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Abstract: Lipophilic N9-benzylguanine derivatives were synthe-
sized from the arylalkylation of 2-N-acetylguanine with substituted
benzyl bromides. 
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selectivity, HMBC

Benzylguanine derivatives have demonstrated outstand-
ing potential in a wide range of biological systems. O6-
Benzylguanine is a well-studied anticancer drug that
binds and inhibits the DNA repair enzyme O6-alkylgua-
nine DNA alkyltransferase and is used to enhance the
effects of other chemotherapeutic agents.1,2 N-Benzylgua-
nine derivatives have also exhibited diverse biological
activity; N9-benzylguanine derivatives have demonstrated
potent activity as purine nucleoside phosphorylase inhib-
itors, HIV integrase inhibitors, antitumor agents, and anti-
viral agents.3–8 In addition to the diverse biological
activities, lipophilic guanine derivatives have served as
important model compounds to investigate guanine oxi-
dation mechanisms and as precursors for model ion chan-
nel formation and G-quadruplex structures.9–13 Our
interests in N9-benzylguanine derivatives center around
studying the self-assembling properties of these com-
pounds to form G-quartet structures and the mechanisms
by which G-quartet and G-quadruplex secondary struc-
tures affect oxidation rates and oxidation products of gua-
nine.14–19

The potential of such interesting chemical and biological
properties establishes the necessity for effective syntheses
of novel guanine analogs. In this light, we are interested in
synthesizing lipophilic N9-benzylguanine derivatives. We
envisioned N9-benzylguanine derivatives 1 and 2, result-
ing from the coupling of 2-N-acetylguanine and benzyl
bromide derivatives (Figure 1).

Lipophilic benzyl bromide derivatives 4 and 7 were syn-
thesized by standard protocols (Scheme 1). Treatment of
3,5-di-tert-butyl-toluene (3) with N-bromosuccinimide
(NBS) at 80 °C afforded 3,5-di-tert-butylbenzyl bromide
(4).20 Methyl 3,5-dihydroxybenzoate (5) was protected
using TBSCl, and reduction of the ester with LAH yielded
3,5-bis(tert-butyldimethylsilyloxy)benzyl alcohol (6).
Subsequent treatment with trioctyl phosphine and carbon

tetrabromide gave 3,5-bis(tert-butyldimethylsilyl-
oxy)benzyl bromide (7) in sufficient yield.21

With the benzyl bromide derivatives in hand, we were in-
terested in studying the arylalkylation of 2-N-acetylgua-
nine (8) under various reaction conditions (Scheme 2).
When 4 was reacted with 8 in N,N-dimethylformamide
(DMF) at 80 °C, a 1:1 mixture of 2-N-acetyl-N9-(3,5-di-
tert-butylbenzyl)guanine (9)22 and 2-N-acetyl-N7-(3,5-di-
tert-butylbenzyl)guanine (10)23 were isolated in 65%
yield. The addition of base (potassium carbonate) at a va-
riety of temperatures (r.t., 80, 100 °C) did not dramatical-
ly affect selectivity, but generally resulted in lower yields
of 9 and 10. N-Deacetylation of 9 with sodium hydroxide
afforded N9-(3,5-di-tert-butylbenzyl)guanine (1) in 71%
yield.24

The reaction of 2-N-acetylguanine with 7 in DMF at 80 °C
resulted in the formation of four products, namely, 2-N-
acetyl-N9-[3,5-bis(tert-butyldimethylsilyloxy)benzyl]-
guanine (11),25 2-N-acetyl-N7-[3,5-bis(tert-butyldimethyl-
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Scheme 1 Reagents and conditions: (a) NBS, AIBN, CCl4, 80 °C,
24 h, 85%; (b) TBSCl, imid., DMF, 24 h, 97%; (c) LAH, Et2O, r.t. to
reflux, 2 h, 83%; (d) P(C8H17)3, CBr4, Et2O, 0 °C to r.t., 1 h, 65%.
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silyloxy)benzyl]guanine (12),26 and the monosilylated de-
rivatives 2-N-acetyl-N9-[3-(tert-butyldimethylsilyloxy)-
5-hydroxybenzyl]guanine and 2-N-acetyl-N7-[3-(tert-
butyldimethylsilyloxy)-5-hydroxybenzyl]guanine in 20,
20, 14, and 14% yields, respectively. Treatment of 2-N-
acetylguanine with 7 in DMF in the presence of potassium
carbonate at room temperature minimized formation of
the monosilylated derivatives, and 11 and 12 were isolat-
ed in a 1:1 ratio in 67% yield. N-Deacetylation of 11
proved to be more difficult than expected because stan-
dard amide deprotection methods resulted in the forma-
tion of a mixture of monosilylated and desilylated
products. However, reaction of 11 with hydrazine resulted
in the successful formation of N9-[3,5-bis(tert-butyldi-
methylsilyloxy)benzyl]guanine (2).27 Through the use of
equivalent molar amounts of N2-acetylguanine and benzyl
bromide, we detected no evidence of diarylakylated prod-
ucts.

Characterization of regioisomers 9–12 was accomplished
by 1H and 13C NMR spectroscopic analysis, heteronuclear

multiple bond correlation (HMBC) measurements, and by
mass spectrometry. The N9- and N7-regiosiomers were
identified on the basis of the chemical shifts of the meth-
ylene protons (NCH2Ar) and C-5 peaks, and on the
HMBC 2-D NMR spectra. The benzylic proton peaks
were found at d = 5.06–5.27 and 5.41–5.53 ppm for the
N9-and N7-regioisomers, respectively, which is consistent
with similar products.28,29 HMBC NMR experiments con-
firmed our assignments for products 9–12 and 1 and 2. A
typical partial HMBC spectrum is shown in Figure 2; H-8
exhibits cross-peaks corresponding to C-5 and C-4 (and a
residual one-bond coupling to C-8), while the benzylic
hydrogens are found to couple to C-4 (in addition to C-8,
Ar-H1¢, and Ar-H2¢) and not to C-5, which is indicative of
the N9-regioisomer for compound 2.9 Compound 1 exhib-
ited a similar HMBC correlation for H-8 and NCH2-Ar.

In conclusion, lipophilic N9-benzylguanine derivatives 1
and 2 were synthesized for the first time. This synthetic
pathway represents a practical and efficient approach to
the synthesis of N9-benzylguanine analogs, and optimizes

Scheme 2 Reagents and conditions: (a) 4, DMF, 80 °C, 24 h, 65%; (b) NaOH, DMF, 1 h, 71%; (c) 7, K2CO3, DMF, r.t., 24 h, 67%; (d)
NH2NH2, MeOH, 1 h, 66%.
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yields for the coupling reaction of 2-N-acetylguanine with
substituted benzene derivatives and N-deacetylation.
HMBC experiments provided conclusive evidence for the
structure of each regioisomer. Our future plans involve
using these derivatives to investigate the self-assembly of
G-quartet structures and examine low-temperature gua-
nine oxidation intermediates.
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