Accepted Manuscript

Synthesis of enantiopure free and *N*-benzyloxycarbonyl-protected 3-substituted homotaurines from naturally occurring amino acids

Yongpeng Zheng, Jiaxi Xu

PII: S0040-4020(14)00804-7

DOI: 10.1016/j.tet.2014.05.098

Reference: TET 25647

To appear in: *Tetrahedron*

Received Date: 9 February 2014

Revised Date: 8 May 2014

Accepted Date: 26 May 2014

Please cite this article as: Zheng Y, Xu J, Synthesis of enantiopure free and *N*-benzyloxycarbonyl-protected 3-substituted homotaurines from naturally occurring amino acids, *Tetrahedron* (2014), doi: 10.1016/j.tet.2014.05.098.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

CEP CEP

Tetrahedron journal homepage: www.elsevier.com

Synthesis of enantiopure free and *N*-benzyloxycarbonyl-protected 3-substituted homotaurines from naturally occurring amino acids.

Yongpeng Zheng, Jiaxi Xu^{*}

State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China.

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords:

Keyword_1 Amino acid Keyword_2 Aminoalkanesulfonic acid Keyword_3 Homotaurine Keyword_4 Homologation Keyword_5 Synthesis

Enantiopure *N*-benzyloxycarbonyl-protected and free 3-substituted homotaurines were synthesized from naturally occurring amino acids via *N*-benzyloxycarbonyl protection, Arndt-Eistert homologation, reduction, esterification with thioacetic acid, and oxidation with performic acid. The current method is a convenient, practical, and salt-free method for the synthesis of enantiopure 3-substituted homotaurine with moderate to good yields.

2014 Elsevier Ltd. All rights reserved

1. Introduction

Homotaurine (3-amino-1-propanesulfonic acid [3APS], also called tramiprosate) is an important sulfur containing amino acid that has attracted much attention during the last two decades. Homotaurine was reported to inhibit A β fibril formation and to protect against A β toxicity in vitro assays¹ and was used as a candidate drug for treating Alzheimer's disease, but failed in the phase III trial.² Moreover calcium 3-(acetamido)propanesulfonate (acamprosate), a salt of *N*-acetylhomotaurine, is one of the few medications for the prevention of alcohol relapse in detoxified alcohol-dependent patients.³ On the other hand, homotaurine has also been considered as structural analog and bioisosteres of γ -aminobutanoic acid (GABA), an important specific inhibitor of impulse transmission in the central nervous system.⁴

Besides homotaurine itself,⁵ substituted homotaurines have been synthesized as well till now. 1-Carboxyhomotaurine was prepared from methyl 2,4-dibromobutanoate via multiple step synthesis.⁶ Recently, various 1-substituted homotaurines were synthesized from 2-alkenonitriles by the Michael addition with thioacetic acid, reduction, and oxidation,⁵ or from different olefins and O-ethyl S-2-phthalimidomethylxanthate via a radical addition and subsequent performic acid oxidation.⁷ 2-Methylhomotaurine was prepared by addition of methacrolein with bisulfite and subsequent reductive amination.⁸ 2-Phenylhomotaurine was synthesized from phenylstyrenesulfonate via addition of nitromethane and subsequent catalytic hydrolysis.9 hydrogenation and Saclofen [2-(4chlorophenyl)homotaurine], a competitive antagonist of GABA

receptor, was prepared via addition of 1 - (4 chlorophenyl)acrylonitrile with sodium bisulfate and subsequent reduction¹⁰ or via the O₂-catalyzed radical addition of bisulfite to 2-(4-chlorophenyl)allylamine or its N-phthalyl derivative.¹¹ Alternatively, 2-substituted homotaurines were prepared through ring-opening reactions of 2-alkylpropane-1,3-sultones with ammonia or with NaN₃ followed by reduction.¹² Recently, both 1- and 2-substituted homotuarines were prepared via Michael addition of 2-alkenamides with thioacetic acid, and subsequent oxidation.13 3-substituted reduction and Synthesis of homotaurines were realized via the Horner-Wadsworth-Emmons reaction of *N*-protected α-aminoalkanals and ethyl(diethoxyphosphoryl)methanesulfonate and subsequent hydrogenation and deprotection,¹⁴ or via the Wittig-Hornor condensation of benzyloxycarbonyl-a-phosphonoglycine trimethyl ester and subsequent Michael addition reaction, reduction, and deprotection.¹⁵ The 3-carboxyhomotaurine was obtained through hydrolysis of 2-(2,5-dioxoimidazolidin-4yl)ethanesulfonic acid¹⁶ or via oxidation of homocysteine with peroxy acid.¹⁷ Despite of these synthetic methods for substituted homotaurines, there is no general and versatile method reported for the synthesis of enantiopure substituted homotaurines.

Recently, we focus on the synthesis of various substituted homotaurines.^{5,7,13} As a part of our ongoing interest in the synthesis and biological application of aminoalkanesulfonic acids,¹⁸ we become interested in the synthesis of 3-substitued homotaurines. Herein, we present a general and effective synthesis of enantiopure 3-substitued homotaurines.

* Corresponding author. Tel.: +86-10-64435565; fax: +86-10-64435565; e-mail: jxxu@mail.buct.edu.cn

Tetrahedron

2. Results and Discussion

2

In our synthetic strategy, enantiopure free and N-protected 3substitued homotuarines were prepared conveniently from a varietv naturallv occurring amino acids. N-The benzyloxycarbonyl (Cbz) α -amino acids (**1a-e**) were prepared from the corresponding amino acids and benzyl chloroformate using a reported method.¹⁹ For the preparation of N,N'-DiCbzlysine (1f), double amounts of benzyl chloroformate was used. For tyrosine with a phenolic hydroxyl group on its side-chain, N-Cbz-O-Bn-tyrosine (1g) was prepared via the sequence of formation of copper (II) complex with copper sulfate pentahydrate in the presence of sodium hydroxide solution, phenolic hydroxyl protection with benzyl bromide, and amino protection with benzyl chloroformate (Scheme 1).

Scheme 1 Synthesis of *N*-Cbz-*O*-Bn-tyrosine (1g).

The *N*-Cbz α -amino acids (**1a-g**) were further converted to the corresponding *N*-Cbz β -amino acids (**3a-g**) via the Arndt-Eistert homologation. The protected α -amino acids were activated by treatment with ethyl chloroformate in the presence of *N*-methylmorpholine (NMM) to form the corresponding mixed anhydrides, which were reacted with diazomethane (CH₂N₂) to give rise to the corresponding diazoketones **2a-g** in satisfactory to good yields of 38–86% (Scheme 2).²⁰ The diazoketones **2a-g** were then refluxed under the catalysis of silver benzoate in a mixture of 1,4-dioxane-water, affording the corresponding β amino acids **3a-g** in good yields (73–93%) via the *Wolff* rearrangement.²¹ The formation of the diazoketones and their *Wolff* rearrangement to the β -amino acids **3a-g** are well known to proceed without racemerization of the asymmetric centre.²²

When conversion of N-Cbz lysine (1f) to its diazoketone 2f, besides diazoketone 2f was obtained in only 38% yield even the quantity of diazomethane was increased to more than six equivalents, in this reaction, a small amount (15% yield) of byproduct, a diazoacetic mixed anhydride 2f' was obtained. A reasonable mechanism for the formation of 2f' is outlined in Scheme 3. It is assumed that diazomethane can first attack either of the two carbonyl groups in the mixed anhydride A to generate two different tetrahedral intermediates B and C. The intermediate **B** undergoes eliminations of carbon dioxide and ethoxide to form D, which is further deprotonated with ethoxide to generate the diazoketone 2f. However, C undergoes eliminations to form either N-Cbz lysinate 1f or diazoacetic mixed anhydride E, which is converted to byproduct 2f' via deprotonation with ethoxide. The by-product 2f' can be converted to the desired product 2f in the reaction system through the reaction with diazomethane. This is possible reason why 2f' was obtained in only small amount

CCEPTED M and these similar by-products were observed in trace, only on

thin layer chromatographic analysis in other cases (Scheme 3).

For reduction of N-Cbz-protected amino acids to the corresponding alcohols, different convenient methods were evaluated. N-Cbz-\beta-amino acid 3a was selected as a model to screen the selected methods. Meyers's sodium borohydrideiodine method afforded only the alcohol in 59%.23 However, Abiko's procedure with sodium borohydride-sulfuric acid gave no desired alcohol possibly due to unstability of the Cbz group under strong acidic conditions.²⁴ Finally, using a method described by Kokotos²⁵ via sodium borohydride reduction of the mixed anhydride generated with ethyl chloroformate, the corresponding alcohol was obtained as pure liquid in high yield. Without further purification, it was directly reacted with methanesulfonyl chloride in dichloromethane (DCM) in the presence of triethylamine to afford the corresponding methanesulfonate 4a in a good yield (72%). Similarly, the mesylates 4 were obtained in satisfactory to good overall yields (58-75%) and further treated with thioacetic acid (HSAc) and Cs₂CO₃ in DMF, during which the reaction flask was covered with aluminium foil to avoid sunlight, under stirring overnight to give rise to thioacetates 5 in yields of 54-89%.

Although in our previous studies, β-amino primary alcohols were converted into the corresponding thioacetates directly by the Mitsunobu reaction with HSAc, diethyl azodicarboxylate (DEAD), and triphenylphosphane,²⁶ purification was very tedious, and not reproducible on a large scale preparation in some cases due to formation of the Michael adduct of HSAc and DEAD. In the current study, the transformation was realized by displacement of the activated mesylates of the alcohols with cesium thioacetate because the y-amino primary alcohol mesylates show less steric hindrance in the substitution. On the other hand, although direct displacement of mesylates 4 with sodium sulfite or bisulfite can produce the desired N-Cbz 3substituted homotaurines 6, purification (complete removal of excess inorganic salt) was very tedious. We selected two steps sequence of substitution with cesium thioacetate and oxidation with performic acid.

The prepared thioacetates **5** were oxidized to the corresponding sulfonic acids, enantiopure *N*-Cbz 3-substituted homotaurines **6**, in moderate to excellent yields using performic acid. Our synthetic strategy is a salt-free route and convenient for purification.

Generally, enantiopure *N*-Cbz 3-substituted homotaurines **6** are useful building blocks for synthesis of sulfonopeptides and other homotaurine-containing derivatives. However, in some cases, enantiopure 3-substitued homotuarines are also important biological molecules. *N*-Cbz 3-substituted homotaurines **6a-c** were selected to remove their Cbz protecting group. Enantiopure free 3-substituted homotaurines **7a-c** were obtained as colorless crystals in good yields by hydrogenolysis in methanol under an atmosphere of hydrogen in the presence of palladium on carbon powder.

Scheme 2 Reaction of unsymmetric diimines 1e-f with acyl chlorides 2.

Entry	Cbz-AA 1	R	Isolate yield (%)					
Entry			2	3	4	5	6	7
1	1a	Bn	82	92	72	89	96	79
2	1b	Me	86	93	76	82	64	71
3	1c	ⁱ Pr	75	82	71	54	52	89
4	1d	ⁱ Bu	85	88	58	60	96	
5	1e	^s Bu	76	82	62	57	80	
6	1f	CbzNH(CH ₂) ₄	38	73	65	88	24	
7	1g	$4\text{-}BnOC_6H_4CH_2$	76	92	72	64	26	

Table 1 Facile synthesis of N-Cbz and free 3-substituted homotaurines.

Scheme 3 Proposed Mechanism of the formation of 2f and 2f'.

The specific rotation values of all prepared products were determined as well. It should be mentioned that the diazoketones 2b-f with aliphatic side-chains show levorotation, while the diazoketones 2a and 2g with arylmethyl substituents show dextro-rotation. Inversely, N-Cbz homotaurines 6b-f show dextro-rotation, while the N-Cbz homotaurines 6a and 6g exhibit levorotation. However, all corresponding β -amino acids 3 are levorotation and all mesylates 4 and thiacetates 5 are dextrorotation in chloroform. To our doubts, our diazoketone 2a is dextro-rotation, different from those reported in the references.² 30 But our β -amino acid **3a** possesses the same rotation direction as the reported one.³¹ To verify our results, we determined our starting materials and repeated the synthesis. The results indicate that our rotation direction for diazoketone 2a is correct. It is not clear why the rotation direction of 2a was reported in an opposite rotation direction, even from different groups.²⁷⁻³⁰

Because some of our products show small specific rotations, we doubt whether racemerization occurred during our synthesis. It is well-known that racemerization can only occur during conversion from *N*-Cbz-L- α -amino acids **1** to *N*-Cbz-L- β -amino acids **3**. The reactions from *N*-Cbz-L- β -amino acids **3** to 3substituted homotaurines **6** and **7** do not involve nor affect the chiral center carbon atom. To answer the question and to provide a credible result, we only need to determine the optical purity of diazoketones **2** and *N*-Cbz-L- β -amino acids **3**. We selected two representative racemic amino acids, one with aromatic side-chain (phenylalanine) and the other with aliphatic side-chain (leucine), to prepare the corresponding racemic diazoketones *rac*-**2a** and *rac*-**2d**, which were further converted into racemic *N*-Cbz- β amino acids *rac*-**3a** and *rac*-**3d**, followed the same procedures. However, unfortunately, it is very hard to realize good separation for racemic diazoketones *rac*-2a and *rac*-2d, racemic *N*-Cbz- β amino acids *rac*-3a and *rac*-3d on HPLC chiral columns. Thus, both racemic and optically active *N*-Cbz- β -amino acids 3 were converted into their methyl esters 8 by treatment with diazomethane in THF under ice bath (Scheme 4). The racemic *N*-Cbz- β -amino acid methyl esters *rac*-8a and *rac*-8d were successfully separated on a HPLC AD-H chiral column and the enantiomeric excess values of 8a and 8d were determined under the same conditions. Only one of enantiomers was observed in each of cases. The results indicate that no racemerization occurred during our synthetic process as previously reported.²²

$$\begin{array}{c} \begin{array}{c} R \\ CbzHN \\ 3 \end{array} \xrightarrow{CO_2H} \begin{array}{c} CH_2N_2, THF \\ 0 \ ^{\circ}C \ to \ r,t, \end{array} \xrightarrow{CbzHN} \begin{array}{c} R \\ CbzHN \\ \end{array} \xrightarrow{CO_2Me} \\ 8 \end{array}$$

a: R = Bn; d: R = ^{*i*}Bu racemic and (S)-form

Scheme 4 Synthesis of N-Cbz-L-β-amino acid methyl esters 8.

3. Conclusion

In summary, a series of enantiopure *N*-protected 3-substituted homotaurines and 3-substitued homotaurines were conveniently synthesized from naturally occurring amino acids via *N*benzyloxycarbonyl protection, the Arndt-Eistert homologation, reduction, esterification, and oxidation with performic acid. The current method is a general, convenient, and salt-free synthetic route to enantiopure 3-substituted homotaurines.

4. Experimental section

4.1 General

Melting points were obtained on a Yanaco MP-500 melting point apparatus and are uncorrected. All ¹H and ¹³C NMR NMR spectra were recorded at a Bruker AV 400 (400 MHz) in CDCl₃ or D₂O with TMS or DOH as the internal standards, respectively, and the chemical shifts (δ) are reported in ppm. IR spectra were taken directly on a Nicolet AVATAR 330 FT-IR spectrometer with KBr. HRMS spectra were obtained with an Agilent LC/MSD TOF mass spectrometer. Optical rotations were determined using a polarimeter using 3.5 i.d. \times 100 mm cylindrical glass cell at sodium D line (589 nm), and were reported in concentration (c = 1 g/100 mL) at 20 °C. The enantiomeric excess (ee) was determined by HPLC using an AD-H column (n-hexane/i-PrOH) at 1.00 mL/min, UV detection at 210 nm. TLC analysis was performed on silica gel GF₂₅₄ plates. Spots were visualized with UV light or iodine. Column chromatography was performed on silica gel zcx II (200-300 mesh) with a mixture of petroleum ether and ethyl acetate as eluent.

Caution! Diazomethane is highly toxic and explosive. Hence, this reagent must carefully be handled in a ventilation hood.

4.2 General procedure for the synthesis of *N*-benzyloxycarbonyl protected amino acids **1**

N-Benzyloxycarbonyl α -amino acids **1a-f** were prepared following the method described by Shi et al.^{19b} After usually workup, all products were using direct in the next step without further purification.

4.2.1 Synthesis of (S)-O-benzyl-N-benzyloxycarbonyltyrosine (**1g**) 4.2.1.1 Synthesis of (S)-O-Bn-Tyrosine

Tyrosine (7.25 g, 40 mmol) was dissolved in an aqueous solution of sodium hydroxide (2 mol/L, 20 mL). The resulting solution was stirred for 15 min at room temperature, and then warmed to 70 °C. A solution of CuSO₄ 5H₂O (5 g, 20.4 mmol) in water (35 mL) was added dropwise, and the resulting solution was stirred for another 1 h. After addition of MeOH (100 mL) and NaOH (2 mol/L, 20 mL) in sequence, BnBr (5 mL, 8.55 g, 42 mmol) was added dropwise during 0.5 h. After the completion of the reaction, the solvent was removed by vacuum filtration, the solid product was washed with MeOH-H₂O (1/3, v/v) (60 mL) three times and then added to a solution of EDTA-2Na (8.74 g, 26 mmol) in 100 mL of water. The resulting solution was stirred further for 4.5 h at 70 °C. After filtration, washing with water and acetone, drying under infrared light, the final product was obtained as white solid, mp 222–223 °C, $[\alpha]_D^{20} = -9.4$ (*c* 1.0, CHCl₃), Lit.³² 219-221 °C, $[\alpha]_D^{20} = -9.3$ (*c* 1.0, AcOH). 7.33 g, yield 68 %.

4.2.1.2 Synthesis of (S)-O-Bn-N-Cbz-Tyrosine (1g)

A solution of (S)-O-Bn-Tyrosine (8.14 g, 30 mmol) in THF (60 mL) was cooled to 0 °C followed by addition of a solution of NaOH (3 g, 75 mmol) in water (60 mL). Benzyl chloroformate (4.65 mL, 5.63 g, 33 mol) in THF (30 mL) was then added dropwise. The resulting mixture was stirred at 0 °C for 2 h, then allowed to warm up to room temperature and stirred overnight. After addition of water (50 mL) followed by acidification with 10 % HCl to pH 1–2, the aqueous layer was extracted with EtOAc (3×100 mL). The combined organic phase was washed with brine (2 x 100 ml) and then dried over Na₂SO₄. After removal of the solvent under reduced pressure, the pure (S)-N-Cbz-O-Bn-Tyrosine (**1g**) was obtained and further used without further purification.

4.3 General procedure for the preparation of the diazoketones 2

The Cbz-protected L- α -amino acid 1 (20 mmol) was dissolved in THF (100 mL) and the resulting solution was cooled to 0 °C. To the solution was added <u>N</u>-methylmorpholine (NMM, 2.31 mL, 2.12 g, 21.0 mmol) and ethyl chloroformate (2.00 mL, 2.28 g, 21.0 mmol) successively. The mixture was stirred for 15 min. Then, a cooled solution of CH₂N₂ (4.20 g, 100 mmol) in Et₂O (200 mL) was added dropwise, and the yellow solution was allowed to warm to r.t. The reaction mixture was stirred until there was no acid remaining (TLC control). Excess CH₂N₂ was destroyed by addition of AcOH. The mixture was concentrated under reduced pressure, and the residue was taken up in EtOAc. The organic phase was washed successively with saturated aq. NaHCO₃ solution, 10% aq. citric acid, and brine, and dried over Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate: 5/1 v/v) to afford the product diazoketone 2.

4.3.1 Benzyl (S)-(4-diazo-3-oxo-1-phenylbutan-2-yl)carbamate (2a)

Pale yellow solid, mp: 85–87 °C, Lit.²⁹ 88 °C, 5.27 g, yield 82%, $[\alpha]_D^{20} = +11.8 (c \ 1.0, CHCl_3)$. Lit.²⁷ $[\alpha]_D^{25} = -42 (c \ 1.0, CHCl_3)$. ¹H NMR (400 MHz, CDCl_3) δ : 3.03 (d, J = 6.0 Hz, 2H, CH₂), 4.40–4.60 (dt, J = 3.6, 6.0 Hz, 1H, CHN), 5.05 (d, J = 13.2 Hz, 1H in CH₂O), 5.09 (d, J = 13.2 Hz, 1H in CH₂O) , 5.20 (s, 1H, CHN₂), 5.44 (d, J = 3.6 Hz, 1H, NH), 7.13–7.36 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 37.7, 54.4, 58.9, 66.8, 127.3, 127.9, 128.1, 128.4, 128.5, 129.2, 136.1, 136.8, 155.6, 192.9.

4.3.2 Benzyl (S)-(4-diazo-3-oxobutan-2-yl)carbamate (2b)

Pale yellow solid, mp: 98-100 °C, Lit.²⁷ 91-92 °C, 4.27 g, yield 86%, $[\alpha]_D{}^{20} = -40.1$ (*c* 1.0, CHCl₃), Lit.²⁷ $[\alpha]_D{}^{25} = 50.0$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDC₃) δ : 1.33 (d, *J* = 6.8 Hz, 3H, CH₃), 4.16-4.46 (m, 1H, CH), 5.08 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.12 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.42 (s, 1H, CHN₂), 5.57 (br, 1H, NH), 7.29-7.50 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 18.5, 53.5, 64.4, 66.9, 128.0, 128.1, 128.5, 136.1, 155.6, 193.8.

4.3.3 Benzyl (S)-(1-diazo-4-methyl-2-oxopentan-2-yl)carbamate (2c)

Pale yellow solid, mp: 72-75 °C, Lit.³⁰ 30-31 °C, 4.12 g, yield 75%, $[\alpha]_D^{20} = -24.5$ (*c* 1.0, CHCl₃), Lit.³⁰ $[\alpha]_D^{20} = -31.5$ (*c* 1.0, MeOH). ¹H NMR (400 MHz, CDCl₃), δ : 0.89 (d, J = 7.2 Hz, 3H, CH₃), 0.99 (d, J = 7.2 Hz, 3H, CH₃), 2.02-2.16 (m, 1H, CH), 4.10-4.18 (m, 1H, CH), 5.11 (s, 2H, CH₂), 5.40 (s, 1H, CHN₂), 5.42 (br, 1H, NH), 7.33-7.36 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 17.3, 19.4, 31.1, 54.7, 62.8, 67.0, 128.0, 128.2, 128.5, 136.2, 156.3, 193.2.

4.3.4 Benzyl (S)-(1-diazo-5-methyl-2-oxohexan-2-yl)carbamate (2d)

Yellow solid, mp: 66-68 °C, Lit.³⁰ 64-65 °C, 4.92 g, yield 85%, $[\alpha]_D^{20} = -40.8 \ (c \ 1.0, \ CHCl_3), \ Lit.^{30} \ [\alpha]_D^{20} = -53.6 \ (c \ 1.0, \ MeOH).$

406.1641.

0.94 (d, J = 6.8 Hz, 3H, CH₃), 1.46 (ddd, J = 13.6, 9.2, 5.6 Hz, 1H in CH₂), 1.57 (ddd, J = 13.6, 8.4, 4.8 Hz, 1H in CH₂), 1.65-1.75 (m, 1H, CH), 4.24-4.27 (m, 1H, CH), 5.10 (s, 2H, CH₂O), 5.34 (d, J = 6.4 Hz, 1H, NH), 5.44 (s, 1H, CHN₂), 7.30-7.39 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 21.8, 23.0, 24.7, 41.5, 54.0, 56.3, 67.0, 128.0, 128.2, 128.5, 136.1, 156.0, 194.2.

4.3.5 Benzyl (S)-(1-diazo-4-methyl-2-oxohexan-2-yl)carbamate (2e)

Pale yellow solid, m.p. 68-69 °C, Lit.³⁰ 63-64 °C, 4.40 g, yield 76%, $[\alpha]_D^{20} = -14.0$ (*c* 1.0, CHCl₃), Lit.³⁰ $[\alpha]_D^{20} = -42.1$ (*c* 1.0, MeOH). ¹H NMR (400 MHz, CDCl₃), δ : 0.90 (t, J = 7.2, Hz, 3H, CH₃), 0.95 (d, J = 6.8 Hz, 3H, CH₃), 1.12 (ddq, J = 14.8, 9.2, 7.2 Hz, 1H in CH₂), 1.39-1.53 (ddq, J = 14.8, 4.0, 7.2 Hz, 1H in CH₂), 1.77-1.92 (m, 1H, CH), 4.08-4.25 (m, 1H, CH), 5.10 (s, 2H, CH₂O), 5.40 (br, 2H, NH & CHN₂), 7.28-7.44 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 11.5, 15.6, 24.5, 37.7, 54.9, 62.3, 67.1, 128.1, 128.2, 128.5, 136.2, 156.2, 193.2.

4.3.6 Benzyl (S)-(7-diazo-6-oxoheptane-1,5-diyl)dicarbamate (2f)

Yellow solid, mp: 79.5-80.5 °C, 3.33 g, yield 38%, $[\alpha]_D^{20} = -12.3$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.30-1.40 (m, 2H, CH₂), 1.35-1.53 (m, 2H, CH₂), 1.55-1.64 (m, 1H in CH₂), 1.75-1.85 (m, 1H in CH₂), 3.12-3.22 (m, 2H, CH₂N), 4.13-4.28 (m, 1H, CHN), 4.93 (br, 1H, NH), 5.03 (d, J = 12.8 Hz, 1H in CH₂O), 5.07 (d, J = 12.8 Hz, 1H in CH₂O), 5.08 (d, J = 12.0 Hz, 1H in CH₂O), 5.09 (d, J = 12.0 Hz, 1H in CH₂O), 5.06 (d, J = 7.2 Hz, 1H, NH), 7.28-7.36 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 22.0, 29.4, 31.7, 40.2, 53.9, 57.7, 66.6, 67.0, 128.0, 128.2, 128.44, 128.46, 136.1, 136.5, 156.1, 156.6, 193.8. IR (ν_{max} , cm⁻¹) 3329, 3033, 2928, 2865, 2107, 1701, 1638, 1529, 1454, 1365, 1249, 1142, 1027, 748, 697. HRMS (ESI) calcd for C₂₃H₂₆N₄NaO₅ [M+Na]⁺ *m/z*: 461.1795; found 461.1785.

4.3.7 (S)-2,6-Bis(benzyloxycarbonylamino)hexanoic diazoacetic anhydride (2**f**')

2-

Colouress liquid, 1.43 g, yield 15%, $[\alpha]_D^{20} = -2.70$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.23-1.29 (m, 2H, CH₂), 1.31-1.52 (m, 2H, CH₂), 1.79-1.91 (m, 1H in CH₂), 1.99-2.11 (m, 1H in CH₂), 2.92-3.20 (m, 2H, CH₂N), 4.76 (br, 1H, CHN₂), 4.81 (dd, *J* = 9.6, 5.2 Hz, 1H, CHN), 5.07 (s, 2H, 2NH), 5.20 (d, *J* = 12.4 Hz, 2H in 2CH₂O), 5.25 (d, *J* = 12.4 Hz, 2H in 2CH₂O), 7.30-7.35 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 23.2, 28.2, 29.3, 40.6, 53.1, 63.4, 66.5, 69.2, 128.0, 128.38, 128.41, 128.5, 128.6, 134.6, 136.6, 153.2, 156.3, 190.9. IR (*V*max, cm⁻¹) 3360, 3083, 3064, 3033, 2930, 2866, 2019, 1790, 1713, 1644, 1520, 1498, 1455, 1360, 1286, 1110, 1027. HRMS (ESI) calcd for C₂₄H₂₆N₄NaO₇ [M+Na]⁺ *m*/z: 505.1694; found 505.1691.

4.3.8 Benzyl (S)-(1-(4-(benzyloxy)phenyl)-4-diazo-3-oxobutan-2yl)carbamate (**2g**)

Pale yellowish solid, mp: 128-130 °C, 4.90 g, yield 76%, $[\alpha]_D^{20} =$ +17.3 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 2.91 (dd, *J* = 14.0, 6.8 Hz, 1H in CH₂), 2.97 (dd, *J* = 14.0, 7.2 Hz, 1H in CH₂), 4.20 (dd, *J* = 7.2, 6.8 Hz, 1H, CHN), 4.98 (s, 2H, CH₂O), 5.02 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.07 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.20 (s, 1H, CHN₂), 5.57 (d, *J* = 7.2 Hz, 1H, NH), 6.80-7.45 (m, 14H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 37.4, 54.4, 58.9, 66.8, 69.8, 114.9, 127.3, 127.8, 127.9, 128.0, 128.2, 128.36, 128.41, 130.2, 136.1, 136.8, 155.6, 157.7, 192.9. IR (*V*max, cm⁻¹) 3404, 3028, 2960, 2921, 2850, 2107, 1713, 1642, 1151, 1453, 1384, 1242, 1180, 1142, 1075, 1045, 739, 697. HRMS (ESI) calcd for C₂₅H₂₃N₃NaO₄ [M+Na]⁺ *m*/*z*: 452.1581; found

4.3.9 Benzyl (R/S)-(4-diazo-3-oxo-1-phenylbutan-2-yl)carbamate (rac-2a)

Scale: 598 mg, 2 mmol. Yellow liquid, 540 mg, yield 83%. ¹H NMR (400 MHz, CDCl₃) δ : 3.00 (dd, J = 16.0, 6.4 Hz, 1H in CH₂), 3.04 (dd, J = 16.0, 6.8 Hz, 1H in CH₂), 4.40–4.54 (m, 1H, CH), 5.05 (d, J = 13.6 Hz, 1H in CH₂), 5.08 (d, J = 13.6 Hz, 1H in CH₂), 5.08 (d, J = 13.6 Hz, 1H in CH₂), 5.21 (s, 1H, CHN₂), 5.45 (d, J = 6.0 Hz, 1H, NH), 7.10–7.37 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 38.4, 54.5, 58.8, 67.0, 127.0, 128.0, 128.2, 128.5, 128.6, 129.3, 136.0, 136.1, 155.7, 192.7.

4.3.10 Benzyl (R/S)-(1-diazo-5-methyl-2-oxohexan-3yl)carbamate (rac-2d)

Scale: 520 mg, 1.96 mmol. Yellow solid, mp: 71–72 °C, 329 mg, yield 58%. ¹H NMR (400 MHz, CDCl₃) δ : 0.93 (d, J = 6.4 Hz, 3H, CH₃), 0.94 (d, J = 6.4 Hz, 3H, CH₃), 1.46 (ddd, J = 13.6, 9.6, 5.6 Hz, 1H in CH₂), 1.57 (ddd, J = 13.6, 8.0, 4.8 Hz, 1H in CH₂), 1.63–1.72 (m, 1H, CH), 4.20-4.35 (m, 1H, CH), 5.07 (d, J = 12.0 Hz, 1H in CH₂), 5.11 (d, J = 12.0 Hz, 1H in CH₂), 5.34 (d, J = 7.6 Hz, 1H, NH), 5.43 (s, 1H, CHN₂), 7.27–7.38 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 21.8, 23.0, 24.7, 41.4, 53.9, 56.3, 67.0, 128.0, 128.2, 128.5, 136.1, 156.0, 194.1.

4.4 General procedure for the synthesis of *N*-benzyloxycarbonyl protected β -amino acids 3

Diazoketone 2 (10 mmol) and silver benzoate (37 mg, 0.16 mmol) were dissolved in a mixture of 1,4-dixoane (30 mL) and water (20 mL). The resulting mixture was refluxed for 6 h and then filtered. The solvent was evaporated under reduced pressure. After the residue was dissolved in saturated aqueous Na₂CO₃ solution (50 mL), the resulting mixture was stirred for 1 h. The mixture was washed with diethyl ether (3 × 30 mL). The aqueous layer was acidified to pH 2 using 2 mol/L HCl–10 % aq. citric acid and extracted with EtOAc (3 × 40 mL). The organic layer was washed with water, dried over Na₂SO₄ and evaporated to afford the amino acid in good yield.

4.4.1 (S)-3-(Benzyloxycarbonylamino)-4-phenylbutanoic acid (*3a*)

White solid, mp: 124-125 °C, Lit.³³ 122.2-124.4 °C, 5.77 g, yield 92%, $[\alpha]_{D}^{20} = -18.4$ (*c* 1.0, CHCl₃), Lit.³¹ $[\alpha]_{D}^{27} = -16.4$ (*c* 1.07, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 2.54 (dd, J = 16.4, 5.2 Hz, 1H in CH₂), 2.60 (dd, J = 16.4, 4.8 Hz, 1H in CH₂), 2.87 (dd, J = 13.2, 7.6 Hz, 1H in CH₂), 2.96 (dd, J = 13.2, 5.6 Hz, 1H in CH₂), 2.96 (dd, J = 13.2, 5.6 Hz, 1H in CH₂), 2.96 (dd, J = 13.2, 5.6 Hz, 1H in CH₂), 4.24 (dddd, J = 7.6, 5.6, 5.2, 4.8 Hz, 1H, CH), 5.05 (d, J = 12.8 Hz, 1H in CH₂O), 5.09 (d, J = 12.8 Hz, 1H in CH₂O), 5.29 (d, J = 7.6 Hz, 1H, NH), 7.10–7.40 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 37.2, 40.1, 49.2, 66.8, 126.8, 128.0, 128.1, 128.5, 128.6, 129.3, 137.3, 155.7, 176.6.

4.4.2 (S)-3-(Benzyloxycarbonylamino)butanoic acid (3b)

White solid, mp: 110-113 °C, Lit.³⁴ 104-106 °C, 4.42 g, yield 93%, $[\alpha]_D^{20} = -16.8 \ (c \ 1.0, \ CHCl_3), \ Lit.^{35} \ [\alpha]_D^{20} = -15.7 \ (c \ 1.04, \ CHCl_3), \ ^1H \ NMR \ (400 \ MHz, \ CDCl_3) \ \delta: \ 1.27 \ (d, \ J = 6.8, \ 3H, \ CH_3), \ 2.53-2.66 \ (m, \ 2H, \ CH_2), \ 4.06-4.20 \ (m, \ 1H, \ CHN), \ 5.09 \ (d, \ J = 11.2 \ Hz, \ 1H \ in \ CH_2O), \ 5.11 \ (d, \ J = 11.2 \ Hz, \ 1H \ in \ CH_2O), \ 5.11 \ (d, \ J = 11.2 \ Hz, \ 1H \ in \ CH_2O), \ 5.20 \ (d, \ J = 4.8 \ Hz, \ 1H, \ NH), \ 7.28-7.41 \ (m, \ 5H, \ ArH). \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_3) \ \delta: \ 21.6, \ 36.9, \ 54.4, \ 67.8, \ 128.2, \ 128.3, \ 128.5, \ 136.4, \ 156.2, \ 176.9.$

4.4.3 (R)-3-(Benzyloxycarbonylamino)-4-methylpentanoic acid (3c)

White solid, mp: 76-78 °C, Lit.³⁰ 30-31 °C, 4.25 g, yield 80%, $[\alpha]_D^{20} = -21.1 \ (c \ 1.0, \ CHCl_3), \ Lit.^{36} \ [\alpha]_D^{20} = -21.1 \ (c \ 1.38, \ CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ : 0.93 (d, J = 6.4 Hz, 3H, CH₃), M 0.94 (d, J = 6.4 Hz, 3H, CH₃), 1.79-1.93 (m, 1H, CH), 2.56 (dd, J = 14.0, 6.4 Hz, 1H in CH₂), 2.61 (dd, J = 14.0, 4.8 Hz, 1H in CH₂), 3.83 (ddd, J = 7.2, 6.4, 4.8 Hz, 1H, CHN), 5.07 (d, J = 12.4 Hz, 1H in CH₂O), 5.12 (d, J = 12.4 Hz, 1H in CH₂O), 5.17 (d, J = 10.0 Hz, 1H, NH), 7.30-7.38 (m, 5H, ArH), 9.83 (br, 1H, CO₂H). ¹³C NMR (100 MHz, CDCl₃) δ : 18.5, 19.3, 31.6, 36.8, 53.4, 66.8, 128.0, 128.1, 128.5, 136.4, 156.2, 176.9.

4.4.4 (S)-3-(Benzyloxycarbonylamino)-5-methylhexanoic acid (3d)

White solid, mp: 75-77 °C, Lit.³⁷ 76-78 °C, 4.92 g, yield 88%, $[\alpha]_D^{20} = -26.0 (c 1.0, CHCl_3), Lit.^{38} [\alpha]_D^{25} = -28.7 (c 2.9, CHCl_3).$ ¹H NMR (400 MHz, CDCl_3) δ : 0.90 (d, J = 6.8 Hz, 3H, CH₃), 0.94 (d, J = 6.8 Hz, 3H, CH₃), 1.33 (ddd, J = 14.0, 7.6, 5.6 Hz, 1H in CH₂), 1.52 (ddd, J = 14.0, 9.6, 6.0 Hz, 1H in CH₂), 1.59-1.70 (m, 1H, CH), 2.54 (dd, J = 16.0, 4.4 Hz, 1H in CH₂), 2.62 (dd, J = 16.0, 5.2 Hz, 1H in CH₂), 3.96-4.14 (m, 1H, CHN), 5.09 (d, J = 11.2 Hz, 1H in CH₂O), 5.10 (d, J = 11.2 Hz, 1H in CH₂O), 5.16 (d, J = 8.8 Hz, 1H, NH), 7.30-7.36 (m, 5H, ArH), 9.23 (br, 1H, CO₂H). ¹³C NMR (100 MHz, CDCl₃) δ : 22.0, 22.9, 24.9, 39.2, 43.4, 46.1, 66.8, 128.0, 128.1, 128.5, 136.4, 155.9, 176.9.

4.4.5 (3R,4S)-3-(Benzyloxycarbonylamino)-4-methylhexanoic acid (3e)

White solid, mp: 54-56 °C, 4.58 g, yield 82%, $[\alpha]_D^{20} = -25.1$ (*c* 1.0, CHCl₃), Lit.³⁶ $[\alpha]_D^{20} = -30.4$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 0.89 (d, J = 6.4 Hz, 3H, CH₃), 0.90 (t, J = 6.8 Hz, 3H, CH₃), 1.04-1.18 (m, 1H in CH₂), 1.39-1.53 (m, 1H in CH₂), 1.77-1.92 (m, 1H, CH), 2.53 (dd, J = 16.0, 6.0 Hz, 1H in CH₂), 2.60 (dd, J = 16.0, 4.4 Hz, 1H in CH₂), 3.90 (ddd, J = 7.2, 6.0, 4.4 Hz, 1H, CHN), 5.07 (d, J = 12.8 Hz, 1H in CH₂O), 5.11 (d, J = 12.8 Hz, 1H in CH₂O), 5.22 (d, J = 8.8 Hz, 1H, NH), 7.28-7.44 (m, 5H, ArH), 9.92 (br, 1H, CO₂H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 11.3, 15.3, 25.4, 36.3, 38.0, 52.3, 66.8, 128.1, 128.5, 130.1, 136.4, 156.1, 177.1.

4.4.6 (S)-3,7-Di(benzyloxycarbonylamino)heptanoic acid (**3***f*) White solid, mp: 142-143 °C, 6.34 g, yield 74%, $[\alpha]_D^{20} = -16.4$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.22-1.39 (m, 2H, CH₂), 1.43-1.68 (m, 4H, 2CH₂), 2.54 (d, *J* = 5.6 Hz, 2H, CH₂), 3.05-3.23 (m, 2H, CH₂N), 3.85-4.08 (m, 1H, CHN), 4.95 (br, 1H, NH), 5.06 (s, 4H, 2CH₂O), 5.38 (d, *J* = 7.6 Hz, 1H, NH), 7.26-7.42 (m, 10H, ArH), 9.16 (br, 1H, CO₂H). ¹³C NMR (100 MHz, CDCl₃) δ : 22.9, 29.3, 33.7, 38.9, 40.5, 47.7, 66.66, 66.74, 128.1, 128.5, 130.1, 136.4, 136.5, 156.1, 156.6, 175.8. IR (*V*max, cm⁻¹) 3329, 3086, 3066, 3033, 2928, 2865, 2107, 1701, 1638, 1528, 1455, 1365, 1249, 1141, 1027. HRMS (ESI) calcd for C₂₃H₂₉N₂O₆ [M+H]⁺ *m/z*: 429.2020; found 429.2012.

4.4.7 (S)-3-(Benzyloxycarbonylamino)-4-[4-(benzyloxy)phenyl]butanoic acid (**3g**)

White solid, mp: 139-140 °C, 7.72 g, yield 92%, $[\alpha]_D^{20} = -14.3$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 2.52 (dd, *J* = 16.0, 6.0 Hz, 1H in CH₂), 2.57 (dd, *J* = 16.0, 4.8 Hz, 1H in CH₂), 2.80 (dd, *J* = 13.6, 8.0 Hz, 1H in CH₂), 2.89 (dd, *J* = 13.6, 5.6 Hz, 1H in CH₂), 4.18(dddd, *J* = 8.0, 6.0, 5.6, 4.8 Hz, 1H, CH), 5.01 (s, 2H, CH₂O), 5.05 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.08 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.08 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.09 (d, *J* = 8.4 Hz, 1H, NH), 6.80-7.44 (m, 14H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 37.2, 39.2, 49.3, 66.7, 70.0, 115.0, 127.4, 127.9, 128.0, 128.1, 128.5, 128.6, 129.6, 130.3, 136.3, 137.0, 155.7, 157.7, 176.6. IR (ν_{max} , cm⁻¹) 3336, 3032, 2978, 2925, 2854, 1704, 1504, 1453, 1384, 1245, 1180, 1075, 1025, 736, 697. HRMS (ESI) calcd for C₂₅H₂₆NO₅ [M+H]⁺ *m/z*: 420.1806; found 420.1817.

), M/4.4.8 (R/S)-3-(Benzyloxycarbonylamino)-4-phenylbutanoic acid d, (rac-3a)

Scale: 480 mg, 1.48 mmol. Colorless liquid, 387 mg, yield 83%. ¹H NMR (400 MHz, CDCl₃) δ : 2.54 (dd, J = 16.4, 5.2 Hz, 1H in CH₂), 2.60 (dd, J = 16.4, 4.8 Hz, 1H in CH₂), 2.88 (dd, J = 13.2, 7.6 Hz, 1H in CH₂), 2.97 (dd, J = 13.2, 5.6 Hz, 1H in CH₂), 4.16–4.28 (m, 1H, CH), 5.05 (d, J = 12.4 Hz, 1H in CH₂), 5.08 (dd, J = 12.4 Hz, 1H in CH₂), 5.26 (d, J = 8.0 Hz, 1H, NH), 7.08-7.38 (m, 10H, ArH).

4.4.8 (R/S)-3-(Benzyloxycarbonylamino)-5-methylhexanoic acid (rac-3d)

Scale: 578 mg, 2 mmol. Colorless liquid, 450 mg, yield 80%. ¹H NMR (400 MHz, CDCl₃) δ : 0.91 (d, J = 6.4 Hz, 3H,CH₃), 0.92 (d, J = 6.4 Hz, 3H, CH₃), 1.29–1.38 (m, 1H in CH₂), 1.46–1.56 (m, 1H in CH₂), 1.60–1.70 (m, 1H, CH), 2.54 (dd, J = 16.0, 4.8 Hz, 1H in CH₂), 2.62 (dd, J = 16.0, 5.2 Hz, 1H in CH₂), 3.98–4.14 (m, 1H, CH), 5.09 (s, 2H, CH₂), 5.20 (d, J = 9.2 Hz, 1H, NH), 7.27–7.42 (m, 5H, ArH), 8.90 (br, 1H, CO₂H).

4.5 General procedure for the synthesis of 2-(*N*-benzyloxycarbonylamino)alkyl mesylates 4

Amino acid 3 (5 mmol) was dissoved in THF (10 mL) at 0 °C. N-Methylmorpholine (0.58 mL, 531 mg, 5.15 mmol) and ethyl chloroformate (0.50 mL, 570 mg, 5.25 mmol) were added successively under stirring. After 10 min, NaBH₄ (567 mg, 15 mmol) was added in one portion. MeOH (20 mL) was then added dropwise in the mixture over a period of 10 min at 0 °C. The solution was stirred for additional 20 min, and then neutralized with 1 mol/L HCl (4 mL). The organic solvents were evaporated under reduced pressure and the product was extracted with EtOAc (50 mL). The organic phase was washed consecutively with 1 mol/L HCl (10 mL), H₂O (20 mL), saturated aqueous Na₂CO₃ solution (20 mL), H₂O (20 mL), and brine (20 mL), dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was added to a solution of Et₃N (0.83 mL, 0.61 mg, 6 mmol) in CH₂Cl₂ (20 mL). After cooling to 0 °C, methanesulfonyl chloride (MsCl, 0.46 mL, 0.69 mg, 6 mmol) was added dropwise. The resulting solution was further stirred for 1-4.5 h at r.t., followed by addition of CH₂Cl₂ (20 mL). The mixture was washed with saturated aqueous NaHCO₃ (50 mL), H₂O (60 mL), and brine (30 mL). After drying (Na₂SO₄) and evaporating the solvent in vacuo, the mesylate was purified by column chromatography on silica gel (petroleum ether/ethyl acetate: 6/1 v/v) or crystallized from a mixture of dichloromethane and hexanes.

4.5.1 (*S*)-3-(*Benzyloxycarbonylamino*)-4-phenylbutyl methanesulfonate (*4a*)

White solid, mp: 105-108 °C, 1.36 g, yield 72%, $[\alpha]_D^{20} = +9.9 (c 1.0, CHCl_3)$. ¹H NMR (400 MHz, CDCl_3) δ : 1.72-1.86 (m, 1H in CH₂), 1.96-2.08 (m, 1H in CH₂), 2.81-2.86 (m, 2H, CH₂), 2.92 (s, 3H, CH₃), 3.96-4.10 (m, 1H, CHN), 4.20-2.30 (m, 2H, in CH₂O), 4.69 (d, *J* = 8.8 Hz, 1H, NH), 5.03 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.07 (d, *J* = 12.4 Hz, 1H in CH₂O), 7.14-7.37 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 33.7, 37.2, 41.2, 49.2, 66.7, 67.1, 126.8, 128.0, 128.2, 128.5, 128.6, 129.3, 136.4, 137.0, 155.9. IR (ν_{max} , cm⁻¹) 3375, 3031, 2952, 2921, 2850, 1718, 1530, 1350, 1176, 733, 697. HRMS (ESI) calcd for C₁₉H₂₄NO₅S [M+H]⁺ *m/z*: 378.1370; found 378.1371.

4.5.2 (S)-3-(Benzyloxycarbonylamino)butyl methanesulfonate (*4b*)

White solid, mp: 79.5-82.5 °C, 1.15 g, yield 76%, $[\alpha]_D^{20} = +11.6$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.22 (d, *J* = 6.8

Hz, 3H, CH₃), 1.80-1.99 (m, 2H, CH₂), 2.97 (s, 3H, CH₃), 3.84 M 3.97 (m, 1H, CHN), 4.27 (t, J = 6.0 Hz, 2H, CH₂O), 4.68 (d, J = 5.2 Hz, 1H, NH), 5.09 (s, 2H, CH₂O), 7.28-7.55 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 21.2, 36.3, 37.2, 44.2, 66.7, 67.1, 128.1, 128.2, 128.5, 136.4, 155.8. IR (v_{max} , cm⁻¹) 3378, 3036, 2968, 2929, 2853, 1701, 1520, 1349, 1174, 751, 706. HRMS (ESI) calcd for C₁₃H₂₀NO₅S [M+H]⁺ *m/z*: 302.1057; found 302.1052.

4.5.3 (*R*)-3-(*Benzyloxycarbonylamino*)-4-methylpentyl methanesulfonate (*4c*)

White solid, mp: 44-46 °C, 1.17 g, yield 71%, $[\alpha]_D^{20} = +22.9$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 0.90 (d, *J* = 6.8 Hz, 3H, CH₃), 0.93 (d, *J* = 6.8 Hz, 3H, CH₃), 1.65-1.82 (m, 2H, CH₂), 1.95-2.05 (m, 1H, CH), 2.95 (s, 3H, CH₃), 3.60-3.75 (m, 1H, CHN), 4.19-4.30 (m, 2H, CH₂O), 4.63 (d, *J* = 10.0 Hz, 1H, NH), 5.06 (d, *J* = 12.0 Hz, 1H in CH₂O), 5.11 (d, *J* = 12.0 Hz, 1H in CH₂O), 7.30-7.40 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 17.6, 19.0, 32.27, 32.33, 37.1, 53.0, 66.8, 67.5, 128.0, 128.2, 128.6, 136.4, 156.4. IR (ν_{max} , cm⁻¹) 3344, 3033, 2959, 2927, 2875, 1731, 1537, 1241, 738, 698. HRMS (ESI) calcd for C₁₅H₂₄NO₅S [M+H]⁺ *m/z*: 330.1370; found 330.1363.

4.5.4 (*S*)-3-(*Benzyloxycarbonylamino*)-5-*methylhexyl methanesulfonate* (*4d*)

Coloress liquid, 1.0 g, yield 58%, $[\alpha]_D^{20} = +1.5$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 0.91 (d, *J* = 6.8 Hz, 3H, CH₃), 0.92 (d, *J* = 6.8 Hz, 3H, CH₃), 1.28 (ddd, *J* = 14.0, 8.4, 6.0 Hz, 1H in CH₂), 1.40 (ddd, *J* = 14.0, 9.6, 5.2 Hz, 1H in CH₂), 1.60-1.80 (m, 2H, CH₂), 1.91-2.03 (m, 1H, CH), 2.95 (s, 3H, CH₃), 3.77-3.90 (m, 1H, CHN), 4.21-4.32 (m, 2H, CH₂O), 4.62 (d, *J* = 9.2 Hz, NH), 5.06 (d, *J* = 12.0 Hz, 1H in CH₂O), 5.11 (d, *J* = 12.0 Hz, 1H in CH₂O), 7.28-7.46 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 21.9, 23.0, 24.7, 35.4, 37.1, 44.7, 46.5, 66.7, 67.2, 128.0, 128.1, 128.5, 136.5, 156.1. IR (ν_{max} , cm⁻¹) 3373, 3026, 2957, 2928, 2870, 1713, 1531, 1352, 1175, 738, 698. HRMS (ESI) calcd for C₁₆H₂₅NNaO₅S [M+Na]⁺ *m/z*: 366.1346; found 366.1367.

4.5.5 (3R,4S)-3-(Benzyloxycarbonylamino)-4-methylhexyl methanesulfonate (**4***e*)

Coloress liquid, 1.07 g, yield 62%, $[\alpha]_D^{20} = +12.2$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 0.89 (d, J = 6.4 Hz, 3H, CH₃), 0.91 (t, J = 7.2 Hz, 3H, CH₃), 1.02-1.17 (m, 1H, CH), 1.38-1.55 (m, 2H, CH₂), 1.60-1.72 (m, 1H in CH₂), 1.93-2.05 (m, 1H in CH₂), 2.89 (s, 3H, CH₃), 3.59-3.76 (m, 1H, CHN), 4.18 (ddd, J = 15.2, 10.4, 4.8 Hz, 1H in CH₂O), 4.26 (ddd, J = 15.2, 8.8, 6.0 Hz, 1H in CH₂O), 5.02 (br, 1H, NH), 5.04 (d, J = 12.4 Hz, 1H in CH₂O), 5.10 (d, J = 12.4 Hz, 1H in CH₂O), 7.28-7.43 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 11.4, 14.7, 24.9, 30.8, 36.7, 38.8, 51.8, 66.4, 67.6, 127.8, 127.9, 128.3, 136.4, 156.1. IR (ν_{max} , cm⁻¹) 3376, 3031, 2963, 2934, 2877, 1698, 1531, 1350, 1192, 772, 699. HRMS (ESI) calcd for C₁₆H₂₆NO₅S [M+H]⁺ *m/z*: 344.1526; found 344.1549.

4.5.6 (S)-3,7-Di(benzyloxycarbonylamino)heptyl methanesulfonate (**4***f*)

Coloress liquid, 1.57 g, yield 64%, $[\alpha]_D^{20} = +0.3$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.30-1.40 (m, 2H, CH₂), 1.42-1.54 (m, 4H, 2CH₂), 1.69-1.82 (m, 1H in CH₂), 1.87-1.99 (m, 1H in CH₂), 2.92 (s, 3H, CH₃), 3.10-3.23 (m, 2H, CH₂N), 3.67-3.80 (m, 1H, CHN), 4.20-4.28 (m, 2H, CH₂O), 4.88-4.98 (br, 2H, 2NH), 5.02 (d, *J* = 12.4 Hz, 2H in 2CH₂O) 5.09 (d, *J* = 12.4 Hz, 2H in 2CH₂O), 7.27-7.38 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 22.6, 29.4, 34.6, 34.8, 37.0, 40.4, 48.0, 66.5, 66.6, 67.1, 127.95, 127.97, 128.1, 128.40, 128.45, 128.77, 128.81, A129.3, 136.4, 136.5, 156.2, 156.5. IR (v_{max} , cm⁻¹) 3311, 3061, 3026, 2924, 2851, 1691, 1528, 1453, 1191, 1142, 1101,1058. HRMS (ESI) calcd for C₂₄H₃₃N₂O₇S [M+H]⁺ m/z: 493.2003; found 493.2006.

4.5.7 (S)-3-(Benzyloxycarbonylamino)-4-[4-(benzyloxy)phenyl]butyl methanesulfonate (**4g**) White solid, mp: 122-123 °C, 1.74 g, yield 72%, $[\alpha]_D^{20} = +9.8$ (c

1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.69-1.82 (m, 1H in CH₂), 1.92-2.07 (m, 1H in CH₂), 2.71-2.82 (m, 2H, CH₂), 2.91 (s, 3H, CH₃), 3.92-4.05 (m, 1H, CHN), 4.17-4.30 (m, 2H, CH₂O), 4.70 (d, J = 7.2 Hz, 1H, NH), 5.02 (s, 2H, CH₂O), 5.05 (s, 2H, CH₂O), 6.89-7.51 (m, 14H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 33.6, 37.1, 40.3, 49.3, 66.6, 67.1, 70.0, 114.9, 127.4, 127.9, 128.0, 128.1, 128.50, 128.54, 129.2, 130.3, 136.4, 136.9, 155.9, 157.6. IR (ν_{max} , cm⁻¹) 3334, 3033, 2926, 2853, 1693, 1531, 1512, 1352, 1171, 1026, 831, 737, 696. HRMS (ESI) calcd for C₂₆H₃₀NO₆S [M+H]⁺ *m/z*: 484.1788; found 484.1787.

4.6 General procedure for the synthesis of 2-(*N*-benzyloxycarbonylamino)alkyl thioacetates 5

Thioacetic acid (0.344 mL, 0.457 mg, 6.0 mmol) was added to a suspension of Cs_2CO_3 (1.06 g, 3.25 mmol) in DMF (20 mL). The mesylate **4** (5 mmol) was added in one portion to the above generated solution and the resulting solution was stirred at r.t. overnight, during which the reaction flask was covered with aluminium foil. The mixture was poured into distilled H₂O (300 mL), and extracted with EtOAc (100 mL). The organic layer was washed with H₂O (100 mL), NaHCO₃ (5% w/w, 100 mL), and brine (100 mL), and dried over Na₂SO₄. After removal of the solvent in vacuo, the residue was purified by column chromatography on silica (petroleum ether/ethyl acetate: 10/1 v/v) to afford thioacetate **5**.

4.6.1 (S)-S-3-(Benzyloxycarbonylamino)-4-phenylbutyl ethanethioate (**5a**)

Pale yellow solid, mp: 65-67 °C, 1.20 g, yield 67%, $[\alpha]_D^{20} =$ +22.7 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.56-1.65 (m, 1H in CH₂), 1.73-1.82 (m, 1H in CH₂), 2.27 (s, 3H, CH₃), 2.73-2.79 (m, 2H, CH₂), 2.79- 2.84 (m, 1H in CH₂S), 2.97 (ddd, J = 13.6, 8.8, 5.2 Hz, 1H in CH₂S), 3.87-3.98 (m, 1H, CHN), 4.80 (d, J = 8.4 Hz, 1H, NH), 5.03 (d, J = 12.4 Hz, 1H in CH₂O), 5.07 (d, J = 12.4 Hz, 1H in CH₂O), 7.12-7.35 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 25.7, 30.5, 34.1, 41.0, 51.6, 66.4, 126.4, 127.86, 127.92, 128.35, 128.38, 129.3, 136.5, 137.3, 155.8, 195.7. IR (ν_{max} , cm⁻¹) 3365, 3028, 2952, 2926, 2866, 2850, 1723, 1533, 1447, 1258, 1143, 742, 701, 627. HRMS (ESI) calcd for C₂₀H₂₄NO₃S [M+H]⁺ m/z: 358.1471; found 358.1463.

4.6.2 (*S*)-*S*-3-(*Benzyloxycarbonylamino*)*butyl* ethanethioate (**5b**) Pale yellow solid, mp: 71-72°C, 1.16 g, yield 82%, $[\alpha]_D^{20} = +6.1$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.17 (d, *J* = 6.8 Hz, 3H, CH₃), 1.66-1.75 (m, 2H, CH₂), 2.32 (s, 3H, CH₃), 2.82 (ddd, *J* = 13.6, 8.4, 7.2 Hz, 1H in CH₂S), 2.94 (ddd, *J* = 13.6, 8.0, 5.6 Hz, 1H in CH₂S), 3.72-3.87 (m, 1H, CHN), 4.66 (d, *J* = 6.4 Hz, 1H, NH), 5.07 (d, *J* = 12.0 Hz, 1H in CH₂O), 5.11 (d, *J* = 12.0 Hz, 1H in CH₂O), 7.26-7.48 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 21.1, 25.7, 30.5, 36.9, 46.5, 66.6, 128.0, 128.5, 136.5, 155.8, 195.8. IR (ν_{max} , cm⁻¹) 3336, 3033, 2959, 2923, 2850, 1691, 1524, 1450, 1245, 1139, 1056, 1101, 746, 697, 633. HRMS (ESI) calcd for C₁₄H₂₀NO₃S [M+H]⁺ *m/z*: 282.1158; found 282.1148.

4.6.3 (*R*)-S-3-(Benzyloxycarbonylamino)-4-methylpentyl ethanethioate (**5***c*)

Pale yellow solid, mp: 58-60°C, 0.81 g, yield 52%, $[d]_{D}^{20} \ge M$ +8.8 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 0.87 (d, J =6.8 Hz, 3H, CH₃), 0.90 (d, J = 6.8 Hz, 3H, CH₃), 1.56 (dheptet, J =4.4, 6.8 Hz, 1H, CH), 1.70-1.82 (m, 2H, CH₂), 2.31 (s, 3H, CH₃), 2.78 (ddd, J = 13.6, 8.8, 7.2 Hz, 1H in CH₂S), 2.98 (ddd, J =13.6, 8.8, 4.8 Hz, 1H in CH₂S), 3.54-3.62 (m, 1H, CHN), 4.62 (d, J = 9.6 Hz, 1H, NH), 5.08 (d, J = 12.0 Hz, 1H in CH₂O), 5.11 (d, J = 12.0 Hz, 1H in CH₂O), 7.30-7.39 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 17.6, 18.9, 26.2, 30.6, 32.2, 32.7, 55.7, 66.7, 128.0, 128.1, 128.5, 136.6, 156.4, 195.8. IR (v_{max} , cm⁻¹) 3341, 3036, 2959, 2927, 2869, 1693, 1530, 1239, 1134, 1110, 736, 696, 626. HRMS (ESI) calcd for C₁₆H₂₄NO₃S [M+H]⁺ m/z: 310.1471; found 310.1467.

4.6.4 (S)-S-3-(Benzyloxycarbonylamino)-5-methylhexyl ethanethioate (5d)

Pale yellow solid, mp: 60-61°C, 0.97 g, yield 60%, $[\alpha]_D^{20} = +1.4$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 0.90 (d, *J* = 6.0 Hz, 3H, CH₃), 0.91 (d, *J* = 6.0 Hz, 3H, CH₃), 1.24-1.36 (m, 2H, CH₂), 1.59-1.67 (m, 2H, CH₂), 1.71-1.82 (m, 1H, CH), 2.31 (s, 3H, CH₃), 2.82 (ddd, *J* = 14.0, 8.8, 7.2 Hz, 1H in CH₂S), 2.96 (ddd, *J* = 14.0, 9.2, 5.6 Hz, 1H in CH₂S), 3.71-3.85 (m, 1H, CHN), 4.54 (d, *J* = 9.2 Hz, NH), 5.09 (s, 2H, CH₂O), 7.30-7.41 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 22.1, 23.0, 24.8, 25.7, 30.6, 35.9, 44.7, 49.0, 66.6, 128.01, 128.0, 128.5, 136.6, 156.0, 195.9. IR (ν_{max} , cm⁻¹) 3337, 3031, 2954, 2926, 2868, 1693, 1530, 1257, 1232, 1111, 1041, 730, 695, 630. HRMS (ESI) calcd for C₁₇H₂₆NO₃S [M+H]⁺ *m/z*: 324.1628; found 324.1624.

4.6.5 (3R,4S)-S-3-(Benzyloxycarbonylamino)-4-methylhexyl ethanethioate (5e)

Pale yellow solid, mp: $42-43^{\circ}$ C, 0.92 g, yield 57%, $[\alpha]_{D}^{20} =$ +18.0 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 0.86 (d, *J* = 6.8 Hz, 3H, CH₃), 0.90 (t, *J* = 7.2 Hz, 3H, CH₃), 1.08 (ddq, *J* = 13.2, 7.6, 7.2 Hz, 1H in CH₂), 1.37-1.42 (m, 1H in CH₂), 1.48-1.60 (m, 2H, CH₂), 1.71-1.82 (m, 1H, CH), 2.31 (s, 3H, CH₃), 2.76 (ddd, *J* = 14.0, 8.8, 7.6 Hz, 1H in CH₂S), 3.00 (ddd, *J* = 14.0, 9.2, 4.8 Hz, 1H in CH₂S), 3.65 (ddd, *J* = 14.0, 9.6, 4.4 Hz, 1H, CHN), 4.68 (d, *J* = 9.2 Hz, 1H, NH), 5.10 (s, 2H, CH₂O), 7.28-7.42 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 11.7, 14.9, 25.2, 26.2, 30.6, 31.7, 38.9, 54.8, 66.6, 128.0, 128.5, 136.6, 156.3, 195.9. IR (ν_{max} , cm⁻¹) 3337, 3033, 2962, 2929, 2860, 1691, 1528, 1240, 1130, 1047, 733, 694, 624. HRMS (ESI) calcd for C₁₇H₂₆NO₃S [M+H]⁺ *m/z*: 324.1628; found 324.1634.

4.6.6 (S)-S-3,7-Di(benzyloxycarbonylamino)heptyl ethanethioate (5f)

Scale: 2 mmol, pale yellow solid, mp: 103-105°C, 0.83 g, yield 88%, $[\alpha]_D^{20} = +3.7$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.29-1.37 (m, 2H, CH₂), 1.38-1.53 (m, 4H, 2CH₂), 1.56-1.67 (m, 1H in CH₂), 1.67-1.78 (m, 1H in CH₂), 2.29 (s, 3H, CH₃), 2.73-2.83 (m, 1H in CH₂S), 2.93 (ddd, *J* = 13.6, 8.4, 5.6 Hz, 1H in CH₂S), 3.07-3.21 (m, 2H, CH₂N), 3.58-3.73 (m, 1H, CHN), 4.86 (d, *J* = 8.8 Hz, 1H, NH), 4.98 (br, 1H, NH), 5.05 (d, *J* = 11.2 Hz, 2H in 2CH₂O), 5.08 (d, *J* = 11.2 Hz, 2H in CH₂O), 7.27-7.44 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 22.6, 25.6, 29.4, 30.5, 34.6, 35.3, 40.5, 50.4, 66.4, 66.5, 127.91, 127.95, 128.36, 128.37, 136.4, 136.5, 156.2, 156.4, 195.8. IR (ν_{max} , cm⁻¹) 3322, 3086, 3067, 3030, 2916, 2850, 1689, 1520, 1454, 1383, 1246, 1180, 1141, 1075, 1026. HRMS (ESI) calcd for C₂₅H₃₃N₂O₅S [M+H]⁺ *m/z*: 473.2105; found 473.2106.

4.6.7 (S)-S-3-(Benzyloxycarbonylamino)-4-[4-(benzyloxy)phenyl]butyl ethanethioate (5g)

Scale: 4 mmol; white solid, mp: 87-88 °C, 1.18 g, yield 64%, $[\alpha]_D^{20} = +20.7$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ :

A1.50-1.65 (m, 1H in CH₂), 1.72-1.85 (m, 1H in CH₂), 2.28 (s, 3H, CH₃), 2.67-2.81 (m, 3H, CH₂ & 1H in CH₂S), 2.93-3.00 (m, 1H in CH₂S), 3.80-3.95 (m, 1H, CHN), 4.75 (d, J = 8.4 Hz, 1H, NH), 5.01 (s, 2H, CH₂O), 5.04 (d, J = 12.4 Hz, 1H in CH₂O), 5.08 (d, J = 12.4 Hz, 1H in CH₂O), 5.04 (d, J = 8.4 Hz, 2H, ArH), 7.04 (d, J = 8.4 Hz, 2H, ArH), 7.27-7.45 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 25.8, 30.5, 34.1, 40.1, 51.7, 66.5, 69.9, 114.8, 127.4, 127.8, 127.9, 128.0, 128.4, 128.5, 129.6, 130.3, 136.5, 137.0, 155.9, 157.5, 195.8. IR (v_{max} , cm⁻¹) 3347, 3032, 2975, 2925, 2871, 2849, 1693, 1511, 1384, 1243, 1180, 1141, 1076, 1044, 737, 698, 635. HRMS (ESI) calcd for C₂₇H₃₀NO₄S [M+H]⁺ m/z: 464.1890; found 464.1883.

4.7 General procedure for the synthesis of *N*-benzyloxycarbonyl 3-substituted homotaurines 6

30% H₂O₂ (1 mL) was dissolved in 98% formic acid (5 mL) at 0 °C and the mixture was stirred at 0 °C for 1 h to afford peroxyformic acid. Thioacetate **5** (1 mmol) was dissolved in 98% formic acid (2 mL), and then the solution was added dropwise to the peroxyformic acid solution in an ice-water bath. The resulting solution was stirred overnight at room temperature. After removal of the solvent, the residue was purified by column chromatography on silica gel (PE/EA: 5/1, v/v) to afford pure *N*-benzyloxycarbonyl 3-substituted homotaurine **6**.

4.7.1 (S)-3-Benzyloxycarbonylamino-4-phenylbutane-1-sulfonic acid (6a)

White solid, mp: 69-71°C, 341 mg, yield 94%, $[\alpha]_D^{20} = -9.1$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, D₂O) δ : 2.13 (dddd, *J* = 14.4, 6.4, 4.4, 2.8 Hz, 1H in CH₂), 2.35 (ddt *J* = 14.4, 11.2, 7.6 Hz, 1H in CH₂), 2.79 (dd, *J* = 13.6, 9.6 Hz, 1H in CH₂), 3.15-3.25 (m, 2H, CH₂S), 3.28 (dd, *J* = 13.6, 4.0 Hz, 1H in CH₂), 4.32-4.41 (m, 1H, CHN), 5.32 (d, *J* = 12.8 Hz, 1H in CH₂O), 5.34 (d, *J* = 12.8 Hz, 1H in CH₂O), 5.34 (d, *J* = 12.8 Hz, 1H in CH₂O), 5.32 (d, *J* = 12.8 Hz, 12.9 (100 MHz, CDCl₃) δ : 22.2, 38.9, 47.4, 57.9, 68.7, 127.2, 127.9, 128.4, 128.6, 128.8, 129.4, 135.0, 136.0, 150.9. IR (ν_{max} , cm⁻¹) 3368, 3029, 2953, 2869, 1725, 1497, 1455, 1307, 1151, 1065, 746, 699. HRMS (ESI) calcd for C₁₈H₂₂NO₅S [M+H]⁺ *m/z*: 364.1213; found 364.1207.

4.7.2 (*S*)-3-Benzyloxycarbonylaminobutane-1-sulfonic acid (**6b**) Coloress liquid, 184 mg, yield 64%, $[\alpha]_D^{20} = +9.1$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 1.40 (d, *J* = 6.4 Hz, 3H, CH₃), 2.01 (dddd, *J* = 13.6, 7.2, 6.8, 3.6 Hz, 1H in CH₂), 2.55 (dddd, *J* = 13.6, 10.4, 6.4, 4.8 Hz, 1H in CH₂), 3.28 (ddd, *J* = 13.2, 7.2, 4.8 Hz, 1H in CH₂S), 3.39 (ddd, *J* = 13.2, 10.4, 6.8 Hz, 1H in CH₂S), 4.28 (ddq, *J* = 6.4, 3.6, 6.4 Hz, 1H, CHN), 5.27 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.32 (d, *J* = 12.4 Hz, 1H in CH₂O), 7.27-7.60 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 19.7, 25.6, 47.4, 53.3, 68.4, 127.7, 128.2, 128.5, 135.0, 150.7. IR (ν_{max} , cm⁻¹) 3332, 3034, 2977, 2927, 2850, 1727, 1529, 1455, 1301, 1252, 1061, 738, 697. HRMS (ESI) calcd for C₁₂H₁₈NO₅S [M+H]⁺ *m*/z: 288.0900; found 288.0889.

4.7.3 (*R*)-3-Benzyloxycarbonylamino-4-methylpentane-1sulfonic acid (**6c**)

Coloress liquid, 170 mg, yield 54%, $[\alpha]_D^{20} = +15.7$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 0.93 (d, *J* = 6.8 Hz, 6H, 2CH₃), 2.13-2.22 (m, 1H in CH₂), 2.26-2.40 (m, 2H, CH & 1H in CH₂), 3.24 (ddd, *J* = 13.2, 7.2, 6.0 Hz, 1H in CH₂S), 3.30-3.37 (m, 1H in CH₂S), 4.07 (dt, *J* = 7.6, 4.8 Hz, 1H, CHN), 5.27 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.32 (d, *J* = 12.4 Hz, 1H in CH₂O), 7.27-7.50 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 16.2, 18.3, 19.3, 29.7, 48.3, 61.6, 68.5, 127.7, 128.2, 128.4, 135.0, 151.2. IR (ν_{max} , cm⁻¹) 3369, 3034, 2964, 2924, 2866, 1725, 1455,

9

1342, 1299, 1148, 1063, 736, 697. HRMS (ESI) calcd for M /3032, 2945, 2920, 2849, 1726, 1611, 1453, 1384, 1306, 1151, $C_{14}H_{22}NO_5S [M+H]^+ m/z$: 316.1213; found 316.1211. 1027, 740, 697. HRMS (ESI) calcd for $C_{25}H_{28}NO_6S [M+H]^+ m/z$:

4.7.4 (S)-3-Benzyloxycarbonylamino-5-methylhexane-1-sulfonic acid (**6d**)

Pale yellow solid, mp: 87-89 °C, 309 mg, yield 94%, $\left[\alpha\right]_{D}^{20}$ = +14.6 (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 0.91 (d, J = 6.4 Hz, 3H, CH₃), 0.94 (d, J = 6.4 Hz, 3H, CH₃), 1.51 (ddd, J = 13.2, 10.0, 4.4 Hz, 1H in CH₂), 1.56-1.66 (m, 1H, CH), 1.75 (ddd, J = 13.2, 9.2, 4.0 Hz, 1H in CH₂), 2.08-2.17 (m, 1H in CH₂), 2.53 (ddt, J = 13.6, 11.2, 7.2 Hz, 1H in CH₂), 3.30 (ddd, J = 13.2, 7.2, 4.4 Hz, 1H in CH₂S), 3.39 (ddd, J = 13.2, 11.2, 6.8 Hz, 1H in CH₂S), 4.21-4.28 (m, 1H, CHN), 5.26 (d, J = 12.4 Hz, 1H in CH₂O), 5.33 (d, J = 12.4 Hz, 1H in CH₂O), 7.29-7.47 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ: 21.3, 23.4, 23.5, 24.9, 41.8, 47.5, 55.8, 68.6, 127.8, 128.3, 128.6, 135.0, 150.8. IR (v_{max}, cm⁻¹) 3344, 3031, 2954, 2924, 2869, 2851, 1692, 1529, 1257, 1231, 1140, 1110, 1043, 736, 697. HRMS (ESI) calcd for $C_{15}H_{24}NO_5S [M+H]^+ m/z$: 330.1370; found 330.1366.

4.7.5 (3R,4S)-3-Benzyloxycarbonylamino-4-methylhexane-1sulfonic acid (6e)

Pale yellow solid, mp: 71-73 °C, 263 mg, yield 80%, $[\alpha]_D^{20} =$ +12.5 (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 0.91 (d, J = 6.8 Hz, 3H, CH₃), 0.91 (t, J = 7.6 Hz, 3H, CH₃), 1.11-1.13 (m, 1H in CH₂), 1.28-1.40 (m, 1H in CH₂), 2.05-2.15 (m, 1H, CH), 2.14-2.23 (m, 1H in CH₂), 2.28-2.40 (m, 1H in CH₂), 3.24 (dt, J = 13.2, 7.2 Hz, 1H in CH₂S), 3.34 (dt, J = 13.2, 8.0 Hz, 1H in CH₂S), 4.17 (dt, J = 7.6, 5.2 Hz, 1H, CHN), 4.82-5.20 (br, 1H, NH), 5.27 (d, J = 12.4 Hz, 1H in CH₂O), 5.34 (d, J = 12.4 Hz, 1H in CH₂O), 7.28-7.47 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) &: 11.8, 13.1, 18.8, 25.6, 36.1, 48.4, 60.7, 68.6, 127.8, 128.3, 128.5, 135.1, 151.2. IR $(v_{\text{max}}, \text{ cm}^{-1})$ 3380, 3033, 2963, 2930, 2872, 1727, 1455, 1384, 1304, 1150, 1040, 751, 696. HRMS (ESI) calcd for $C_{15}H_{24}NO_5S [M+H]^+ m/z$: 330.1370; found 330.1364.

4.7.6 (S)-3,7-Dibenzyloxycarbonylaminoheptane-1-sulfonic acid (**6f**)

White solid, mp: 76-78 °C, 115 mg, yield 24%, $[\alpha]_D^{20} = +17.7$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃), δ: 1.28-1.37 (m, 2H, CH₂), 1.43-1.55 (m, 2H, CH₂), 1.57-1.70 (m, 2H, CH₂), 1.80-1.92 (m, 1H in CH₂), 2.04-2.12 (m, 1H in CH₂), 2.39-2.53 (m, 1H in CH₂S), 3.08-3.22 (m, 2H, CH₂), 3.26 (ddd, J = 12.8, 7.2, 4.8 Hz, 1H in CH₂S), 3.32-3.42 (m, 1H, CHN), 4.06-4.20 (m, 1H, NH), 4.77 (br, 1H, NH), 5.08 (s, 2H, CH₂O), 5.25 (d, *J* = 12.4 Hz, 1H in CH₂O), 5.32 (d, J = 12.4 Hz, 1H in CH₂O), 7.23-7.44 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ: 22.2, 23.1, 29.6, 32.5, 40.5, 47.6, 58.9, 66.6, 68.6, 127.8, 128.0, 128.1, 128.3, 128.5, 128.6, 135.0, 136.6, 150.9, 156.4. IR $(v_{\text{max}}, \text{ cm}^{-1})$ 3397, 3061, 3032, 3006, 2949, 2923, 2846, 1720, 1523, 1454, 1384, 1303, 1267, 1143, 1074, 1020. HRMS (ESI) calcd for $C_{23}H_{31}N_2O_7S [M+H]^+ m/z$: 479.1846; found 479.1856.

4.7.7

(S)-3-Benzyloxycarbonylamino-4-(4benzyloxyphenyl)butane-1-sulfonic acid (6g)

Scale: 3 mmol, Yellow solid, mp: 116-117.5 °C, 374 mg, yield 26%, $[\alpha]_{D}^{20} = -1.0$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃), δ : 2.08-2.15 (m, 1H in CH₂), 2.29-2.40 (m, 1H in CH₂), 2.74 (dd, J = 13.6, 9.6 Hz, 1H in CH₂), 3.12-3.25 (m, 3H, 1H in CH₂ & CH₂S), 4.28-4.36 (m, 1H, CHN), 5.03 (s, 2H, CH₂O), 5.30 (d, J = 13.6 Hz, 1H in CH₂), 5.33 (d, J = 13.6 Hz, 1H in CH₂), 6.91 (d, J = 8.6 Hz, 2H, ArH), 7.07 (d, J = 8.6 Hz, 2H, ArH), 7.30-7.51 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 22.2, 38.1, 47.4, 58.0, 68.7, 70.0, 115.2, 127.4, 127.8, 128.0, 128.2, 128.4, 128.57, 128.59, 130.4, 135.0, 136.8, 150.9, 158.0. IR $(v_{\text{max}}, \text{ cm}^{-1})$ 3435,

470.1632; found 470.1683.

4.8 General procedure for the synthesis of 3-substituted homotaurines 7

Pd/C (1.18 mg, 10 % mmol) and 10 mL of MeOH were added to a 50 mL dried three-necked, round-bottomed flask with a H_{2} balloon. A solution of N-benzyloxycarbonyl 3-substituted homotaurine 6 (1 mmol) in MeOH (5 mL) was injected to the flask. The resulting mixture was stirred at room temperature overnight. After filtration and removal of the solvent under reduced pressure, the pure 3-substitued homotuarine 7 was obtained by crystallization from EtOH.

4.8.1 (S)-3-Amino-4-phenylbutane-1-sulfonic acid (7a)

White solid, mp: 291-293°C, 181 mg, yield 79%, $[\alpha]_{D}^{20} = +4.9$ (*c* 1.0, D₂O). ¹H NMR (400 MHz, D₂O), δ : 2.16 (q, J = 6.8, 2H, CH₂), 2.92 (dd, J = 14.4, 8.2, Hz, 1H in CH₂), 3.03-3.10 (m, 2H, CH₂S), 3.14 (dd, *J* = 14.4, 6.0 Hz, 1H in CH₂), 3.75 (ddt, *J* = 8.2, 6.0, 6.8 Hz, 1H, CHN), 7.21-7.47 (m, 5H, ArH). ¹³C NMR (100 MHz, D₂O) δ: 27.3, 37.7, 46.9, 51.9, 127.6, 129.1, 129.4, 153.2. IR (v_{max}, cm⁻¹) 3422, 3060, 3026, 2945, 2929, 1690, 1629, 1528, 1497, 1454, 1209, 1173, 1040. HRMS (ESI) calcd for $C_{10}H_{16}NO_{3}S[M+H]^{+}m/z$: 230.0845; found 230.0838.

4.8.2 (S)-3-Aminobutane-1-sulfonic acid (7b)

White solid, mp: >300 °C, 108 mg, yield 71%, $[\alpha]_{D}^{20} = -4.6$ (c 1.0, D₂O). ¹H NMR (400 MHz, D₂O), δ : 1.26 (d, J = 6.8 Hz, 3H, CH₃), 1.87-1.99 (m, 1H in CH₂), 2.00-2.13 (m, 1H in CH₂), 2.88-3.03 (m, 2H, CH₂S), 3.40-3.54 (m, 1H, CHN). ¹³C NMR (100 MHz, D₂O) δ : 17.3, 29.2, 46.7, 47.0. IR (v_{max} , cm⁻¹) 3421, 2975, 2923, 1617, 1528, 1446, 1267, 1230, 1200, 1161, 1093. HRMS (ESI) calcd for $C_4H_{12}NO_3S$ [M+H]⁺ m/z: 154.0532; found 154.0526.

4.8.3 (R)-3-Amino-4-methylpentane-1-sulfonic acid (7c)

White solid, mp: 226-228 °C, 161 mg, yield 89%, $[\alpha]_{D}^{20} = +10.6$ (c 1.0, D₂O). ¹H NMR (400 MHz, D₂O) δ : 0.93 (d, J = 7.2 Hz, 3H, CH₃), 0.95 (d, J = 7.2 Hz, 3H, CH₃), 1.88-2.02 (m, 2H, CH₂), 2.18 (dheptet,, J = 5.6, 7.2 Hz, 1H, CH), 2.89-3.03 (m, 2H, CH₂S), 3.21-3.28 (m, 1H, CHN). ¹³C NMR (100 MHz, D₂O) δ : 16.4, 17.2, 24.7, 29.3, 47.0, 56.0. IR $(v_{\text{max}}, \text{ cm}^{-1})$ 3423, 2974, 2965, 2875, 1635, 1525, 1449, 1262, 1237, 1201, 1160, 1035. HRMS (ESI) calcd for $C_6H_{16}NO_3S [M+H]^+ m/z$: 182.0845; found 182.0840.

4.9 General procedure for the synthesis of Nbenzyloxycarbonylamino acid methyl esters 8

Cbz-protected β -amino acid 3 (50 mg) was dissolved in THF (2.5 mL) and the resulting solution was cooled to 0 °C. Diazomethane (approximate 41 mg, 1 mmol) in Et₂O (2 mL) was added dropwise, and the yellow solution was allowed to warm to r.t. The reaction mixture was stirred until the acid disappeared (TLC monitoring). Excess CH₂N₂ was destroyed by addition of AcOH. The mixture was concentrated under reduced pressure, and the residue was taken up in EtOAc. The organic phase was washed successively with saturated aq. Na₂CO₃ solution, water, and brine, and dried over Na2SO4. After removal of solvent under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate: 5/1 v/v) to afford the product methyl ester 8.

10		Tetrahedron						
	4.9.1	Methyl	(R/S)-3-(benzyloxycarbonylamino)-4-	✓ Supplementary Material				

phenylbutanoate (rac-8a)

Colorless liquid, 35 mg, yield 67%. ¹H NMR (400 MHz, CDCl₃) δ : 2.47 (dd, J = 16.0, 5.6 Hz, 1H in CH₂), 2.54 (dd, J = 16.0, 5.2 Hz, 1H in CH₂), 2.84 (dd, J = 13.6, 8.0 Hz, 1H in CH₂), 2.95 (dd, J = 13.6, 6.4 Hz, 1H in CH₂), 3.66 (s, 3H, CH₃), 4.16–4.28 (m, 1H, CH), 5.07 (s, 2H, CH₂), 5.30 (d, J = 7.6 Hz, 1H, NH), 7.10–7.40 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 37.3, 40.2, 49.3, 51.7, 66.6, 126.7, 127.98, 128.04, 128.46, 128.55, 129.3, 136.5, 137.4, 155.6, 171.9. The enantiomers were determined by HPLC using an AD-H column (*n*-hexane/*i*-PrOH 90:10, 24 °C) at 1.00 mL/min, UV detection at 210 nm: $t_{\rm R}$: 16.8 min, 20.7 min (see SI).

4.9.2 Methyl (S)-3-(benzyloxycarbonylamino)-4phenylbutanoate (**8a**)

Colorless liquid, 45 mg, yield 87%. ¹H NMR (400 MHz, CDCl₃) δ : 2.47 (dd, J = 16.0, 5.6 Hz, 1H in CH₂), 2.54 (dd, J = 16.0, 5.6 Hz, 1H in CH₂), 2.83 (dd, J = 13.2, 7.6 Hz, 1H in CH₂), 2.95 (dd, J = 13.2, 6.4 Hz, 1H in CH₂), 3.67 (s, 3H, CH₃), 4.16–4.28 (m, 1H, CH), 5.07 (s, 2H, CH₂), 5.30 (d, J = 7.2 Hz, 1H, NH), 7.11–7.37 (m, 10H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 37.3, 40.2, 49.3, 51.7, 66.6, 126.7, 127.98, 120.05, 128.5, 128.6, 129.3, 136.5, 137.4, 155.6, 171.9. The ee was determined by HPLC using an AD-H column (*n*-hexane/*i*-PrOH 90:10, 24 °C) at 1.00 mL/min, UV detection at 210 nm: t_R: 20.6 min, *ee* > 99 % (see SI).

4.9.3 Methyl (R/S)-3-(benzyloxycarbonylamino)-5methylhexanoate (rac-8d)

Colorless liquid, 42 mg, yield 81%. ¹H NMR (400 MHz, CDCl₃) δ : 0.91 (d, J = 6.8 Hz, 3H, CH₃), 0.92 (d, J = 6.8 Hz, 3H, CH₃), 1.29 (ddd, J = 14.0, 8.0, 5.6 Hz, 1H in CH₂), 1.49 (ddd, J = 14.0, 9.6, 6.0 Hz, 1H in CH₂), 1.60–1.70 (m, 1H, CH), 2.50 (dd, J = 16.0, 5.2 Hz, 1H in CH₂), 2.57 (dd, J = 16.0, 5.2 Hz, 1H in CH₂), 2.57 (dd, J = 16.0, 5.2 Hz, 1H in CH₂), 3.66 (s, 3H, CH3), 4.12 (ddd, J = 14.0, 9.6, 4.4 Hz, 1H, CH), 5.07 (d, J = 12.8 Hz, 1H in CH₂), 5.10 (d, J = 12.8 Hz, 1H in CH₂), 5.10 (d, J = 12.8 Hz, 1H in CH₂), 5.14 (d, J = 4.8 Hz, 1H, NH), 7.27–7.45 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 22.0, 22.9, 24.9, 39.3, 43.5, 46.3, 51.6, 66.6, 128.00, 128.03, 128.5, 136.6, 155.7, 172.0. The enantiomers were determined by HPLC using an AD-H column (*n*-hexane/*i*-PrOH 95:5, 26 °C) at 1.00 mL/min, UV detection at 210 nm: t_R: 13.4 min, 14.8 min (see SI).

4.9.4 *Methyl* (S)-3-(benzyloxycarbonylamino)-5methylhexanoate (**8d**)

Colorless liquid, 52 mg, yield 100%. ¹H NMR (400 MHz, CDCl₃) δ : 0.91 (d, J = 7.2 Hz, 3H, CH₃), 0.92 (d, J = 7.2 Hz, 3H, CH₃), 1.29 (ddd, J = 14.0, 8.0, 5.6 Hz, 1H in CH₂), 1.49 (ddd, J = 14.0, 9.2, 6.0 Hz, 1H in CH₂), 1.58–1.70 (m, 1H, CH), 2.50 (dd, J = 16.0, 5.6 Hz, 1H in CH₂), 2.57 (dd, J = 16.0, 5.2 Hz, 1H in CH₂), 3.65 (s, 3H, CH₃), 3.99–4.12 (m, 1H, CH), 5.07 (d, J = 12.8 Hz, 1H in CH₂), 5.10 (d, J = 12.8 Hz, 1H in CH₂), 5.16 (d, J = 8.8 Hz, 1H, NH), 7.27–7.44 (m, 5H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ : 22.0, 22.9, 24.9, 39.3, 43.5, 46.3, 51.6, 66.5, 127.98, 128.01, 128.4, 136.6, 155.7, 172.0. The ee was determined by HPLC using an AD-H column (*n*-hexane/*i*-PrOH 95:5, 26 °C) at 1.00 mL/min, UV detection at 210 nm: t_R: 13.4 min, *ee* > 99 % (see SI).

Acknowledgments

This work was supported by The National Basic Research Program of China (No. 2013CB328905) and National Natural Science Foundation of China (Nos. 21372025 and 21172017). Copies of ¹H and ¹³C NMR spectra of N-Cbz-O-Bn-Tyr **1g**, products **2**, **3**, **4**, **5**, **6**, **7**, and **8** and copies of HPLC profiles for the ee determination of **8a**,**d**. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2011. These data include MOL files and InChiKeys of the most important compounds described in this article.

References

- (a) Gervais, F.; Paquette, J.; Morissette, C.; Krzywkowski, P.; Yu, M.; Azzi, M.; Lacombe, D.; Kong, X. Q.; Aman, A.; Laurin, J.; Szarek, W. A.; Tremblay, P. *J. Neurobiol. Aging* **2007**, *28*, 537-547. (b) Kim, H.Y.; Kim, Y.; Han, G; Kim, D. J. *J. Alzheimer's Dis.* **2010**, *22*, 73–85.
- Saumier, D.; Duong, A.; Haine, D.; Garceau, D.; Sampalis, J. J. Nutr. Health Aging 2009, 13, 808–812.
- 3. Angelini, M.; Brahmbhatt, Y. Formulary 2007, 42, 14-31.
- (a) Wellendorph, P.; Greenwood, J. R.; de Lichtenberg, A.; Nielsen, B.; Frund, B.; Brehm, L.; Clausen, R. P.; Brauner-Osborne, H. J. *Pharmacol. Exp. Ther.* 2005, 315, 346-351. (b) Pellicciari, R.; Marinozzi, M.; Macchiarulo, A.; Fulco, M. C.; Gafarova, J.; Serpi, M.; Giorgi, G.; Nielsen, S.; Thomsen, C. J. Med. Chem. 2007, 50, 4630-4641.
- 5. Ma, Y. H.; Xu, J. X. Synthesis 2012, 44, 2225-2230 and cited therein.
- Zhao, R. Y.; Wilhelm, S. D.; Audette, C.; Jones, G.; Leece, B. A.; Lazar, A. C.; Goldmacher, V. S.; Sing, R.; Kovtun, Y.; Widdison, W. C.; Lambert, J. M.; Chari, R. V. J. Med. Chem. 2011, 54, 3606-3623.
- 7. Huang, Z. Y.; Xu, J. X. Tetrahedron 2013, 69, 1050-1056.
- 8. Smith, C. W.; Norton, D. G.; Ballard, S. A. J. Am. Chem. Soc. 1953, 75,
- 748-749.
 Lipina, E. S.; Bodina, R. I.; Efimova, T. P.; Novikova, T. A.; Perekalin, V. V. Pharm. Chem. J. 1999, 33, 598-600.
- 10. Li, C. S.; Howson, W.; Dolle, R. E. Synthesis 1991, 244-245.
- (a) Abbenante, G.; Prager, R. H. Aust. J. Chem. 1990, 43, 213-214. (b)
 Abbenante, G.; Prager, R. H. Aust. J. Chem. 1992, 45, 1791-1800. (c)
 Abbenante, G.; Prager, R. H. Aust. J. Chem. 1992, 45, 1801-1810.
- Bachand, B.; Atfani, M.; Samim, B.; Levesque, S.; Simard, D.; Kong, X. Q. *Tetrahedron Lett.* 2007, *48*, 8587-85889.
- 13. Nai, Y. F.; Xu, J. X. Helv. Chim. Acta. 2013, 96, 1355-1365.
- Kong, X. Q.; Wu, X.; Bouzide, A.; Valade, I.; Migneault, D.; Gervais, F.; Delorme, D.; Bachand, B.; Atfani, M.; Levesque, S.; Samim, B. WO2006085149 (*Chem. Abstr.* 2006, 145, 248852).
- (a) Inguimbert. N.; Coric, P.; Dhotel, H.; Llorens-Cortes, C.; Fournie-Zaluski, M. C.; Roques, B. P. J. Labelled. Compd. Radiopharm. 2004, 47, 997-1005. (b) Inguimbert, N.; Coric, P.; Dhotel, H.; Bonnard, E.; Llorens-Cortes, C.; De, M. N.; Fournie-Zaluski, M. C.; Roques, B. P. J. Pept. Res. 2005, 65,175-188.
- 16. Helferich, B.; Ter Vehn, W. J. Prakt. Chem. 1964, 26, 90-94.
- David, C.; Bischoff, L.; Meudal, H.; Mothe, A.; De Mota, N.; DaNascimento, S.; Llorens-Corles, C.; Fournie–Zaluski, M. C.; Roques, B. P. J. Med. Chem. 1999, 42, 5197-5211.
- 18. (a) Kakaei, S.; Xu, J. X. Tetrahedron 2013, 69, 9068-9075. (b) Kakaei, S.; Chen, N.; Xu, J. X. Tetrahedron 2013, 69, 302-309. (c) Chen, N.; Xu, J. X. Tetrahedron 2012, 68, 2513-2522. (d) Xu, C. X.; Xu, J. X. Amino Acids 2011, 41, 195-203. (e) Chen, N.; Jia, W. Y.; Xu, J. X. Eur. J. Org. Chem. 2009, 5841-5846. (f) He, F. D.; Meng, F. H.; Song, X. Q.; Hu, W. X.; Xu, J. X., Org. Lett. 2009, 11, 3922-3925. (g) Chen, N.; Zhu, M.; Zhang, W.; Du, D.-M.; Xu, J. X. Amino Acids 2009, 37, 309-313. (h) Yu, H.; Cao, S. L.; Zhang, L. L.; Liu, G.; Xu, J. X. Synthesis 2009, 2205-2209. (i) Zhang, W.; Wang, B. Y.; Chen, N.; Du, D.-M.; Xu, J. X. Synthesis 2008, 197-200. (j) Wang, B. Y.; Zhang, W.; Zhang, L. L.; Du, D.-M.; Liu, G.; Xu, J. X. Eur. J. Org. Chem. 2008, 350-355. (k) Hu, L. B.; Zhu, H.; Du, D.-M.; Xu, J. X. J. Org. Chem. 2007, 72, 4543-4546. (1) Huang, J. X.; Du, D.-M.; Xu, J. X. Synthesis 2006, 315-319. (m) Huang, J. X.; Wang, F.; Du, D. M.; Xu, J. X. Synthesis 2005, 2122-2128. (n) Xu, J. X.; Xu, S. Synthesis 2004, 276-282. (o) Xu, J. X. Tetrahedron: Asymmetry 2002, 13, 1129-1134.
- (a) Xu, J. X.; Yang, J. H. Chemistry (Huaxue Tongbao) 1998, (3), 22-29. (b) Shi, H.; Liu, K.; Leong, W. W. Y.; Yao, S. Q. Bioorg. Med. Chem. Lett. 2009, 19, 3945-3948.
- 20. Hughes, A. B.; Sleebs, B. E. Helv. Chim. Acta 2006, 89, 2611–2637.
- For Reviews, see: (a) Kirmse, W. *Eur. J. Org. Chem.* 2002, *14*, 2193-2256. (b) Ye, T.; Mc Kervey, M. A. *Chem. Rev.* 1994, *94*, 1091-1160. (c)

Meier, H.; Zeller, K. P. Angew, Chem. Int. Ed. Engl. 1975, 14, 32-41. DMANUSCRIPT

- (a) Vasanthakumar, G. R.; Patil, B. S.; Babu, V. V. S. J. Chem. Soc., Perkin Trans. 1 2002, 2087-2089. (b) Linder, M. R.; Steurer, S.; Podlech, J. Org. Synth. 2002, 79, 154-164. (c) Koch, K.; Podlech, J. Synth. Commun. 2005, 35, 2789-2794.
- McKennon, M. J.; Meyers, A. I.; Drauz, K.; Schwarm, M. J. Org. Chem. 1993, 58, 3568–3571.
- 24. Abiko, A.; Masamune, S. Tetrahedron Lett. 1992, 33, 5517-5518.
- 25. Kokotos, G.; Noula, C. J. Org. Chem. 1996, 61, 6994-6996.
- (a) Wang, B. Y.; Zhang, W.; Zhang, L. L.; Du, D. M.; Liu, G; Xu, J. X. Eur. J. Org. Chem. 2008, 350–355. (b) Xu, J. X.; Xu, S. Synthesis 2004, 276–282.
- 27. Patil, B. S.; Vasanthakumar, G. R.; Babu, V. V. S. Synth. Commun. 2003, 33, 3089-3096.
- 28. Kantharaju, B. S. P.; Buba, V. V. S. Indian J. Chem. 2004, 43B, 2152-2158.
- 29. Vasanthakumar, G. R.; Buba, V. V. S. Indian. J. Chem. 2003, 42B, 1691-1695.
- 30. Bures, F.; Kulhánek, J. Tetrahedron: Asymmetry 2005, 16, 1347-1354.
- Mukai, T.; Suganuma, N.; Soejima, K.; Sasaki, J.; Yamamoto, F.; Maeda, M. *Chem. Pharm. Bull.* 2008, 56, 260-265.
- Koenig, K. H.; Kaul, L.; Kuge, M.; Schuster, M. Liebigs Ann. Chem. 1987, 1115-1116.
- Moutevelis-Minakakis, P.; Filippakou, M.; Sinanoglou, C.; Kokotos, G. J. Pept. Sci. 2006, 12, 377-382.
- Veitia, M. S. L.; Brun, P. L.; Jorda, P.; Falguieres, A.; Ferroud, C. Tetrahedron: Asymmetry 2009, 20, 2077-2089.
- Arvidsson, P. I.; Frackenpohl, J.; Seebach, D. Helv. Chim. Acta 2003, 86, 1522-1553.
- 36. Koch, K.; Podlech, J. Synth. Commun. 2005, 35, 2789-2794.
- 37. Sutherland, A.; Willis, C. L. J. Org. Chem. 1998, 63, 7764-7769.
- Palomo, C.; Oiarbide, M.; Halder, R.; Kelso, M.; Gomez-Bengoa, E.; Garcia, J. M. J. Am. Chem. Soc. 2004, 126, 9188-9189.

Synthesis of enantiopure free and N-benzyloxycarbonyl-protected 3-substituted homotaurines from naturally occurring amino acids

Yongpeng Zheng, Jiaxi Xu*

State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China.

Supporting Information

Contents	S1
Copies of ¹ H and ¹³ C NMR spectra of products	\$2
Copies of HPLC profiles of products 8	S49

(S)-O-Benzyl-N-benzyloxycarbonyltyrosine (1g)

Benzyl (S)-4-diazo-3-oxobutan-2-ylcarbamate (2b)

Benzyl (S)-1-diazo-5-methyl-2-oxohexan-2-ylcarbamate (2d)

Benzyl (S)-7-diazo-6-oxoheptane-1,5-diyldicarbamate (2f)

(S)-2,6-Bis(benzyloxycarbonylamino)hexanoic 2-diazoacetic anhydride (2f')

Benzyl (S)-1-(4-(benzyloxy)phenyl)-4-diazo-3-oxobutan-2-ylcarbamate (2g)

Benzyl (4-diazo-3-oxo-1-phenylbutan-2-yl)carbamate (rac-2a)

Benzyl (1-diazo-5-methyl-2-oxohexan-3-yl)carbamate (rac-2d)

(S)-3-(Benzyloxycarbonylamino)-4-phenylbutanoic acid (3a)

(S)-3-(Benzyloxycarbonylamino)butanoic acid (3b)

(*R*)-3-(Benzyloxycarbonylamino)-4-methylpentanoic acid (**3c**)

(S)-3-(Benzyloxycarbonylamino)-5-methylhexanoic acid (3d)

(3*R*,4*S*)-3-(Benzyloxycarbonylamino)-4-methylhexanoic acid (**3**e)

(S)-3-(Benzyloxycarbonylamino)-4-[4-(benzyloxy)phenyl]butanoic acid (3g)

3-(Benzyloxycarbonylamino)-4-phenylbutanoic acid (rac-3a)

(S)-3-(Benzyloxycarbonylamino)-4-phenylbutyl methanesulfonate (4a)

(S)-3-(Benzyloxycarbonylamino)butyl methanesulfonate (4b)

(*R*)-3-(Benzyloxycarbonylamino)-4-methylpentyl methanesulfonate (**4c**)

(S)-3-(Benzyloxycarbonylamino)-5-methylhexyl methanesulfonate (4d)

(3R,4S)-3-(Benzyloxycarbonylamino)-4-methylhexyl methanesulfonate (4e)

(S)-3,7-Di(benzyloxycarbonylamino)heptyl methanesulfonate (4f)

 $(S) - 3 - (Benzyloxy carbonylamino) - 4 - [4 - (benzyloxy) phenyl] butyl methanesulfonate (\mathbf{4g})$

(S)-S-3-(Benzyloxycarbonylamino)butyl ethanethioate (5b)

(*R*)-*S*-3-(Benzyloxycarbonylamino)-4-methylpentyl ethanethioate (**5c**)

(S)-S-3-(Benzyloxycarbonylamino)-5-methylhexyl ethanethioate (5d)

(3*R*,4*S*)-*S*-3-(Benzyloxycarbonylamino)-4-methylhexyl ethanethioate (**5e**)

(S)-S-3,7-Di(benzyloxycarbonylamino)heptyl ethanethioate (5f)

(S)-S-3-(Benzyloxycarbonylamino)-4-[4-(benzyloxy)phenyl]butyl ethanethioate (5g)

(S)-3-Benzyloxycarbonylamino-4-phenylbutane-1-sulfonic acid (6a)

(S)-3-Benzyloxycarbonylaminobutane-1-sulfonic acid (6b)

$(R)\mbox{-}3\mbox{-}Benzyloxy$ $carbonylamino-4-methylpentane-1-sulfonic acid} \ (\mathbf{6c})$

(S)-3-Benzyloxycarbonylamino-5-methylhexane-1-sulfonic acid (6d)

(S)-3,7-Dibenzyloxycarbonylaminoheptane-1-sulfonic acid (6f)

(S)-3-Benzyloxycarbonylamino-4-(4-benzyloxyphenyl)butane-1-sulfonic acid $(\mathbf{6g})$

(S)-3-Amino-4-phenylbutane-1-sulfonic acid (7a)

(S)-3-Aminobutane-1-sulfonic acid (7b)

(*R*)-3-Amino-4-methylpentane-1-sulfonic acid (**7c**)

<4236 4220 -3.665 ----∠ 5.296 √ 5.094 √ 5.068 Low Costin 85 H H 20 Y PT **114** ģ 8 48 88 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 0.0 8.5 1.0 0.5 128.549 128.549 128.464 128.043 127.985 127.985 - 171.928 137.414 - 155.569 ₹77.318 77.000 76.682 - 66.573 51.695 49.297 ~ 40.195 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Methyl (R/S)-3-(benzyloxycarbonylamino)-4-phenylbutanoate (rac-8b)

Methyl (S)-3-(benzyloxycarbonylamino)-4-phenylbutanoate (8b)

Methyl (R/S)-3-(benzyloxycarbonylamino)-5-methylhexanoate (rac-8d)

Methyl (S)-3-(benzyloxycarbonylamino)-5-methylhexanoate (8d)

ACCEPTED MANUSCRIPT

Copies of HPLC profiles of products 8

Methyl (S)-3-(benzyloxycarbonylamino)-4-phenylbutanoate (8b)

ACCEPTED MANUSCRIPT

Methyl (R/S)-3-(benzyloxycarbonylamino)-5-methylhexanoate (rac-8d)

