	4.22	5.56	3.45
2	4.63	2.99	4.07	3.82	4.17	3.77	4.29	5.58	3.40
3	4.77	3.07	6	3.88	4.16	3.75	4.28	5.61	3.37
4	4.81	3.56	3.19	3.62 ^b	3.81	3.6	4.21	5.44	3.39
	Coupli	ng constant	s (Hz)						
	J _{1,2}	J _{2,3}	J _{3,4}	J _{4,5}	J _{5,6}	J _{5,6'}	²J _{ő,ő'}		
1	2.8	4.3	1.4	9.1	10.3	5.0	10.3		
2	0.9	2.9	2.9	9.8	10.1	5.1	10.1		
3	~0.7	2.1	3.2	10.0	10.0	5.0	10.2		
4	3.6	10.3	10.3	9.2	10.2	4.7	10.1		

H-N.M.R. DATA FOR 1-4

"Overlapped with other signals. "Evaluated from the 2D C,H-COSY spectrum.

13C-N.M.R. CHEN	UCAL SHIFT D	ATA FOR 1-6	3		ļ							I
Compound	C-I	C-2	С.3	C-4	C.S	C-6	C-7	C _{ipeo}	$C_{\rm ortho}$	Cueta	C _{pura}	CH ₃ O
1	95.27	53.07	50.65	77.82	60.00	68.85	102.69	137.13	126.26	128.26	123.17	55.80
7	101.4	60.51	68.41	76.71	58.40	69.14	102.26	137.22	126.21	128.20	129.07	55.57
	101.7	65.77	66.47	77.32	57.65	63.28	102.00	137.25	126.02	128.13	128.93	55.13
4	66 .66	68.26	62.18	78.27	63.45	69.23	100.97	137.40	125.85	128.08	128.75	55.11
5	99.6 6	73.27	71.02	80.91	60.96	68.62	101.6	136.74	126.14	128.13	128.98	55.40
¢,	101.6	9.69	68.8	76.0	57.8	68.8	101.8					55.0

TABLE II

P.p.m., measured in CDCl₃ at 100 MHz. ^bData taken from ref. 12.

NOTE

assignments were proved for 2 and 4 by ${}^{13}C{}^{-1}H$ heteronuclear shift-correlated spectroscopy⁸ (data not shown). The only characteristic difference between 6 and 2 is at C-2. The up-field shift (9 p.p.m.) of the signal for C-2 in 2 reflects the effect^{11,13-15} of replacing OH by N. Relative to the C-2 signal for 2, that for 3 is shifted down-field by 5 p.p.m., reflecting the effect of the secondary and tertiary nitrogen substituents, respectively. A 2-p.p.m. up-field shift was observed for the signal of C-3 in 3 due to the substitution, as was a down-field shift of 2 p.p.m. for the signal for C-4 caused by the δ -steric effect¹⁶.

A comparison of the ¹³C data for 5 and 4 shows that the signal for C-3 is shifted up-field (9 p.p.m.) due to the OH \rightarrow N substitution. The CH₂NCH₂ methylene causes different up-field shifts of the signals for C-2 and C-4 (5.01 and 2.64 p.p.m., respectively), indicating preponderant conformations where both NCH₂ groups are *gauche* to C-2 but only one is *gauche* to C-4 around the C-3–NCH₂ bond.

The reaction of 1 with the bulky azacrown ether does not accord with the Fürst-Plattner rule, probably because of the bulk of the nucleophile. Thus, the reaction of 1 with ammonia and methylamine yields¹⁷ 91% and 86%, respectively, of the 2,3-diaxial products. With ethanolamine, the yield declines to 71%. The ratios of diaxial and diequatorial products is 15:1 in the reaction with azide ion¹⁸, but 3:1 in the reaction with phthalimide¹¹.

EXPERIMENTAL

General. — Melting points were obtained with a Büchi apparatus and are uncorrected. Microanalyses were performed in the Microanalytical Laboratory of the Institute. N.m.r. measurements were carried out on solutions in CDCl₃ with Bruker AM-400 and JEOL FX-100 spectrometers operating at 9.2 and 2.3 tesla, respectively. The ¹³C-¹H heteronuclear shift-correlated maps were produced with the aid of a pulse sequence devised for elimination of the proton-proton couplings⁸.

Methyl 4,6-O-benzylidene-2-deoxy-2-hydroxyethylamino- α -D-altropyranoside (2). — A mixture of freshly distilled ethanolamine (10.0 g) and 1 (4.0 g) was heated for 6 h at 140° under argon and then cooled to 90°, and water (30 mL) was added with stirring. The mixture was stored at room temperature to give 2 (3.5 g, 70.7%), m.p. 160–162°, $[\alpha]_D^{20}$ +63° (c 1.1, methanol).

Anal. Calc. for C₁₆H₂₃NO₆: C, 59.07; H, 7.13; N, 4.30. Found: C, 59.48; H, 7.18; N, 4.43.

Reaction of methyl 2,3-anhydro-4,6-O-benzylidene- α -D-allopyranoside (1) with 1,4,7,10-tetraoxa-13-azacyclopentadecane. — A mixture of 1,4,7,10-tetraoxa-13-azacyclopentadecane (1.6 g) and 1 (3.0 g) was heated for 16 h at 180° under argon. The mixture was cooled and diluted with methanol, the unreacted 1 was removed, the filtrate was concentrated, and the residue was eluted from a column (30 × 400 mm) of Kieselgel (100 g) with toluene-methanol (3:2) to give, first, methyl 4,6-O-benzylidene-2-deoxy-2-(1,4,7,10-tetraoxa-13-azacyclopentadecanyl)- a-D-altropyranoside (3; 1.1 g, 31.7%), isolated as a yellow syrup, $[\alpha]_D^{20} + 45^\circ$ (c 1.2, chloroform), $R_F 0.59$ (Kieselgel 60; toluene-ethanol-ammonia, 6:6:1). Mass spectrum: m/z 484 (M⁺).

Anal. Calc. for C₂₄H₃₇NO₉: C, 59.62; H, 7.66; N, 2.89. Found: C, 59.60; H, 7.38; N, 2.71.

Eluted second was methyl 4,6-O-benzylidene-3-deoxy-3-(1,4,7,10-tetraoxa-13-azacyclopentadecanyl)- α -D-glucopyranoside (4), isolated as yellow syrup (0.95 g, 27.4%), $[\alpha]_{2^0}^{2^0}$ +39° (c 1.2, chloroform), $R_{\rm F}$ 0.32. Mass spectrum: m/z 483 (M⁺).

Anal. Found: C, 59.94; H, 7.51; N, 2.69.

ACKNOWLEDGMENTS

We thank Professor G. Snatzke for helpful discussion, and the Alexander von Humboldt Stiftung for a fellowship (to G.T. at the Ruhr University, Bochum).

REFERENCES

- 1 J. F. STODDART, in R. IZATT AND H. CHRISTENSEN (Eds.), Synthetic Chiral Receptor Molecules from Natural Products, Progress in Macrocyclic Chemistry, Vol. 2, Wiley, New York, 1981, pp. 174-250.
- 2 P. BAKO, L. FENICHEL, L. TOKE, AND M. CZUGLER, Justus Liebigs Ann. Chem., (1981) 1163-1171.
- 3 P. BAKO, L. FENICHEL, AND L. TOKE, Acta Chim. Acad. Sci. Hung., 111 (1982) 297-304.
- 4 P. BAKO, L. FENICHEL, AND L. TOKE, Acta Chim. Acad. Sci. Hung., 116 (1984) 323-325.
- 5 P. BAKO, L. FENICHEL, L. TOKE, AND G. TOTH, Carbohydr. Res., 147 (1986) 31-37.
- 6 N. R. WILLIAMS, Adv. Carbohydr. Chem. Biochem., 25 (1970) 109-179.
- 7 A. FURST AND P. A. PLATTNER, Helv. Chim. Acta, 32 (1949) 275-283.
- 8 A. BAX, J. Magn. Reson., 53 (1983) 517-520.
- 9 K. KIM, D. M. VYAS, AND W. A. SZAREK, Carbohydr. Res., 72 (1979) 25-33.
- 10 B. COXON, Tetrahedron, 21 (1965) 3481-3503.
- 11 B. COXON AND R. C. REYNOLDS, Carbohydr. Res., 110 (1982) 43-54.
- 12 E. CONWAY, R. D. GUTHRIE, S. D. GERO, G. LUKACS, AND A. M. SEPULCHRE, J. Chem. Soc., Perkin Trans. 2, (1974) 542-546.
- 13 K. F. KOCH, J. A. RHOADES, E. W. HAGAMAN, AND E. WENKERT, J. Am. Chem. Soc., 96 (1974) 3300-3305.
- 14 H. PAULSEN, A. RICHTER, V. SINNWELL, AND W. STENZEL, Carbohydr. Res., 64 (1978) 339-364.
- 15 B. PAUL AND W. KORYTNYK, Carbohydr. Res., 67 (1978) 457-468.
- 16 F. W. WEHRLIAND T. WIRTHLIN, Interpretation of Carbon-13 NMR Spectra, Heyden, London, 1980, pp. 38-40.
- 17 S. N. DANILOV AND I. S. LYSHANSKII, Zh. Obshch. Khim., 25 (1955) 2106-2117.
- 18 R. D. GUTHIRIE AND J. A. LIEBMANN, Carbohydr. Res., 33 (1984) 355-358.