A Short Synthesis of the Mould Metabolite (*R*)-(+)-Carolinic Acid from (*S*)-Lactic Acid

David Linder Rainer Schobert

Organisch-chemisches Laboratorium der Universität Bayreuth, Gebäude NW I, 95440 Bayreuth, Germany Rainer.Schobert@uni-bayreuth.de

D. Linder, R. Schobert

Received: 25.07.2016 Accepted after revision: 27.07.2016 Published online: 02.09.2016 DOI: 10.1055/s-0035-1562625; Art ID: ss-2016-t0388-op

Abstract (*R*)-(+)-Carolinic acid was prepared in seven steps and 59% yield from inexpensive benzyl L-lactate, the configuration of which was inverted by a Mitsunobu reaction with trifluoroacetate. The resulting benzyl D-lactate was cyclised by a domino addition–Wittig alkenation reaction with Ph₃PCCO. The product tetronic acid was acylated with a second equivalent of this ylide to give a 3-acylylidenetetronic acid, which was olefinated directly with *tert*-butyl glyoxylate. The product alkene was hydrogenated and deprotected to afford pure crystalline (*R*)-(+)-carolinic acid, which proved inactive against *Staphylococcus aureus* and *Escherichia coli* mutant D21f2.

Key words tetronic acids, carolinic acid, Wittig reaction, natural products, stereoinversion

Over 100 naturally occurring tetronic acids are known to date, a good deal of them featuring a 3-acyl residue and exhibiting biological activities associated with their metal affinity and stereoelectronic resemblance to inorganic phosphate.¹⁻⁵ Although tetronic acids have been known⁶⁻⁸ since the 1880's they were not identified as part of natural products until 1934 when Clutterbuck et al. isolated five closely related 5-substituted derivatives from the mould Penicillium charlesii G. Smith grown on glucose.⁹ Amongst them were carlosic acid (1),¹⁰ which is also an intermediate in the biosynthesis of penicillic acid, as well as carolic acid (2)^{11,12} and carolinic acid (3) (Figure 1). The absolute configuration of 2 and 3 was elucidated by Boll et al. in 1968.¹³ Racemic carolinic acid **3** was synthesised by Haynes et al.,¹⁴ Svendsen and Boll,¹⁵ and Ley et al.¹⁶ The first two syntheses cyclised a γ -halo- β -ketoester with the required succinyl residue already attached to the α -carbon atom, whereas the Ley group obtained 3 by Pd-catalysed succinylation of methyl 3-stannyltetronate.

Figure 1 Tetronic acids produced by Penicillium charlesii G. Smith

Herein, we report an expeditious synthesis of the natural (R)-(+)-enantiomer of carolinic acid starting from inexpensive L-lactic acid, which utilises the cumulated ylide Ph₃P=C=C=O^{17,18} for both the closure of the five-membered ring and the 3-acylation reaction.

Given that L-lactic acid 4 is much cheaper than its D-enantiomer, which is required for the synthesis of the natural (*R*)-carolinic acid **3**, we inverted the configuration of its benzyl ester (S)-5 in two steps and 91% yield (Scheme 1). Mitsunobu esterification with trifluoroacetic acid afforded diester 6, which was selectively hydrolysed with lithium carbonate in aqueous methanol to leave benzyl lactate (R)-5. This was cyclised with ketenylidenetriphenylphosphorane, Ph₃PCCO, under pH-neutral, non-racemizing conditions to furnish tetronate 7 in 92% yield. This domino reaction proceeds through addition of the OH-group of (R)-5 across the C=C bond of the starting ylide to give a new stabilised ester ylide, which undergoes an intramolecular olefination of its ester carbonyl group.¹⁸ Tetronic acid **8** was then liberated by catalytic hydrogenolysis of tetronate 7. The 3-acylation of tetronic acids can be achieved in various ways, e.g., by reaction with the respective acyl chlorides and BF₃-diethyl etherate according to Jones,¹⁹ or with carboxylic acids and various condensation agents according to

Syn thesis

В

Yoshii,²⁰ Yoda,²¹ or Moloney,²² or with the ylide Ph₃PCCO.²³ In the latter case, stabilised phosphorus ylides such as **9** result in quantitative yield. They can be deprotonated by potassium *tert*-butoxide in tetrahydrofuran (THF) to give an anionic species that undergoes Wittig alkenation reactions with aldehydes.²⁴

Scheme 1 Inversion of benzyl L-lactate **5** and synthesis of 3-[(triphenylphosphoranylidene)acetyl]tetronic acid **9**. *Reagents and conditions*: (i) (a) KOH, DMF, 100 °C, 1 h; (b) BnBr, DMF, 100 °C, 17 h; (ii) diisopropyl azodicarboxylate (DIAD), TFA, Ph₃P, THF, r.t., 7 h; (iii) Li₂CO₃, MeOH/H₂O (8:1), r.t., 20 min; (iv) Ph₃PCCO, benzoic acid, THF, reflux, 48 h; (v) 5% Pd/C, H₂ (1 bar), MeOH, r.t., 1.5 h; (vi) Ph₃PCCO, THF, reflux, 14 h.

To obtain carolinic acid in this way, ylide **9** was prepared in situ, deprotonated, and immediately reacted with *tert*butyl glyoxylate **14**, which was accessible in four steps and 22% yield by an optimised literature procedure starting from fumaric acid **10** (Scheme 2).

Fumaric acid **10** was converted into its methyl ester **11**, which was transesterified with *n*-butyllithium and *tert*-butyl alcohol to afford di-tert-butyl ester **12**.^{25,26} This was oxidised with KMnO₄ and the resulting tartrate **13** was treated with lead tetraacetate to furnish the Criegee cleavage product 14.²⁷ Its Wittig olefination with the anion generated in situ by treating ylide 9, freshly prepared from tetronic acid 8 and Ph₃PCCO, with potassium *tert*-butoxide, afforded 3enoyltetronic acid 15 in 82% yield and as a mixture of isomers/tautomers, two of which were observable in the NMR spectra. Hydrogenation of the alkene 15 and subsequent cleavage of the product ester 16 left optically pure carolinic acid (R)-(+)-**3** in 59% overall yield with respect to starting benzyl L-lactate. Its specific optical rotation was $[\alpha]_D^{25}$ +23 $(c \ 0.33, H_2O)$ and $[\alpha]_{546}^{25}$ +53 [Lit.⁹ +60 $(c \ 0.33, H_2O)$]. The stereochemical purity of the synthesised product was additionally confirmed by chiral HPLC analysis. In preliminary tests, the synthetic (R)-(+)-carolinic acid proved inactive

Scheme 2 Reagents and conditions: (i) H_2SO_4 , MeOH, reflux, 2 h; (ii) BuLi, t-BuOH, THF, r.t., 2.5 h; (iii) KMnO₄, t-BuOH, r.t., 0.5 h; (iv) Pb(OAc)₄, THF, r.t., 0.5 h; (v) t-BuOK, THF, reflux, 20 min; (vi) **14**, THF, reflux, 2 h; (vii) 5% Pd/C, H_2 (1 bar), EtOAc, r.t., 0.5 h; (viii) TFA, CH_2CI_2 , 0 °C, 6 h.

against Gram-positive *Staphylococcus aureus* (DSM346) and the drug-sensitive, Gram-negative *Escherichia coli* mutant D21f2 at concentrations as high as $20 \mu g/mL$.

Melting points (uncorrected) were obtained with an Electrothermal 9100 apparatus. Optical rotations were obtained with a Perkin–Elmer polarimeter 241 (λ = 589 nm, 546 nm). IR spectra were obtained with a Perkin–Elmer Spectrum One FTIR spectrophotometer with ATR sampling unit. NMR spectra were obtained with a Bruker Avance 300 spectrometer, chemical shifts are reported in ppm (δ) downfield from TMS_{int}. Mass spectra were obtained with a Varian MAT 8500 (EI, 70 eV). High-resolution mass spectra were obtained with a Thermo Fisher Scientific Q Exactive in ESI⁺ ESI⁻ mode. Chiral HPLC column was a Macherey-Nagel Nucleodex beta-OH. For flash chromatography Merck silica gel 40–60 (230–400 mesh) was used.

(S)-Benzyl 2-Hydroxypropionate [(S)-5]

A solution of L-(+)-lactic acid **4** (5.0 g, 55.5 mmol) in DMF (200 mL) was heated to 100 °C, treated with KOH (3.74 g, 66.6 mmol), and stirred for 1 h. Benzyl bromide (7.6 mL, 63.8 mmol) was added and the mixture was stirred and heated at 100 °C for another 16 h. After cooling to r.t., the solvent was evaporated under reduced pressure. The residue was taken up in CH_2CI_2 (200 mL), washed with H_2O (200 mL), and the aqueous phase was extracted with CH_2CI_2 (200 mL). The combined organic phases were dried over MgSO₄ and the crude product was purified by column chromatography (silica gel 60; hexanes/EtOAc, 4:1) to give (*S*)-**5**.

Yield: 6.94 g (78%); colourless oil; R_f = 0.59 (hexanes/EtOAc, 2:1); $[\alpha]_D^{25}$ –14.4 (*c* 4.0, MeOH) [Lit.²⁸ –15.9 (*c* 4.0, MeOH)]. IR (ATR): 3424, 1731, 1198, 1122, 1043, 735, 696 cm⁻¹.

© Georg Thieme Verlag Stuttgart · New York – Synthesis 2016, 48, A–E

¹H NMR (300 MHz, CDCl₃): δ = 1.34 (d, *J* = 6.9 Hz, 3 H, CH₃), 3.45 (s, 1 H, OH), 4.19–4.30 (m, 1 H, CH), 5.10 (s, 2 H, OCH₂), 7.21–7.29 (m, 5 H, Ar-CH).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 20.0 (C3), 66.6 (C2), 66.7 (OCH₂), 127.9, 128.1, 128.3 (Ar-CH), 135.1 (Ar-C^q), 175.1 (C1).

MS (EI, 70 eV): m/z (%) = 180 (3) [M⁺], 108 (4), 91 (100), 89 (3), 77 (6), 65 (12), 51 (2), 46 (3).

(R)-Benzyl 2-Trifluoroacetopropionate (6)

A solution of (S)-**5** (6.50 g, 36.07 mmol) in THF (150 mL) was treated with Ph_3P (11.35 g, 43.28 mmol), TFA (3.3 mL, 43.28 mmol), and DIAD (8.5 mL, 43.28 mmol), and stirred at r.t. for 7 h. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica gel 60; hexanes/EtOAc, 8:1) to give **6**.

Yield: 9.18 g (93%); colourless oil; $R_f = 0.53$ (hexanes/EtOAc, 6:1); $[\alpha]_D^{25}$ +38 (*c* 1.0, MeOH).

IR (ATR): 1790, 1749, 1672, 1547, 1199, 1151, 1125, 1090, 734, 696 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 1.64 (d, J = 7.2 Hz, 3 H, CH₃), 5.23 (s, 2 H, OCH₂), 5.32 (q, J = 7.2 Hz, 1 H, CH), 7.32–7.44 (m, 5 H, Ar-CH).

¹³C NMR (75.5 MHz, CDCl₃): δ = 16.4 (C3), 67.7 (OCH₂), 71.7 (C2), 114.2 (q, *J* = 283.8 Hz, CF₃), 128.4, 128.5 (Ar-CH), 134.7 (Ar-C^q), 156.8 (q, *J* = 42.5 Hz, CCF₃), 168.2 (C1).

HRMS: *m*/*z* [M]⁺ calcd for C₁₂H₁₁F₃O₄: 276.0609; found: 276.0607.

(R)-Benzyl 2-Hydroxypropionate [(R)-5]

A solution of Li_2CO_3 (23 mg, 0.31 mmol) in H₂O (5 mL) was added to a solution of **6** (1.09 g, 3.93 mmol) in MeOH (40 mL). After stirring for 20 min at r.t., the mixture was washed with brine, extracted with EtOAc (3 × 50 mL) and dried over MgSO₄. The organic phase was concentrated to give (*R*)-**5**.

Yield: 641 mg (98%); colourless oil; R_f = 0.36 (hexanes/EtOAc, 4:1); $[\alpha]_D^{25}$ +13.3 (*c* 0.72, MeOH) [Lit.²⁹ +13.2 (*c* 0.72, MeOH)].

IR (ATR): 3440, 1732, 1199, 1122, 1043, 735, 696 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.44 (d, *J* = 6.9 Hz, 3 H, CH₃), 3.51 (s, 1 H, OH), 4.32 (q, *J* = 6.9 Hz, 1 H, CH), 5.21 (s, 2 H, OCH₂), 7.33–7.40 (m, 5 H, Ar-CH).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 20.3 (C3), 66.9 (C2), 67.2 (OCH₂), 128.2, 128.5, 128.6 (Ar-CH), 135.3 (Ar-Cq), 175.5 (C1).

MS (EI, 70 eV): *m*/*z* (%) = 180 (2) [M⁺], 108 (3), 91 (100), 89 (4), 77 (6), 65 (15), 51 (2), 46 (3).

(R)-4-Benzyloxy-5-methylfuran-2(5H)-one (7)

A mixture of (R)-**5** (2.17 g, 12.05 mmol), anhydrous THF (60 mL), Ph₃PCCO (4.74 g, 15.67 mmol), and a catalytic amount of benzoic acid was heated to reflux for 48 h. The volatiles were removed in vacuo and the residue was purified by column chromatography (silica gel 60; hexanes/EtOAc, 3:1) to give **7**.

Yield: 2.04 g (92%); white solid; mp 74 °C [Lit.³⁰ 84 °C for enantiomer]; $R_f = 0.65$ (hexanes/EtOAc, 2:1); $[\alpha]_D^{25} + 11.8$ (*c* 1.33, CHCl₃).

IR (ATR): 3122, 1745, 1617, 1349, 1294, 1235, 1162, 1077, 1059, 943, 916, 902, 858, 815, 757, 709, 699, 659 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 1.47 (d, *J* = 7.0 Hz, 3 H, CH₃), 4.85 (q, *J* = 7.0 Hz, 1 H, CHCH₃), 5.04 (s, 2 H, OCH₂), 5.10 (s, 1 H, 3-H), 7.31–7.43 (m, 5 H, Ar-CH).

 ^{13}C NMR (75.5 MHz, CDCl₃): δ = 17.8 (5-Me), 74.3 (OCH₂), 75.4 (C5), 89.0 (C3), 127.8, 128.7, 128.9 (Ar-CH), 133.8 (Ar-Cq), 172.3 (C2), 182.0 (C4).

HRMS: m/z [M + H]⁺ calcd for C₁₂H₁₃O₃: 205.08592; found: 205.08575.

(R)-4-Hydroxy-5-methylfuran-2(5H)-one (8)

Compound **7** (2.03 g, 9.94 mmol) was dissolved in MeOH (50 mL), 5% Pd on charcoal (102 mg) was added, and the resulting mixture was purged with hydrogen gas and kept under an H_2 atmosphere (1 bar) for 1.5 h while stirring. After filtration over a pad of Celite, the solvent was removed in vacuo to leave **8** as a 85:15 mixture of enol and diketo tautomers.

Yield: 1.12 g (99%); yellow solid; mp 107 °C [Lit.³⁰ 118 °C for enantiomer of unspecified enol/diketo ratio]; R_f = 0.38 tailing (acetone/CH₂Cl₂, 1:1); [α]_D²⁵ +10.8 (*c* 1.22, MeOH) [Lit.³⁰ +20.4 (*c* 1.22, MeOH) for enantiomer of unspecified enol/diketo ratio].

IR (ATR): 2940, 2689, 1704, 1587, 1235, 1163, 1074, 1046, 960, 905, 807 $\rm cm^{-1}.$

¹H NMR (300 MHz, acetone- d_6): δ = 1.41 (d, J = 6.2 Hz, 3 H, CH₃), 4.86 (q, J = 6.2 Hz, 1 H, CHCH₃), 4.91 (s, 1 H, 3-H), 11.14 (s, 1 H, OH). *Diketone*: 1.41 (d, J = 6.2 Hz, 3 H, CH₃), 3.27–3.34 (m, 2 H, CH₂), 4.91 (q, J = 6.2 Hz, 1 H, CHCH₃).

¹³C NMR (75.5 MHz, acetone- d_6): δ = 18.1 (CH₃), 75.9 (C5), 89.0 (C3), 168.4 (C4), 182.9 (C2).

MS (EI, 70 eV): *m*/*z* (%) = 114 (14) [M⁺], 86 (14), 43 (100).

Dimethyl Fumarate (11)

A mixture of fumaric acid **10** (5.0 g, 43.08 mmol), MeOH (70 mL), and H_2SO_4 (1.72 mL, 32.31 mmol) was stirred and heated to reflux for 2 h, then cooled to r.t., and neutralized with 10% aq Na_2CO_3 solution. The precipitate was filtered off to give **11**.

Yield: 5.24 g (85%); white solid; mp 102 °C [Lit.²⁵ 102 °C]; R_f = 0.37 (hexanes/EtOAc, 95:5).

IR (ATR): 3077, 2964, 1706, 1439, 1295, 1154, 990, 881, 774, 672 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): δ = 3.80 (s, 6 H, OCH_3), 6.86 (s, 2 H, CH).

¹³C NMR (75.5 Hz, CDCl₃): δ = 52.5 (OCH₃), 133.7 (CH), 165.5 (CO).

Di-tert-butyl Fumarate (12)

A mixture of *t*-BuOH (1.30 mL) and THF (20 mL) was cooled to 0 °C and treated first dropwise with BuLi (5.55 mL, 13.88 mmol), and after 15 min with **11** (1.00 g, 6.94 mmol). Stirring was continued for 1 h at 0 °C and then at r.t. for 1 h. The reaction was quenched with NH₄Cl and the mixture was extracted with EtOAc (3 × 50 mL). The organic phases were washed with brine, dried over MgSO₄ and purified by column chromatography (silica gel 60; hexanes/EtOAc, 19:1) to give **12**.

Yield: 886 mg (3.88 mmol); white solid; mp 69 °C [Lit.²⁶ 69 °C]; R_f = 0.88 (hexanes/EtOAc, 8:1).

IR (ATR): 2982, 2940, 1703, 1368, 1138, 974, 846, 777, 767, 673 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.50 (s, 18 H, CH₃), 6.67 (s, 2 H, CH).

¹³C NMR (75.5 Hz, CDCl₃): δ = 28.1 (CH₃), 81.6 (C(CH₃)₃), 134.7 (CH), 164.7 (CO).

HRMS: m/z [M + Na]⁺ calcd for C₁₂H₂₀O₄Na: 251.12521; found: 251.12538.

Downloaded by: Cornell. Copyrighted material

Paper

D. Linder, R. Schobert

Di-*tert*-butyl Tartrate (13)

A solution of **12** (5.15 g, 22.55 mmol) in *t*-BuOH (100 mL) was treated with a solution of KMnO₄ (5.35 g, 33.83 mmol) in H₂O (100 mL). The mixture was stirred for 30 min and then extracted with Et₂O (3×100 mL). The organic phases were washed with H₂O (3×60 mL), dried over MgSO₄, and diluted with *n*-hexane to precipitate **13**.

Yield: 2.74 g (10.45 mmol); colourless needles; mp 83 °C [Lit.²⁷ 84–85 °C]; R_f = 0.49 (hexanes/EtOAc, 5:1).

IR (ATR): 3481, 2975, 1731, 1367, 1248, 1091, 853, 755, 603 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.52 (s, 18 H, CH₃), 3.08 (d, *J* = 7.0 Hz, 2 H, CHOH), 4.37 (d, *J* = 7.0 Hz, 2 H, OH).

¹³C NMR (75.5 Hz, CDCl₃): δ = 28.1 (CH₃), 72.5 (CH), 83.6 (CCH₃), 171.1 (CO).

HRMS: m/z [M + Na]⁺ calcd for C₁₂H₂₂O₆Na: 285.13086; found: 285.13043.

tert-Butyl 2-Oxoacetate (14)

A mixture of **13** (147 mg, 0.56 mmol), THF (6 mL), and Pb(OAc)₄ (274 mg, 0.62 mmol) was stirred at r.t. for 30 min. The reaction mixture was passed through a syringe filter and the filtrate was used directly for the next reaction step without further purification; R_f 0.28 (hexanes/EtOAc, 3:1).^{31,32}

(*R*)-3-[3'-(*tert*-Butoxycarbonyl)prop-(2'*E*)-enoyl]-5-methyltetronic Acid (15)

A boiling solution of tetronic acid 8 (277 mg, 2.43 mmol) in THF (20 mL) was slowly treated over 20 min with a solution of Ph₃PCCO (733 mg, 2.43 mmol) in the same solvent (7 mL). Heating was continued for a further 14 h, then t-BuOK (269 mg, 2.40 mmol) was added and heating to reflux was continued for 30 min. tert-Butyl glyoxylate 14 (236 mg; 1.441 mmol), as obtained from the Criegee cleavage of 13, was added dropwise by using a syringe and the reaction mixture was stirred until completeness was indicated by ³¹P NMR spectroscopic analysis (ca. 2 h). The reaction was quenched with KHSO₄ and the solvent was removed in vacuo. The residue was dissolved in CH₂Cl₂ (60 mL) and the pH was adjusted to 8.5 with aq NaHCO₃ to allow the tetronate salt to accumulate in the aqueous layer. After separation of the phases, the aqueous layer was acidified with 1 M HCl to liberate the tetronic acid, which was extracted with several portions of diethyl ether (70 mL). These extracts were dried with MgSO₄ and concentrated in vacuum to afford 15.

Yield: 524 mg (82%); yellow solid; 1:1 mixture of diketo and enol tautomers; mp 80 °C; R_f = 0.29 (CH₂Cl₂/MeOH, 9:1); [α]_D²⁵ +11.5 (*c* 1.0, MeOH).

IR (ATR): 3090, 3057, 2988, 2940, 1761, 1670, 1652, 1571, 1390, 1369, 1311, 1154, 1087, 1051, 1026, 1000, 810, 690, 599 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 1.53 [s, 9 H, C(CH₃)₃], 1.55 (d, *J* = 6.8 Hz, 3 H, CHCH₃), 4.77 (q, *J* = 6.8 Hz, 1 H, CHCH₃), 7.00 (d, *J* = 15.7 Hz, 1 H, CHCOO), 7.94 (d, *J* = 15.7 Hz, 1 H, CHCHCOO). δ (*enol*) = 1.53 [s, 9 H, C(CH₃)₃], 1.54 (d, *J* = 7.2 Hz, 3 H, CHCH₃), 4.85 (q, *J* = 7.2 Hz, 1 H, CHCH₃), 7.02 (d, *J* = 15.8 Hz, 1 H, CHCHOO), 7.95 (d, *J* = 15.8 Hz, 1 H, CHCHOO).

¹³C NMR (75.5 MHz, CDCl₃): δ = 16.7 (5-Me), 27.9 [C(CH₃)₃], 82.1 (C5), 82.5 [C(CH₃)₃], 98.0 (C3), 130.3 (=CHCO₂), 136.4 (CH=CHCO₂), 163.3 (=CHCO₂), 174.0 (COH), 175.3 (C2), 194.5 (C4). δ (*enol*) = 16.7 (5-Me), 27.9 [C(CH₃)₃], 77.8 (C5), 82.5 [C(CH₃)₃], 99.9 (C3), 130.7 (CH=CHCO₂), 136.9 (=CHCO₂), 166.5 (=CHCO₂), 175.3 (C2), 177.8 (CCOC), 203.6 (C4). HRMS: *m*/*z* [M + Na]⁺ calcd for C₁₃H₁₆O₆Na: 291.08391; found: 291.08352.

(*R*)-3-[3'-(*tert*-Butoxycarbonyl)propanoyl]-5-methyltetronic Acid (16)

Compound **15** (832 mg, 3.10 mmol) was dissolved in anhydrous EtOAc (30 mL), 5 % Pd on charcoal (42 mg) was added, and the resulting mixture was purged with hydrogen gas and kept under a H_2 atmosphere (1 bar) for 30 min while stirring. After filtration over a pad of Celite, the solvent was removed in vacuo to give **16**.

Yield: 778 mg (93%); yellow oil; $R_f = 0.29$ (CH₂Cl₂/MeOH, 9:1); $[\alpha]_D^{25}$ +6.3 (*c* 1.0, MeOH).

IR (ATR): 2980, 1762, 1726, 1653, 1599, 1366, 1236, 1148, 1047, 1005, 845 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 1.42 [s, 9 H, (CH₃)₃], 1.53 (d, *J* = 7.0 Hz, 3 H, CHCH₃), 2.61 (t, *J* = 6.2 Hz, 2 H, CH₂CO₂), 3.18 (t, *J* = 6.2 Hz, 2 H, CH₂-CH₂CO₂), 4.88 (q, *J* = 7.0 Hz, 1 H, CHCH₃), 11.78 (br. s, 1 H, OH).

¹³C NMR (75.5 MHz, CDCl₃): δ = 17.1 (5-Me), 28.1 [(CH₃)₃], 29.0 (CH₂-CH₂CO₂), 32.6 (CH₂CO₂), 75.2 (C5), 81.2 [C(CH₃)₃], 100.7 (C3), 167.8 (CH₂CO₂), 171.2 (C2), 196.7 [3-C(O)CH₂], 198.1 (C4).

HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₃H₁₈O₆Na: 293.09956; found: 293.09877.

(R)-(+)-Carolinic Acid [(R)-3]

A solution of ester **16** (176 mg, 0.65 mmol) in CH_2Cl_2 (12 mL) was cooled to 0 °C and treated with TFA (1.3 mL). After stirring for 6 h, the solvent was removed at 0 °C in vacuo to leave (*R*)-(+)-carolinic **3** acid as a light-yellow solid.

Yield: 131 mg (94%); recrystallised from acetonitrile to afford white crystals; mp 141 °C (Lit.¹⁵ 141–142 °C); R_f = 0.20 (CH₂Cl₂/MeOH, 9:1); $[\alpha]_D^{25}$ +23 / $[\alpha]_{546}^{25}$ +53 (*c* 0.33, H₂O) [Lit.⁹ $[\alpha]_{546}$ +60 (*c* 0.33, H₂O)].

IR (ATR): 3279, 2443, 1745, 1729, 1652, 1594, 1374, 1229, 1158, 1056, 1021, 954, 825, 793, 771, 671, 588 $\rm cm^{-1}.$

¹H NMR (DMSO-*d*₆): δ = 1.35 (d, *J* = 6.8 Hz, 3 H, 5-Me), 2.43 (t, *J* = 6.8 Hz, 2 H, CH₂CH₂CO₂), 2.96 (t, *J* = 6.8 Hz, 2 H, CH₂CH₂CO₂), 4.81 (q, *J* = 6.8 Hz, 1 H, 5-H).

 ^{13}C NMR (75.5 MHz, DMSO- d_6): δ = 17.5 (5-Me), 27.6 (CH_2CH_2CO_2), 35.0 (CH_2CH_2CO_2), 74.1 (C5), 98.9 (C3), 170.4 (C2), 174.0 (CH_2CH_2CO_2), 190.5 [3-C(O)CH_2], 193.0 (C4).

HRMS: m/z [M–H]⁻ calcd for C₉H₉O₆: 213.03936; found: 213.03999.

Acknowledgment

We thank Prof. Dr. Ursula Bilitewski and Sonja M. Höhmann (Helmholtz Centre for Infection Research, Braunschweig, Germany) for preliminary antibacterial tests.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562625.

References

- (1) Haynes, L. J.; Plimmer, J. R. Q. Rev., Chem. Soc. 1960, 14, 292.
- (2) Tejedor, D.; Garcia-Tellado, F. Org. Prep. Proced. Int. 2004, 36, 35.
- (3) Zografos, A. L.; Georgiadis, D. Synthesis 2006, 3157.
- (4) Schobert, R.; Schlenk, A. Bioorg. Med. Chem. 2008, 16, 4203.
- (5) Georgiadis, D. Tetronic Acids, In Natural Lactones and Lactams; Janecki, T., Ed.; Wiley-VCH: Weinheim, 2013.

Paper

D. Linder, R. Schobert

- (6) Demarcay, E. Ann. Chim. Phys. 1880, 20, 422.
- (7) Wolff, L. Justus Liebigs Ann. Chem. 1896, 291, 226.
- (8) Benary, E. Ber. Dtsch. Chem. Ges. 1907, 1079.
- (9) (a) Clutterbuck, P. W.; Haworth, W. N.; Raistrick, H.; Smith, G.; Stacey, M. Biochem. J. 1934, 28, 94. (b) Clutterbuck, P. W.; Raistrick, H.; Reuter, F. Biochem. J. 1935, 29, 300.
- (10) For syntheses of carlosic acid, see: (a) Bloomer, J. L.; Kappler, F. E. J. Org. Chem. **1974**, 39, 113. (b) Svendsen, A.; Boll, P. M. J. Org. Chem. **1975**, 40, 1927. (c) Svendsen, A.; Boll, P. M. Tetrahedron Lett. **1974**, 2821. (d) Booth, P. M.; Fox, C. M. J.; Ley, S. V. Tetrahedron Lett. **1983**, 24, 5143. (e) Booth, P. M.; Fox, C. M. J.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 **1987**, 121. (f) Mitsos, C. A.; Zografos, A. L.; Igglessi-Markopoulou, O. J. Org. Chem. **2000**, 65, 5852. (g) Schobert, R.; Jagusch, C. Synthesis **2005**, 2421.
- (11) For a structural elucidation of carolic acid, see: Simonsen, O.; Reffstrup, T.; Boll, P. M. *Tetrahedron* **1979**, *36*, 795.
- (12) For the biosynthesis of **1** and **2**, see also: Bentley, R.; Bhate, D. S.; Keil, J. G. J. Biol. Chem. **1962**, 237, 859.
- (13) Boll, P. M.; Sorensen, E.; Balieu, E. Acta Chem. Scand. **1968**, 22, 3251.
- (14) (a) Haynes, L. J.; Plimmer, J. R.; Stanners, A. H. J. Chem. Soc. 1956, 4661. (b) Haynes, L. J.; Plimmer, J. R. Chem. Ind. 1954, 37, 1147.
- (15) Svendsen, A.; Boll, P. M. Tetrahedron 1973, 29, 4251.
- (16) Ley, S. V.; Trudell, M. L.; Wadsworth, D. J. *Tetrahedron* **1991**, *47*, 8285.
- (17) Bestmann, H. J.; Sandmeier, D. Angew. Chem., Int. Ed. Engl. 1975, 14, 634.
- (18) (a) Löffler, J.; Schobert, R. J. Chem. Soc., Perkin Trans. 1 1996, 2799. (b) Schobert, R.; Gordon, G. J. Curr. Org. Chem. 2002, 6, 1181. (c) Schobert, R.; Boeckman, R. K. Jr.; Pero, J. E. Org. Synth. 2005, 82, 140.

Paper

- (19) Jones, R. C. F.; Begley, M. J.; Peterson, G. E.; Sumaria, S. J. Chem. Soc., Perkin Trans. 1 **1990**, 1959.
- (20) Hori, K.; Arai, M.; Nomura, K.; Yoshii, E. Chem. Pharm. Bull. 1987, 35, 4368.
- (21) Sengoku, T.; Wierzejska, J.; Takahashi, M.; Yoda, H. Synlett **2010**, 2944.
- (22) Jeong, Y.-C.; Moloney, M. G. J. Org. Chem. 2011, 76, 1342.
- (23) Schobert, R.; Siegfried, S.; Nieuwenhuyzen, M.; Milius, W.; Hampel, F. J. Chem. Soc., Perkin Trans. 1 2000, 1723.
- (24) (a) Schlenk, A.; Diestel, R.; Sasse, F.; Schobert, R. *Chem. Eur. J.* **2010**, *16*, 2599. (b) Harras, M.; Bauer, T.; Kempe, R.; Schobert, R. *Tetrahedron* **2013**, *69*, 3677.
- (25) Tapaswi, P. K.; Choi, M.-C.; Jung, Y. S.; Cho, H. J.; Seo, D. J.; Ha, C.-S. J. Polym. Sci., Part A: Polym. Chem. **2014**, *52*, 2316.
- (26) Geny, A.; Agenet, N.; Iannazzo, L.; Malacria, M.; Aubert, C.; Gandon, V. Angew. Chem. Int. Ed. **2009**, *48*, 1810.
- (27) Blake, J.; Tretter, J. R.; Juhasz, G. J.; Bonthrone, W.; Rapoport, H. J. Org. Chem. **1966**, 4061.
- (28) Shin, I.; Lee, J.; Jung, M.; Lee, W.; Yoon, J. J. Org. Chem. **2000**, 65, 7667.
- (29) Zhu, S.-F.; Chen, C.; Cai, Y.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2008, 47, 932.
- (30) Schobert, R.; Stehle, R.; Walter, H. Tetrahedron 2008, 64, 9401.
- (31) For the synthesis of **14** by means of periodate, see: Våbenø, J.; Brisander, M.; Lejon, T.; Luthman, K. *J. Org. Chem.* **2002**, *67*, 9186.
- (32) For a synthesis of **14** through ozonolysis, see: Bishop, J. E.; O'Connell, J. F.; Rapoport, H. *J. Org. Chem.* **1991**, *56*, 5079.