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THE KINETICS AND MECHANISM OF THE PHOSPHORUS-

CATALYSED DIMERISATION OF ACRYLONTTRILE

C. DENNIS HALL*, NICHOLAS LOWTHER*, BRUCE R. TWEEDY*

ROBERT KAYHANIAN*. MICHAELA PIFFL* AND GORDON SHAWt

'Department of Chemistry, King's College, Strand, London WC2R 2LS.

tl.C.I. Materials Ltd., Wilton Centre, Middlesborough, Cleveland TS6 8JE.

Abstract. The kinetics and mechanism of the phosphinite-catalysed
dimerisation of acrylonitrile to 1,4-dicyanobut-l-ene and 2,4-dicyanobut-l-
ene are presented and discussed.

INTRODUCTION

The dimerisation of acrylonitrile (AN,1) gives either 2,4-dicyanobut-l-ene (MGN, 2)

or cisltrans 1,4-dicyanobut-l-ene (DCB, 3) as the principle products and

hydrogenation of the latter leads to hexamethylene diamine, a vital intermediate en-

route to Nylon. Thus the selective, catalysed dimerisation of AN and DCB is

potentially a very important process which has been achieved using a variety of

tricoordinate organophosphorus compounds (4) as homogeneous catalysts1.

CH2CH2CN CH2CH2CN
ArnP(OR)3.n I I

2CH2=CHCN » CH2=CCN + CH=CHCN

(1) (2) (3)

The successful exploitation of the dimerisation reaction as a commercial process,

however, depends upon a knowledge of the optimum combination of rate, selectivity

and turnover for the catalyst system. This paper describes the structural and kinetic

studies to elucidate the mechanism of the reaction and hence define the operational

window for maximum catalytic efficiency.
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MECHANISTIC PATHWAY

AN + P

P = ArnP(OR)3.n

n = 0-3

R = alkyl

-P

J
,OR

CH2CH2CN

ROH, k3

PCH2CHCN
ROH, k2

ROH, k.2

B1

AN, k5

PCH2CHCN

CH2CHCN

ROH, k6

PCH2CCN

CH2CH2CN

B4

Scheme 1

^ v ROH,k4

PCHCH2CN

AN, k8

PCHCH2CN

CH2CHCN

B3

ROH, k9

PCHCHCN

CH2CH2CN

B5

-P
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RESULTS AND DISCUSSION

The mechanistic pathway proposed for the formation of dimers (2) and (3) is

shown in Scheme 1. In addition the reaction affords a number of by-products

including l,4-dicyanobut-2-ene, a variety of trimeric species and a crystalline hexamer

{(CNCH2CH2)2C(CN)CH=CHC(CN)(CH2CH2CN)2} in quantities dependent upon

the reaction conditions and the catalyst used. Although no betaine (B) or ylid (Y)

intermediates were observed by nmr, the intermediacy of the ylid species was

established by trapping the latter with benzaldehydel b . The kinetics of the reaction

were studied by monitoring the rate of disappearance of AN and the rate of appearance

of DCB or MGN by gas liquid chromatography (glc) on a capillary column which

was also capable of analysing the reaction mixtures quantitatively for trimers. Any

crystalline hexamer formed was filtered off and estimated gravimetrically.

Independent experiments showed that hexamer was derived from either DCB-1 or

DCB-2 and that the trimers (and oligomers) were derived in a consecutive fashion

from dimers and AN rather than in a parallel manner from B 2 or B 3 plus AN (see

Scheme 1). Thus it was possible to correct the concentrations of AN, DCB or MGN

at any time, t, for the formation of hexamer or trimers. Thereafter, plots of In f[AN],

In f {DCB] and In f [MGN] vs time all gave excellent linearity (r>0.99) with slopes =

2ki [P] where [P] is the concentration of catalyst used. Thus the reaction was shown

to be first order in AN and first order in [P], - Table 1, which indicates the excellent

agreement found between the three experimental parameters used to monitor the rate.

The value of Kjkg/ks was taken as the ratio of DCB/MGN found in the product and is

seen to be essentially independent of Hie concentration of catalyst used. The value of

K 2 was estimated independently from the ratio of H A (or H B ) to H x incorporated into

unreacted D3-AN or the incorporation of D into unreacted AN over a range of

conversions from 2 to 40%. It was found to be about 2 for Pl^POPr' but to vary with

HA H x

rfS ^

exchanged via BETAINE-1

the nature of the catalyst (Table 2). Values for ki also varied with the catalyst (Table
2) and Hammett plots revealed p values (against o) of-2.3 (for ki) and +0.4 for K2.
These data, together with the activation parameters (Table 3) identify ki as the rate-
limiting step of the reaction with K2 controlling the selectivity to DCB as the
substituents in the aryl groups are changed.
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Table 1. kobs vs [P] via [AN], f[MGN] and f[DCB] data
Temperature = 60M0:3 :1 (v/v) toluene: AN: IPA, Ph2POPr' catalyst.

[CATALYST]
mol I-1

K2k8/k5 [AN]
105 (s-1) via

f[MGN] f[DCB]

0.0426
0.0515
0.0618
0.0741
0.0754
0.124
0.146

18.9
20.6
18.9
18.8
20.8
19.9
18.9

1.06
-

1.52
1.71
2.18
3.23
3.72

0.904
1.28
1.67
1.75
1.91
3.19
3.57

0.904
1.28
1.67
1.75
1.91
3.19
3.57

Average kj and K2 values for a series of phosphinite catalysts
(XC6H4)Pf'C6H4)POPri in 10: 3 :1 toluene: AN: IPA at 333K

CATALYST

X = X '=p-F
X = H1 = H
X = X1 = m-Me
X = H,X'=p-Me
X = H, X1=p-MeO
X=H,XI=p-P^iO
X=H,X1=p-Et2N
X = X" = o-MeO

K2

2.29
2.02
1.55
1.65
1.35
1.47
1.01
1.37

10.1
9.4
9.9

10.1
10.5
9.4
7.5
0.96

104 ki
G mol-l s-1)

0.636
2.57
4.85
5.34
8.16
7.20

77.1
3.6

Table 3, Activation parameters for ki (10:3: 1) at [CAT] = 0.073 M

CATALYST 10^1(60*0) EA , AS*
lmoHs-1 (kcalmol"1) (cal mol"1 K'1)

(298 K)

POPr'
(p-MeOC6H4)2POPr»

Ph2POPr'

2300
27.1
3.91
2.57

10.3
6.8
6.0
5.0

-33
-52
-56
-64
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