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Note

Reaction of methyl 2,3-anhydro-4,6-O-benzylidene-a-p-allopyranoside with
ethanolamine and 1,4,7,10-tetraoxa-13-azacyclopentadecane
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Chiral crown derivatives have gained importance for the resolution of
racemates and as ligands in ion-selective electrodes!. We have reported several
crown ethers where the chirality originated from a monosaccharide moiety?—5 and
now report on novel sugar-azacrown cthers obtained from methyl 2,3-anhydro-4,6-
O-benzylidene-a-D-allopyranoside (1).

Rigid trans-fused bicyclic derivatives of 2,3-anhydropyranosides react regio-
selectively during nucleophilic ring-openingé. Thus, according to the Fiirst—Plattner
rule, the anhydroallose derivative 1 will yield mainly 2-substituted aliro derivatives
on reaction with amines’, the 3-substituted gluco derivatives being minor products.

Reaction of 1 with ethanolamine (2-aminoethanol) gave 71% of 2 but, with
1,4,7,10-tetraoxa-13-azacyclopentadecane, the crown derivatives 3 and 4 were
obtained in yields of 31 and 27%, respectively, and 25% of methyl 4,6-O-benzyl-
idene-a-D-glucopyranoside was detected. The structures of 2-5 were established on
the basis of 'H- and C-n.m.r. data (Tables I and II). The 3C-'H heteronuclear
shift-correlated experiments® indicated that the previous® assignment of C
resonances for C-2 and C-3 should be reversed. The value (0.8 Hz) of 7, , for methyl
4,6-0-benzylidene-a-D-altropyranoside significantly differs from that (3.6 Hz) of
the gluco isomer™. Thus, 2 (J; , 0.9 Hz) has the altro configuration. A 2-substituted

* Author for correspondence.
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altrose structure is also indicated by the H-2 signal, which appears at highest field
(2.99 p.p.m.), and the J,; = J;, = 2.9 Hz coupling constants also support the
altroside structure. The J, , value (3.6 Hz) for 4 is characteristic for methyl 4,6-O-
benzylidene-a-D-glucopyranoside!?. As a consequence of the 3-deoxy-3-azacrown
structure, H-3 is the most shielded proton. The gluco structure is also supported by
J,3 = J34 = 10.3 Hz, which indicates that the 2,3-substituents are equatorial. The
'H chemiczl shift data for the two products formed by the reaction of 1 with
phthalimidel! were quite different from our data, due to the anisotropic effect of
the imide carbonyl groups, but the J values were similar. However, the assign-
ments! of C-2 and C-5 in the gluco isomer, and C-3 and C-5 in the altro isomer,
should be reversed.

The 13C-n.m.r. data for 2-4 further supported the structures assigned on the
basis of datal? for methyl 4,6-O-benzylidene-a-D-gluco- (5) and -altro-pyranoside
(6). Significant up-field shifts were observed for the C-2,3,4,5 signals of 6. The

TABLE I

'H-N.M.R. DATA FOR 1-4

Compound Chemical shifts (6)

H-1 H-2 H-3 H4 H-5 H6 H-6' H-7 MeO

1 4.87 3.46 3.50 393 4.17 3.66 422 5.56 3.45
2 4.63 2.99 4.07 3.8 4.17 3.77 4.29 5.58 3.40
3 4.77 3.07 e 3.88 4.16 37 4.28 5.61 3.37
4 4.81 3.5¢ 3.19 3.62 3.81 3.6 4.21 5.44 339
Coupling constants (Hz)
;2 Y J54 Tos I56 Ise Voo
1 2.8 43 1.4 9.1 10.3 5.0 10.3
2 0.9 29 29 9.8 10.1 51 10.1
3 ~0.7 2.1 32 10.0 10.0 5.0 10.2
4 3.6 10.3 10.3 9.2 10.2 4.7 10.1

“Overlapped with other signals. ?Evaluated from the 2D C,H-COSY spectrum.
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assignments were proved for 2 and 4 by 3C-'H heteronuclear shift-correlated
spectroscopy® (data not shown). The only characteristic difference between 6 and 2
is at C-2. The up-field shift (9 p.p.m.) of the signal for C-2 in 2 reflects the
effect!113-15 of replacing OH by N. Relative to the C-2 signal for 2, that for 3 is
shifted down-field by 5 p.p.m., reflecting the effect of the secondary and tertiary
nitrogen substituents, respectively. A 2-p.p.m. up-field shift was observed for the
signal of C-3 in 3 due to the substitution, as was a down-field shift of 2 p.p.m. for
the signal for C-4 caused by the &-steric effectS.

A comparison of the 13C data for 5§ and 4 shows that the signal for C-3 is
shifted up-field (9 p.p.m.) due to the OH — N substitution. The CH,NCH,
methylene causes different up-field shifts of the signals for C-2 and C-4 (5.01 and
2.64 p.p.m., respectively), indicating preponderant conformations where both
NCH, groups are gauche to C-2 but only one is gauche to C-4 around the C-3-NCH,
bond.

The reaction of 1 with the bulky azacrown ether does not accord with the
Fiirst-Plattner rule, probably because of the bulk of the nucleophile. Thus, the
reaction of 1 with ammonia and methylamine yields'” 91% and 86%, respectively,
of the 2,3-diaxial products. With ethanolamine, the yicld declines to 71%. The
ratios of diaxial and diequatorial products is 15:1 in the reaction with azide ion!®,
but 3:1 in the reaction with phthalimide!!.

EXPERIMENTAL

General. — Melting points were obtained with a Biichi apparatus and are
uncorrected. Microanalyses were performed in the Microanalytical Laboratory of
the Institute. N.m.r. measurements were carried out on solutions in CDCl, with
Bruker AM-400 and JEOL FX-100 spectrometers operating at 9.2 and 2.3 tesla,
respectively. The 13C-'H heteronuclear shift-correlated maps were produced with
the aid of a pulse sequence devised for elimination of the proton—proton couplings?.

Methyl 4,6-O-benzylidene-2-deoxy-2-hydroxyethylamino-a-D-altropyranoside
(2). — A mixture of freshly distilled ethanolamine (10.0 g) and 1 (4.0 g) was heated
for 6 h at 140° under argon and then cooled to 90°, and water (30 mL) was added
with stirring. The mixture was stored at room temperature to give 2 (3.5 g, 70.7%),
m.p. 160-162°, [a]3° +63° (¢ 1.1, methanol).

Anal. Calc. for C,¢H,;NOg: C, 59.07; H, 7.13; N, 4.30. Found: C, 59.48; H,
7.18; N, 4.43.

Reaction of methyl 2,3-anhydro-4,6-O-benzylidene-a-D-allopyranoside (1)
with 1,4,7,10-tetracxa-13-azacyclopentadecane. — A mixture of 1,4,7,10-tetraoxa-
13-azacyclopentadecane (1.6 g) and 1 (3.0 g) was heated for 16 h at 180° under
argon. The mixture was cooled and diluted with methanol, the unreacted 1 was
removed, the filtrate was concentrated, and the residue was eluted from a column
(30 x 400 mm) of Kieselgel (100 g) with toluene-methanol (3:2) to give, first,
methyl 4,6-O-benzylidenc-2-deoxy-2-(1,4,7,10-tetraoxa-13-azacyclopentadecanyl)-
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a-D-altropyranoside (3; 1.1 g, 31.7%), isolated as a yellow syrup, [a]3? +45° (c
1.2, chloroform), R 0.59 (Kieselgel 60; toluene—ethanol-ammonia, 6:6:1). Mass

spectrum: m/z 484 (Mt).

Anal. Calc. for C, H;;NO,: C, 59.62; H, 7.66; N, 2.89. Found: C, 59.60; H,
7.38; N, 2.71.

Eluted second was methyl 4,6-O-benzylidene-3-deoxy-3-(1,4,7,10-tetraoxa-
13-azacyclopentadecanyl)-a-D-glucopyranoside (4), isolated as yellow syrup (0.95
g,27.4%), [a]3® +39°(c 1.2, chloroform), R 0.32. Mass spectrum: m/z 483 (Mt).

Anal. Found: C, 59.94; H, 7.51; N, 2.69.
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