Asymmetric Functionalization of Bicycloalkenes by Catalytic Enantioposition-Selective Hydrosilylation

Yasuhiro Uozumi, Sang-Yong Lee, and Tamio Hayashi*

Catalysis Research Center and Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Abstract: Hydrosilylation of norbornene with trichlorosilane in the presence of palladium catalyst (0.01-0.1 mol %) coordinated with (R)-MOP ligand gave a quantitative yield of exo-2-trichlorosilylnorbornane, which was oxidized with hydrogen peroxide to give (1.5,25,4R)-exo-2-norbornanol in 96% ee. The similar hydrosilylation and oxidation of endo-5,6-dicarbomethoxy-2-norbornene, bicyclo[2.2.2]octene, and norbornadiene gave the corresponding bicyclic alcohols of 94% ee, 92% ee, and 95% ee, respectivery.

Asymmetric synthesis through a selective monofunctionalization of enantiotopic positions is one of the most attractive strategies for one-step construction of multiple chiral carbon centers.¹ In spite of the impressive development of enantioface selective asymmetric reactions catalyzed by transition metal complexes, the enantioposition selective approach still remains to be developed.² We have concentrated our studies on the catalytic asymmetric functionalization of meso bicyclo[2.2.1] system, because the optically active bicyclo[2.2.1]heptane derivatives represented by norbornanol are of great value as versatile chiral building blocks for the synthesis of a wide variety of important compounds.³ Those optically active bicyclo[2.2.1]heptanes have been mainly obtained by optical resolution of racemic compounds in either chemical or enzymatic procedures,⁴ or by asymmetric hydroboration⁵ and Diels-Alder reactions⁶ using a stoichiometric amount of chiral auxiliaries. Use of catalytic systems for the asymmetric reactions has not always been successful in terms of enantioselectivity or catalytic activity.^{2,7,8} We report here that the asymmetric functionalization with >96/4 enantioposition selectivity is realized through asymmetric hydrosilylation in the presence of not more than 0.1 mol % of palladium catalyst coordinated with (R)-2-methoxy-2'-diphenylphosphino-1,1'-binaphthyl ((R)-MOP).^{9,10}

Scheme 1

entry	olefin	conditions	product	yield ^b % (exo : endo) ^c	yield ^b % of alcohol	% ee
1	1	0°C, 24 h	2	100 (100:0)	90 (3)	93d
2	1	-20 °C, 3 d	2	99 (100:0)	` ,	96d
3	5	0°C, 24 h	7a	100 (100:0)	96 (7b)	940
4	6	0 °C, 24 h	8a	85 ()	90 (8b)	92d
5	9	0 °C, 24 h	10a	85f (100:0)	89 (10b)	95d

Table I. Asymmetric Hydrosilylation Catalyzed by Palladium-MOPa

^a All reactions were run without solvent in the presence of palladium catalyst prepared in situ by mixing [PdCl(π -C₃H₅)]₂ (0.01–0.1 mol % Pd) and (R)-MOP (2 equiv to Pd). The ratio of olefin/HSiCl₃ is 1/1.20–1.25. ^b Isolated yield. ^c Determined by GLC and ¹H NMR analysis. ^d Determined by HPLC analysis of (3,5-dinitrophenyl)carbamate of the alcohol with Sumichiral OA-4500 (n-hexane/dichloroethane/ethanol = 50/10/1). ^e Determined by ¹H NMR analysis of acetate 7c using Eu(hfc)₃. ^f Nortricyclene 11 was also formed in 14%.

A typical procedure for the asymmetric synthesis of exo-2-norbornanol (3) from norbornene (1) (Scheme 1) is as follows: A mixture of norbornene (1, 15.0 g, 0.16 mol), trichlorosilane (20.0 mL, 0.20 mol), [PdCl(π -C₃H₅)]₂ (2.9 mg, 0.008 mmol, 0.01 mol % Pd) and (R)-MOP (14.8 mg, 0.032 mmol, 2 equiv to Pd) was stirred at 0 °C for 24 h. Removal of excess silane followed by distillation (65 °C/3.5 mm Hg) gave 100% yield (36.5 g) of exo-2-trichlorosilylnorbornane^{11,12} (2) as a single product. Oxidative conversion of 2 was performed with hydrogen peroxide by a modified Tamao's method^{13,14} to give exo-2-norbornanol (3) in over 90% yield. Sublimation in vacuo gave 13.3 g (74% yield) of analytically pure (15,25,4R)-3 with 93% ee. The absolute configuration was assigned on the basis of the optical rotation (3: α)²⁵D -2.94° (c 10.55, CHCl₃), lit.¹⁵ α 0 mathematically pure (15,25,4R)-3 with 93% ee. The carbamate ester obtained by treatment with 3,5-dinitrophenyl isocyanate. The hydrosilylation carried out at -20 °C for 3 days (99% yield) raised the enantiomeric excess to 96% ee (entries 1 and 2 in Table I).

Trichlorosilane 2 can be converted into (1S,2R,4R)-endo-2-bromonorbornane $(4)^{17,18}$ in 81% yield by treatment with excess potassium fluoride followed by bromination of the resulting pentafluorosilicate with N-bromosuccinimide. Dimethyl ester derivative 5 and bicyclo[2.2.2] octene 6 were also successfully subjected to the asymmetric hydrosilylation-oxidation under the similar reaction conditions to give the corresponding alcohols. (1R.2S.4R.5S.6R)-7b $(94\% \text{ ee})^{20,21}$ and (2S)-8b $(92\% \text{ ee})^{,22,23}$ respectively (entries 3 and 4).

It is remarkable that the monofunctionalization of norbornadiene (9) forming exo-2-trichlorosilyl-5-norbornene (10a) is effected by the palladium-MOP catalyst with high chemo- and enantioselectivity (Scheme 2). It is in striking contrast to the reaction catalyzed by chloroplatinic acid²⁴ or palladium-triphenylphosphine²⁵

which gives nortricyclene 11 as a major product. Thus, the reaction of 9 with 1.0 equiv of trichlorosilane and the palladium-MOP catalyst (0.1 mol %) followed by the hydrogen peroxide oxidation gave (1R,2S,4R)-exo-2-hydroxy-5-norbornene²¹ (10b) with 95% ee (entry 5). The enantioselective hydrosilylation took place successively on the two double bonds of 9 in the reaction with 2.5 equiv of trichlorosilane, which gave 78% yield of chiral disilylnorbornane 12a and meso isomer 13 in a ratio of 18:1. The oxidation of 12a followed by acetylation of diol 12b gave diacetate (1R,2S,4R,5S)-12c^{26,27} with >99% ee,²⁸ the high purity being as expected in the double stereoselection.

Scheme 2

X

HSiCl₃

(2.5 equiv)

Pd-MOP

12a:
$$X = SiCl_3$$

12b: $X = OH$

12c: $X = OAc$
 Cl_3Si

SiCl₃

13

SiCl₃

11

SiCl₃

11

SiCl₃

11

Acknowledgment. We thank the Ministry of Education, Japan, for a Grant-in-Aid for Scientific Research and Asahi Glass Foundation for partial financial support of this work.

References and Notes

- For reviews: (a) Morrison, J. D., Ed. Asymmetric Synthesis; Academic Press: London, 1983–1985; Vol. 1-5.
 (b) Nógrádi, M. Stereoselective Synthesis; Weinheim: New York, 1987.
- 2 For reviews: (a) Noyori, R.; Kitamura, M. Modern Synthetic Methods; Scheffold, R., Ed.; Springer-Verlag: Berlin, 1989; Vol. 5, p 115. (b) Brunner, H. Top Stereochem. 1988, 18, 129. (c) Ojima, I.; Clos, N.; Bastos, C. Tetrahedron 1989, 45, 6901.
- 3 They have been employed, for example, for the synthesis of prostanoids (ref 3a-b), thromboxanes (ref 3c-g), alkaloids (ref 3h), terpenes (ref 3i), insecticides (ref 3j), antibiotics (ref 3k), fragrances (ref 3l), and carbosugars (ref 3m-n). (a) Arndt, H. C.; Rajani, C. Tetrahedron Lett. 1982, 23, 2365. (b) Barraclough, K. Tetrahedron Lett.. 1980, 21, 1897. (c) Narisada, M.; Ohtani, M.; Watanabe, F.; Uchida, K.; Arita, H.; Doteuchi, M.; Hanasaki, K.; Kakushi, H.; Otani, K.; Hara, S. J. Med. Chem. 1988, 31, 1847. (d) Martinelli, M. J. Org. Chem. 1990, 55, 5065. (e) Garland, R.; Miyano, M.; Pireh, D.; Clare, M.; Finnegan, P. M.; Swenton, L. J. Org. Chem. 1990, 55, 5854. (f) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122. (g) Ohtani, M.; Matsuura, T.; Watanabe, P.; Narisada, M.; Org.

- (a) Klunder, A. J. H.; van Gastel, F. J. C.; Zwanenburg, B. Tetrahedron Lett. 1988, 29, 2697.
 (b) Metz, P. Tetrahedron 1989, 45, 7311.
 (c) Janssen, A. J. M.; Klunder, A. J. H.; Zwanenburg, B. Tetrahedron Lett. 1990, 31, 7219.
- 5 (a) Brown, H. C.; Desai, M. C.; Jadhav, P. K. J. Org. Chem. 1982, 47, 5065. (b) Joshi, N. N.; Pyun, C.; Mahindroo, V. K.; Singaram, B.; Brown, H. C. J. Org. Chem. 1992, 57, 504.
- 6 (a) Furuta, K.; Iwanaga, K.; Yamamoto, H. Tetrahedron Lett. 1986, 27, 4507. (b) Furuta, K.; Hayashi, S.; Miwa, Y.; Yamamoto, H. Tetrahedron Lett. 1987, 28, 5841. (c) Helmchen, G.; Karge, R.; Weetman, J. Modern Synthetic Methods; Scheffold, R., Ed.; Springer-Verlag: Berlin, 1986; Vol. 4, p 262 and references cited therein. (d) Hartmann, H.; Hady, A. F. A.; Sartor, K.; Weetman, J.; Helmchen, G. Angew. Chem., Int. Ed. Engl. 1987, 26, 1143. (e) Oppolzer, W.; Chapuis, C.; Dupuis, D.; Guo, M. Helv. Chem. Acta 1985, 68, 2100 and references cited therein. (f) Mattay, J.; Mertes, J.; Maas, G. Chem. Ber. 1989, 122, 327.
- (a) Burgess, K.; Ohlmeyer, M. J. J. Org. Chem. 1988, 53, 5178.
 (b) Burgess, K.; van der Donk, W. A.;
 Ohlmeyer, M. J. Tetrahedron Asymmetry 1991, 2, 613.
 (c) Sato, M.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. 1990, 31, 231.
 (d) Corey, E. J.; Loh, T-P. J. Am. Chem. Soc. 1991, 113, 8966.
- 8 Catalytic systems so far reported (ref 7) usually require 1-10 mol % of catalyst. The present reaction proceeds smoothly with 0.01 mol % of catalyst.
- 9 Uozumi, Y.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 9887.
- 10 An enantioface selective hydrosilylation of 1-alkenes has been reported by the palladium-MOP catalyst (ref. 9).
- 11 (a) Kuivila, H. G.; Warner, C. R. J. Org. Chem. 1964, 29, 2845. (b) Green, M.; Spencer, J. L.; Stone, F. G. A; Tsipis, C. A. J. Chem. Soc., Dalton 1977, 1159.
- 12 Previous work by use of a chiral ferrocenylphosphine ligand gave moderate chemical and optical yields: Hayashi, T.; Tamao, K.; Katsuro, Y.; Nakae, I.; Kumada, M. Tetrahedron Lett. 1980, 21, 1871.
- 13 (a) Tamao, K.; Ishida, N. J. Organomet. Chem. 1984, 269, C37. (b) Tamao, K.; Nakajo, E.; Ito, Y. J. Org. Chem. 1987, 52, 4412 and references cited therein.
- 14 To a suspension of KF (6 equiv) and KHCO₃ (9 equiv) in THF/MeOH (1/1) was added successively 2 (1 equiv) and 30% H₂O₂ (7 equiv) at 0 °C, and the mixture was stirred at ambient temperature for 15 h.
- 15 Irwin, A. J.; Jones, J. B. J. Am. Chem. Soc. 1976, 98, 8476.
- 16 Sumichiral OA-4500 (eluent: n-hexane/dichloroethane/ethanol = 50/10/1).
- 17 $[\alpha]^{25}D + 16.7^{\circ}$ (c 1.4, CHCl₃).
- 18 Bach, R. D.; Holubka, J. W.; Taaffee, T. H. J. Org. Chem. 1979, 44, 35.
- 19 Tamao, K.; Yoshida, J.; Murata, M.; Kumada, M. J. Am. Chem. Soc. 1980, 102, 3267.
- 20 Optical rotation of exo-2-trimethoxysilyl derivative which was prepared by methanolysis of 7a is $[\alpha]^{25}D + 14.7^{\circ}$ (c 1.3, benzene).
- 21 The absolute configuration was tentatively assigned by similarity in shifts using chiral shift reagent Eu(hfc)3 or in elution order in the HPLC analysis.
- 22 $[\alpha]^{27}D +30.2^{\circ} (c 1.0, CHCl_3)$.
- 23 Nakazaki, M.; Chikamatsu, H.; Naemura, K.; Asao, M. J. Org. Chem. 1980, 45, 4432.
- 24 The ratio of 10/11 was reported to be 1/2.1: Kuivila, H. G.; Warner, C. R. J. Org. Chem. 1964, 29, 351.
- 25 The reaction in the presence of $[PdCl(\pi-C_3H_5)]_2$ (1 mol % Pd) and PPh₃ (2 equiv to Pd) at 50 °C for 12 h gave 10 (37%) and 11 (56%).
- 26 $[\alpha]^{20}$ D +7.60° (c 0.16, CHCl₃).
- 27 Naemura, K.; Takahashi, N.; Ida, H.; Tanaka, S. Chem. Lett. 1991, 657.
- 28 The other enantiomer was not detected by ¹H NMR analysis using chiral shift reagent Eu(hfc)3.