This article was downloaded by: [Michigan State University] On: 17 February 2015, At: 04:17 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Synthesis of N-Substituted 7β-Diprenorphine Derivatives

János Marton $^{\rm a}$, Szilárd Miklòs $^{\rm a}$, Sàndor Hosztafi $^{\rm a}$ & Sándor Makleit $^{\rm b}$

^a Alkaloida Chemical Company Ltd., H-4440, Tiszavasvári, Hungary

^b Department of Organic Chemistry, L. Kossuth University, P. O. Box 20., H-4010, Debrecen, Hungary Published online: 23 Sep 2006.

To cite this article: János Marton, Szilárd Miklòs, Sàndor Hosztafi & Sándor Makleit (1995) Synthesis of N-Substituted 7β-Diprenorphine Derivatives, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 25:6, 829-848, DOI: <u>10.1080/00397919508013419</u>

To link to this article: http://dx.doi.org/10.1080/00397919508013419

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the

Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

SYNTHESIS OF N-SUBSTITUTED 7β-DIPRENORPHINE DERIVATIVES[#]

János Marton¹, Szilárd Miklós¹, Sándor Hosztafi¹, and Sándor Makleit^{2*}

¹ Alkaloida Chemical Company Ltd., H-4440 Tiszavasvári, Hungary

² Department of Organic Chemistry, L. Kossuth University, P. O. Box 20.,

H-4010 Debrecen, Hungary

Abstract: The separation of the vinone (2a) and β -the vinone (2b), as well as that of dihydrothe vinone (3a) and β -dihydrothe vinone (3b) was accomplished. By the application of various procedures numerous new N-substituted Diprenorphine analogues (8a-f) with 7R absolute configuration were synthesized. Detailed pharmacological investigation of the prepared compounds may contribute to a better understanding of the structure-activity relationship of morphine alkaloids.

Compounds belonging to the 6,14-ethenomorphinane family were first prepared by Sandermann^{1a} and Schöpf^{1b} et al, when investigating the reactions of thebaine with dienophiles (*p*-benzoquinone, 1,4-naphtoquinone and maleic anhydride). Bentley and Thomas reported² that the dihydro derivative of the

^{*} To whom correspondence should be addressed

Diels-Alder adduct of thebaine with *p*-benzoquinone possessed an analgetic effect on rodents almost equal to that of pethidine. The results, published by Bentley and Hardy³ in the early sixties, and showing that the substances produced in the addition reactions of thebaine and dienophiles possess extremely high analgetic activities generated considerable interest in the research of synthetic opioid alkaloids. The research of 6,14-ethenomorphinanes is one of the most promising field from both theoretical and practical points of view, as indicated by the published numerous review papers4,5,6, as well as the discovery and development of such drugs like Buprenorphine, Diprenorphine and Etorphine. All of these compounds belong to the above group of alkaloids and are very important in pharmacology and in medicinal practice.

During our own research we have prepared Buprenorphine and Diprenorphine from *N*-formyl-*N*-demethylthebaine and *N*-benzyl-*N*demethylthebaine *via* new intermediates⁷, and numerous new *N*-substituted dihydronorthevinone derivatives and *N*-substituted Buprenorphine and Diprenorphine analogues have also been synthesized⁸.

In the present work the separation of the vinone (2a) and β -the vinone (2b), as well as that of dihydrothe vinone (3a) and β -dihydrothe vinone (3b) was accomplished. In addition, studies of the Grignard reaction of 3b and the *N*demethylation, *N*-alkylation and *O*-demethylation of 7 β -acetyl derivatives were carried out. Several new Diprenorphine analogues (8a-f) with 7*R* absolute configuration were also synthesized by employing hitherto unknown intermediates.

The [4+2] cycloaddition reaction of thebaine (1) and methyl vinyl ketone proceeds in a regio and stereoselective manner⁹ to result in 7-acetyl derivatives

exclusively and the ratio of the 7 α -acetyl (2a) and 7 β -acetyl (2b) analogues was found to be 98 : 2. The 7 β compounds have not been extensively studied; β dihydrothevinone (3b) was prepared¹⁰ by the reduction of β -thevinone (2b).

Scheme 1.

a: Methyl vinyl ketone, reflux; b: H2/Pd-C, 55 °C, 6 bar, toluene or ethyl acetate⁸

The 7α and 7β cyano compounds were obtained in a 1 : 1 ratio in the Diels-Alder reaction⁹ of thebaine (1) with acrylonitrile. With methyl acrylate 8 % of the 7β -methyl ester was isolated, and the 7β -hydrazide analogue was prepared by treatment with hydrazine hydrate. The 7β derivative of Buprenorphine was also synthesized and the intermediates to this substance were analysed¹²,¹³ by means of ¹H-NMR spectroscopy.

Heterogeneous catalytic hydrogenation of the mixture of the vinone (2a) and β -the vinone (2b), obtained in the large-scale addition reaction of the bain and

methyl vinyl ketone, gave a mixture of dihydrothevinone (**3a**) and β dihydrothevinone (**3b**). Upon recrystallization of this mixture from ethanol dihydrothevinone partially crystallized, while the β -compound remained dissolved in the mother liquor. Following evaporation, preparation of the bitartarate-salt in aqueous medium led to the crystallization of the bitartarate of dihydrothevinone and the salt of the β -derivative remained, again, in solution. From the aqueous mother liquor the free base was isolated, and TLC showed a 1 : 3 ratio for dihydrothevinone and β -dihydrothevinone. Crystallization of this mixture from ethanol afforded crystalline β -dihydrothevinone, and this new procedure for the separation of the isomers proved to be much more efficient than the tedious method described⁹ earlier.

For the preparation of the target Diprenophine analogues three independent routes were applied:

Sequence A) $3b \rightarrow 4 \rightarrow 5a-f \rightarrow 6a-f \rightarrow 8a-c$; compound 3b was *N*-demethylated with DEAD, and then alkylated with the appropriate alkylating agent to obtain 5a-f. Treatment of these latter compounds with MeMgI gave 6af, whose *O*-demethylation with KOH/diethyleneglycol at 210 °C afforded 8a-c.

Sequence B) $3b \rightarrow 6g \rightarrow 6h \rightarrow 6i \rightarrow 6a-f \rightarrow 8a-c$; 3b was first reacted with MeMgI and the produced tertiary alcohol (6g) was *N*-demethylated according to the von Braun procedure to obtain 6h and then 6i. Following *N*-alkylation and *O*-demethylation of the resulting 6a-f the target products 8a-c were isolated.

Sequence C) $6g \rightarrow 6h \rightarrow 8i \rightarrow 8d$ -f; the tertiary alcohol 6g was treated with BrCN and the obtained cyanamide 6h was reacted with KOH in hot (210 °C) diethyleneglycol. The produced 8i is a suitable intermediate to 8d-f.

N-SUBSTITUTED 7β -DIPRENORPHINE DERIVATIVES

For the synthesis of **8a-c** both of the reaction sequences A and B proved to be applicable, but **8d-f** could be more conveniently prepared on route C - due to the thermal instability of the *N*-substituents. The adduct formed in the reaction of β -dihydrothevinone (**3b**) and ethyl azodicarboxylate was split with pyridine

a: DEAD, benzene, reflux; b: Pyridine hydrochloride, EtOH; c: R¹Br, dimethylformamide, 90-95 °C; d: MeMgI, diethylether-toluene; e: KOH, diethyleneglycol, 210 °C, N₂

chlorohydrate. β -Dihydronorthevinone (4) was purified by means of the preparation of the bitartarate salt, and the obtained new compound was *N*-alkylated, separately, with cyclopropylmethyl bromide, β -phenylethyl bromide, allyl bromide, dimethylallyl bromide and propargyl bromide to yield **5a**, **5b**, **5c**, **5d**, **5e** and **5f**, respectively.

No	Yield [%]	M. P. [^o C]	[α] _D 25,i		No.	Yield [%]	M. P. [^o C]	[α] _D 25,i
5a	61	175-176 ^d	-233,8]	7 a	8a	148-150d	-106.7 ^k
5b	69	166-167d	-173,8		7 b	12 a	199-200d	-90.0 ^m
5c	75	179-180d	-230,1		7c	7a	198-200 ^e	-68.9
5d	46	196-197d	-208,0		7d	8a	oil	-161.4 ^m
5e	63	82-83d	-225.0		7e	9a	oil	-90.3
5 f	60	176-177d	-225,7		7 f	13a	oil	-8.7 ¹
6a	72 ^a /68 ^b	oil	-130,2		7g	13a	187-188 ^e	-68.0 ^m
6b	71a/73b	187-188d	-124,0		8a	60	240-242d	-156.3
6c	62 ^a /64 ^b	127-128 ^e	-151,9		8b	62	281-282 ^f	-106.2
6d	66a	118-119e	-90.0k		8c	56	255-256d	-157.6 ^m
6e	62a	oil	-149,8		8d	65 ^c	213-215d	-160.0 ^m
6f	60a	oil	-160,3		8e	78 ^c	73-75h	-76.0 ⁿ
6g	67a	170-171 ^e	-172,2		8f	70 ^c	198-199 ^e	-160.0 ^m
6h	81 ^c	200-202d	-161,0		8g	67	289-290d	-149.3
6i	60°	167-168 ^d	-165.0		8i	65	305-307g	-40.0P

Table 1. Physical data for compounds 5 - 8

a: Sequence A, after chromatographic separation; b: Sequence B; c: Sequence C; d: ethanol; e: diethyl ether; f: hydrochloride; g: 1:1 (v/v) chloroform-ethanol; h: bitartrate, i: c = 1, CHCl3; k: c = 0.3, CHCl3; l: c = 0.1, CHCl3; m: c = 0.5, CHCl3; n: c = 0.5, EtOH; p: c = 0.1, EtOH;

The Grignard reaction of the new compounds with MeMgI was also investigated. When dihydrothevinone (**3a**) was employed an exclusive formation of the corresponding tertiary alcohol was observed⁸. In the present studies, the Grignard reaction of the 7 β -acetyl compounds with MeMgI gave two compounds in a ratio of 9:1 to 8:2. Separation of this mixture by means of column chromatography gave 62-67 % of the tertiary alcohols **6a-g**, as the major products, and 7-13% of the minor compounds **7a-g**.

When studied the Grignard reaction of β -thevinone (2b) and methyl magnesium iodide Bentley et al¹⁴ observed the formation of the expected tertiary alcohol, accompanied by another tertiary alcohol with opened ring E and carrying a C-4 phenolic hydroxyl group - as a result of the attack of the alkaline Grignard reagent.

¹H-NMR examination of the by-product 7g formed in the reaction of β dihydrothevinone (**3b**) with MeMgI showed that the two singlets at δ = 4.46 and 5.74 ppm disappeared upon deuteration and the signal between 4-5 ppm, characteristic of the 5 β -H was also missing; indicating the opening of ring E.

Scheme 3. a: 2N HCl, room temperature, 10 min

In the IR spectrum of 7g an absorption at 2999 cm⁻¹ characteristic of a cyclopropane skeletone was observed. For each of the tertiary alcohol 6g and the by-products the molecular ion was detected at m/z 399 in the mass spectra.

Upon treatment of 7g with 2N HCl a further rearrangement occurred to give rise to 9, and this supports, again, the proposed structure of the by-product 7g. Based on these data the structure of the related minor products 7a-f were also essentially substantiated.

	1		
Table 2.	¹ H-NMR and	MS data fo	r compounds 5 - 8

Compound	¹ H-NMR Data (CDCl ₃)				
5a C ₂₆ H ₃₃ NO4 (423.5) 423 (100) [M ⁺]	0.1-0.8 (m, 5H, cProp), 0.85 (m, 1H, 8α-H), 2.28 (s, 3H, 7β-Ac), 3.43 (s, 3H, 6-OCH ₃), 3.87 (s, 3H, 3-OCH ₃), 4.96 (d, 1H, 5β-H), 6.53 (d, 1H, 1-H), 6.70 (d, 1H, 2-H).				
5b C30H35NO4 (473.6) 473 (<1%) [M ⁺], 382(100)	0.85 (m, 1H, H-8α), 2.27 (s, 3H, 7βAc), 3.42(s, 3H, 6- OCH ₃), 3.87 (s, 3H, 3-OCH ₃), 4.96 (d, 1H, 5β-H), 6.54 (d, 1H, 1-H), 6.70 (d, 1H, 2-H), 7.14-7.30 (m, 5H, Ar).				
5c C25H33NO4 (411.5) 411 (8) [M ⁺], 382(100)	0.88 (t, 3H, <u>CH</u> ₃ CH ₂ CH ₂), 2.28 (s, 3H, 7βAc), 3.43 (s, 3H, 6-OCH ₃), 3.88 (s, 3H, 3-OCH ₃), 4.94 (d, 1H, 5β-H), 6.54 (d, 1H, 1-H), 6.70 (d, 1H, 2-H).				
5d C ₂₅ H ₃₁ NO ₄ (409.5) 409 (100) [M ⁺]	0.85 (m, 1H, 8 α -H), 2.28 (s, 3H, 7 β -Ac), 3.42 (s, 3H, 6-OCH ₃), 3.86 (s, 3H, 3-OCH ₃), 4.93 (d, 1H, 5 β -H), 5.05-5.22 (m, 2H, All), 5.65-5.86 (m, 1H, All), 6.54 (d, 1H, 1-H), 6.70 (d, 1H, 2-H).				
5e C ₂₇ H ₃₅ NO4 (437.6) 437 (8) [M ⁺], 69 (100)	0.85 (m, 1H, H-8α), 1.63 (s, 3H, Me), 1.72 (s, 3H, Me), 2.27 (s, 3H, 7β-Ac), 3.42 (s, 3H, 6-OCH ₃), 3.88 (s, 3H, 3-OCH ₃), 4.96 (d, 1H, 5β-H), 5.13 (t, 1H, All), 6.55 (d, 1H, 1-H), 6.70 (d, 1H, 2-H).				
5f C ₂₅ H ₂₉ NO ₄ (407.5) 407 (100) [M ⁺]	0.87 (m, 1H, 8α-H), 2.20 (t, 1H, Prop), 2.27 (s, 3H, 7β-Ac), 3.26 (d, 2H, Prop), 3.42 (s, 3H, 6-OCH ₃), 3.87 (s 3H, 3-OCH ₃), 4.96 (d, 1H, 5β-H), 6.55 (d, 1H, 1-H), 6.72 (d, 1H, 2-H).				
6a C27H37NO4 (439.6) 439 (80) [M ⁺], 398 (100)	0.10-0.80 (m, 5H, cProp), 0.92 (m, 1H, 8α-H), 1.20 (s, 3H, 20-Me), 1.44 (s, 3H, 20-Me), 3.54 (s, 3H, 6- OCH ₃), 3.88 (s, 3H, 3-OCH ₃), 5.09 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.56 (d, 1H, 1-H), 6.72 (d, 1H, 2-H).				
6b C31H39NO4 (489.6) [M ⁺] couldn't detected	0.85 (m, 1H, 8α-H), 1.16 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.17 (s ^a , 1H, 20-OH), 6.57 (d, 1H, 1-H), 6.73 (d, 1H, 2-H), 7.16-7.35 (m, 5H, Ar).				

(continued)

Table 2. Continued

6c	0.90 (t, 3H, <u>CH</u> ₃ CH ₂ CH ₂), 1.18 (s, 3H, 20-Me), 1.43				
C26H37NO4	(s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH3), 3.88 (s, 3H, 3-				
(427.6)	OCH ₃), 5.08 (d, 1H, 5β-H), 5.17 (s ^a , 1H, 20-OH),				
427 (8) [M ⁺], 398	6.57 (d, 1H, 1-H), 6.72 (d, 1H, 2-H).				
(100)					
6d	0.86 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.43 (s, 3H,				
C26H35NO4	20-Me), 3.53 (s, 3H, 6-OCH3), 3.88 (s, 3H, 3-OCH3),				
(425.6)	5.08 (d, 1H, 5 β -H), 5.14-5.25 (m, 2H, All), 5.16 (s ^a ,				
425 (54) [M ⁺], 366	1H, 20-OH), 5.68-5.90 (m, 1H, All), 6.57 (d, 1H, 1-H),				
(100)	6.73 (d, 1H, 2-H).				
6e	$0.87 \text{ (m, 1H, 8}\alpha\text{-H)}, 1.20 \text{ (s, 3H, 20-Me)}, 1.43 \text{ (s, 3H, }$				
C28H39NO4	20-Me), 1.65 (s. 3H, Me), 1.74 (s. 3H, Me), 3.54 (s.				
(453.6)	3H 6-OCH3) 3 88 (s 3H 3-OCH3) 5 08 (d 1H 5B-				
453 (80) [M ⁺], 394	H) 5 14 (t 1H All) 5 20 (s ^a 1H 20-OH) 6 58 (d				
(100)	1H, 1-H), 6.73 (d. 1H, 2-H).				
6f	$0.89 \text{ (m } 1\text{H } 8\alpha-\text{H)} 1.18 \text{ (s } 3\text{H } 20-\text{Me)} 1.42 \text{ (s } 3\text{H}$				
C26H22NO4	20-Me) 2 23 (t 1H Pron) 3 28 (d 2H Pron) 3 54 (s				
(423 5)	$3H_{6}OCH_{2}$) 3.89 (s $3H_{3}OCH_{2}$) 5.08 (d $1H_{5}B_{6}$				
(123.3) 423 (8) [M ⁺] 59	H) 5 18 (a 1H 20-OH) 6 57 (d 1H 1-H) 6 72 (d				
(100)	(11, 2, 10) (3, 111, 20-011), 0.37 (d, 111, 1-11), 0.72 (d, 114, 2 H)				
(100)	111, 2-11).				
60	0.98 (m 1 H $9 \times$ H) 1 10 (c 2 H 20 Ma) 1 42 (c 2 H				
6g	$0.88 \text{ (m, 1H, 8}\alpha-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.20 (a, 2H, NCH2), 2.54 (a, 2H, 6, 0CH2)$				
6g C24H33NO4	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 2.80 (c, 2H 2 OCH ₂) 5 07 (d, 1H 59 H) 5 20 (c ²)				
6g C24H33NO4 (399.5) 200 (26) IM ⁺ 1	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 3H, 20-OH), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 3H, 20-OH),				
6g C ₂₄ H ₃₃ NO4 (399.5) 399 (26) [M ⁺],	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H).				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22)	0.88 (m, 1H, 8 α -H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5 β -H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H).				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H).				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), (4.14)				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5)	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 5β				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5) 410 (25) [M ⁺], 226(10)	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H).				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5) 410 (25) [M ⁺], 336(10)	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H).				
6g C ₂₄ H ₃₃ NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C ₂₄ H ₃₀ N ₂ O4 (410.5) 410 (25) [M ⁺], 336(10) 6i C ₂₄ H ₂ NO ₂	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H). 0.88 (m, 1H, 8α-H), 1.21 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.54 (s, 2H), 2.20 (h) = 2.20 (h)				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5) 410 (25) [M ⁺], 336(10) 6i C23H31NO4 (285 5)	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H). 0.88 (m, 1H, 8α-H), 1.21 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H).				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5) 410 (25) [M ⁺], 336(10) 6i C23H31NO4 (385.5) 295 ((5) [M ⁺])	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H). 0.88 (m, 1H, 8α-H), 1.21 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.06 (d, 1H, 5β-H), 5.14 (s ^a , 1H, 20-OH), 6.60 (d,				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5) 410 (25) [M ⁺], 336(10) 6i C23H31NO4 (385.5) 385 (65) [M ⁺], 2(7(0))	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H). 0.88 (m, 1H, 8α-H), 1.21 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.06 (d, 1H, 5β-H), 5.14 (s ^a , 1H, 20-OH), 6.60 (d, 1H, 1-H), 6.75 (d, 1H, 2-H).				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5) 410 (25) [M ⁺], 336(10) 6i C23H31NO4 (385.5) 385 (65) [M ⁺], 367(20) 7	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H). 0.88 (m, 1H, 8α-H), 1.21 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.06 (d, 1H, 5β-H), 5.14 (s ^a , 1H, 20-OH), 6.60 (d, 1H, 1-H), 6.75 (d, 1H, 2-H).				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5) 410 (25) [M ⁺], 336(10) 6i C23H31NO4 (385.5) 385 (65) [M ⁺], 367(20) 7a	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H). 0.88 (m, 1H, 8α-H), 1.21 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.06 (d, 1H, 5β-H), 5.14 (s ^a , 1H, 20-OH), 6.60 (d, 1H, 1-H), 6.75 (d, 1H, 2-H). 0.05-0.80 (m, 5H, cProp), 1.38 (s, 3H, 20-Me), 1.44 (s, 2H).				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5) 410 (25) [M ⁺], 336(10) 6i C23H31NO4 (385.5) 385 (65) [M ⁺], 367(20) 7a C27H37NO4	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H). 0.88 (m, 1H, 8α-H), 1.21 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.06 (d, 1H, 5β-H), 5.14 (s ^a , 1H, 20-OH), 6.60 (d, 1H, 1-H), 6.75 (d, 1H, 2-H). 0.05-0.80 (m, 5H, cProp), 1.38 (s, 3H, 20-Me), 1.44 (s, 3H, 20-Me), 3.35 (s, 3H, 6-OCH ₃), 3.86 (s, 3H, 3- 0.05-0.80 (m, 5H, cProp), 1.38 (s, 2H, 20-Me), 1.44 (s,				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5) 410 (25) [M ⁺], 336(10) 6i C23H31NO4 (385.5) 385 (65) [M ⁺], 367(20) 7a C27H37NO4 (439.6)	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H). 0.88 (m, 1H, 8α-H), 1.21 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.06 (d, 1H, 5β-H), 5.14 (s ^a , 1H, 20-OH), 6.60 (d, 1H, 1-H), 6.75 (d, 1H, 2-H). 0.05-0.80 (m, 5H, cProp), 1.38 (s, 3H, 20-Me), 1.44 (s, 3H, 20-Me), 3.35 (s, 3H, 6-OCH ₃), 3.86 (s, 3H, 3- OCH ₃), 4.50 (s ^a , 1H, 4-OH), 5.74 (s ^a , 1H, 20-H),				
6g C24H33NO4 (399.5) 399 (26) [M ⁺], 366(22) 6h C24H30N2O4 (410.5) 410 (25) [M ⁺], 336(10) 6i C23H31NO4 (385.5) 385 (65) [M ⁺], 367(20) 7a C27H37NO4 (439.6) 439 (10) [M ⁺],	0.88 (m, 1H, 8α-H), 1.19 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 2.30 (s, 3H, NCH ₃), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.07 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.73 (d, 1H, 2-H). 0.86 (m, 1H, 8α-H), 1.23 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.90 (s, 3H, 3-OCH ₃), 4.85 (s ^a , 1H, 20-OH), 5.08 (d, 1H, 5β-H), 6.64 (d, 1H, 1-H), 6.78 (d, 1H, 2-H). 0.88 (m, 1H, 8α-H), 1.21 (s, 3H, 20-Me), 1.42 (s, 3H, 20-Me), 3.54 (s, 3H, 6-OCH ₃), 3.89 (s, 3H, 3-OCH ₃), 5.06 (d, 1H, 5β-H), 5.14 (s ^a , 1H, 20-OH), 6.60 (d, 1H, 1-H), 6.75 (d, 1H, 2-H). 0.05-0.80 (m, 5H, cProp), 1.38 (s, 3H, 20-Me), 1.44 (s, 3H, 20-Me), 3.35 (s, 3H, 6-OCH ₃), 3.86 (s, 3H, 3- OCH ₃), 4.50 (s ^a , 1H, 4-OH), 5.74 (s ^a , 1H, 20-H), 6.56 (d, 1H, 1-H), 6.68 (d, 1H, 2-H).				

(continued)

Table 2. Continued

Tuble 2. Continued	
7b	1.36 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.35 (s, 3H,
C31H39NO4	6-OCH3), 3.84 (s, 3H, 3-OCH3), 4.45 (s ^a , 1H, 4-OH),
(489.6)	5.72 (s ^a , 1H, 20-OH), 6.56 (d, 1H, 1-H), 6.68 (d, 1H,
[M ⁺] couldn't	2-H), 7.16-7.35 (m, 5H, Ar).
detected	
7 c	0.89 (t, 3H, <u>CH</u> ₃ CH ₂ CH ₂), 1.37 (s, 3H, 20-Me), 1.43
C ₂₆ H ₃₇ NO ₄	(s, 3H, 20-Me), 3.35 (s, 3H, 6-OCH3), 3.87 (s, 3H, 3-
(427.6)	OCH3), 4.47 (s ^a , 1H, 4-OH), 5.75 (s ^a , 1H, 20-OH),
427 (4) [M ⁺],	6.58 (d, 1H, 1-H), 6.67 (d, 1H, 2-H).
380(100)	
7d	1.37 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 3.35 (s, 3H,
C ₂₆ H ₃₅ NO ₄	6-OCH3), 3.86 (s, 3H, 3-OCH3), 4.46 (s ^a , 1H, 4-OH),
(425.6)	5.04-5.22 (m, 2H, All), 5.72 (s ^a , 1H, 20-OH), 5.68-
425 (10) [M ⁺], 407	5.90 (m, 1H, All), 6.57 (d, 1H, 1-H), 6.73 (d, 1H, 2-H).
(100)	
7e	1.37 (s, 3H, 20-Me), 1.44 (s, 3H, 20-Me), 1.63 (s, 3H,
C28H39NO4	Me), 1.74 (s, 3H, Me), 3.35 (s, 3H, 6-OCH3), 3.88 (s,
(453.6)	3H, 3-OCH3), 4.48 (s ^a , 1H, 4-OH), 5.14 (t, 1H, All),
453 (10) [M ⁺], 435	5.76 (s ^a , 1H, 20-OH), 6.58 (d, 1H, 1-H), 6.68 (d, 1H,
(100)	2-H).
7 f	1.37 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 2.20 (t, 1H,
C ₂₆ H ₃₃ NO ₄	Prop), 3.24 (d, 2H, Prop), 3.34 (s, 3H, 6-OCH3), 3.87
(423.5)	(s, 3H, 3-OCH3), 4.46 (s ^a , 1H, 4-OH), 5.74 (s ^a , 1H,
423 (13) [M ⁺],	20-OH), 6.57 (d, 1H, 1-H), 6.68 (d, 1H, 2-H).
405(100)	
7 g	1.37 (s, 3H, 20-Me), 1.43 (s, 3H, 20-Me), 2.57 (s, 3H,
C24H33NO4	NCH3), 3.33 (s, 3H, 6-OCH3), 3.87 (s, 3H, 3-OCH3),
(399.5)	4.46 (s ^a , 1H, 4-OH), 5.74 (s ^a , 1H, 20-OH), 6.58 (d,
399 (12) [M ⁺],	1H, 1-H), 6.70 (d, 1H, 2-H).
366(100)	
8a	0.10-0.80 (m, 5H, cProp), 0.90 (m, 1H, 8a-H), 1.20 (s,
C ₂₆ H ₃₅ NO ₄	3H, 20-Me), 1.44 (s, 3H, 20-Me), 3.52 (s, 3H, 6-
(425.6)	OCH3), 4.80 (s ^a , 1H, 3-OH), 5.07 (s ^a , 1H, 20-OH)
425 (55) [M ⁺], 384	5.11 (d, 1H, 5β-H), 6.52 (d, 1H, 1-H), 6.68 (d, 1H, 2-
(100)	H)
8b	0.85 (m, 1H, 8α-H), 1.17 (s, 3H, 20-Me), 1.42 (s, 3H,
C30H37NO4	20-Me), 3.50 (s, 3H, 6-OCH3), 5.05 (s ^a , 1H, 20-OH),
(474.6)	5.15 (s, 1H, 5β-H), 5.40 (s ^a , 1H, 3-OH), 6.52 (d, 1H,
[M ⁺] couldn't	1-H), 6.70 (d, 1H, 2-H), 7.12-7.34 (m, 5H, Ar).
detected	

(continued)

Table 2. Continued

8c	0.90 (t, 3H, CH3CH2CH2), 1.18 (s, 3H, 20-Me), 1.43				
C25H35NO4	(s, 3H, 20-Me), 3.51 (s, 3H, 6-OCH3), 4.82 (s ^a , 1H, 3-				
(413.5)	OH), 5.05 (s ^a , 1H, 20-OH), 5.09 (d, 1H, 5β-H), 6.53				
413 (6) [M ⁺], 384	(d, 1H, 1-H), 6.70 (d, 1H, 2-H).				
(100)					
8d	0.87 (m, 1H, 8a-H), 1.20 (s, 3H, 20-Me), 1.43 (s, 3H,				
C25H33NO4	20-Me), 3.53 (s, 3H, 6-OCH3), 4.95 (s ^a , 1H, 3-OH),				
(411.5)	5.07-5.23 (m, 2H, All), 5.10 (s ^a , 1H, 20-OH), 5.15 (d,				
411 (46) [M ⁺], 352	1H, 5β-H), 5.65-5.90 (m, 1H, All), 6.53 (d, 1H, 1-H),				
(100)	6.70 (d, 1H, 2-H).				
8e	0.90 (m, 1H, 8α-H), 1.22 (s, 3H, 20-Me), 1.45 (s, 3H,				
C27H37NO4	20-Me), 1.67 (s, 3H, Me), 1.77 (s, 3H, Me), 3.54 (s,				
(439.6)	3H, 6-OCH3), 5.10 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-				
439 (4) [M ⁺], 380	OH), 6.54 (d, 1H, 1-H), 6.73 (d, 1H, 2-H), 8.05 (s ^a ,				
(8), 69 (100)	1H, 3-OH)				
8f	0.92 (m, 1H, 8α-H), 1.20 (s, 3H, 20-Me), 1.44 (s, 3H,				
C25H31NO4	20-Me), 2.23 (t, 1H, Prop), 3.28 (d, 2H, Prop), 3.54 (s,				
(409.5)	3H, 6-OCH3), 5.08 (d, 1H, 5β-H), 5.20 (s ^a , 1H, 20-				
409 (10) [M ⁺], 108	OH), 6.53 (d, 1H, 1-H), 6.72 (d, 1H, 2-H), 8.03 (s ^a ,				
(100)	1H, 3-OH)				
8g	0.90 (m, 1H, 8α-H), 1.18 (s, 3H, 20-Me), 1.42 (s, 3H,				
C23H31NO4	20-Me), 2.30 (s, 3H, NCH3), 3.52 (s, 3H, 6-OCH3),				
(385.5)	5.09 (d, 1H, 5β-H), 5.15 (s ^a , 1H, 20-H), 5.20 (s ^a , 1H,				
385 (100) [M ⁺]	3-OH), 6.53 (d, 1H, 1-H), 6.68 (d, 1H, 2-H)				
8i ^b	0.65 (m, 1H, 8α-H), 1.22 (s, 3H, 20-Me), 1.32 (s, 3H,				
C22H29NO4	20-Me), 3.28 (s, 3H, 6-OCH3), 4.50 (s ^a , 1H, 20-OH),				
(371.4)	4.94 (d, 1H, 5β-H), 6.42 (d, 1H, 1-H), 6.65 (d, 1H, 2-				
371 (100) [M ⁺]	H), 8.90 (s ^a , 1H, 3-OH)				

a: exchangeable; b: in DMSO-d6; Abbreviations: cProp: protons of the cyclopropyl ring; Ar: aromatic protons; All: protons of the allyl or 3,3-dimethylallyl groups; Prop: protons of the propargyl group

Detailed ¹H-NMR studies of the 7α and 7β -6,14-ethenomorphinane derivatives have been accomplished by Fulmor et al¹⁵, Uff and coworkers¹², and Mazza¹³ reported ¹H and ¹³C NMR examination of derivatives carrying 7β substituents. The chemical shift value of the 5β proton is of diagnostic importance to establish the stereochemistry of carbon C-7.

	7α- Acetyl ⁸			7β- Acetyl		
N-substituent	7-Acetyl	5β - Η	ν _{CO}	7-Acetyl	5β-Η	ν _{CO}
Methyl	2.25	4.47	1709	2.27	4.97	1705
Н	2.28	4.45	1705	2.30	4.80	1699
Cyclopropylmethyl	2.26	4.48	1701	2.28	4.96	1706
n-Propyl	2.25	4.47	1702	2.28	4.94	1709
β-Penylethyl	2.25	4.47	1706	2.27	4.96	1703
Allyl	2.25	4.50	1690	2.28	4.93	1706
3,3-Dimethylallyl	2.25	4.48	1705	2.27	4.96	1707
Propargyl	2.26	4.50	1700	2.27	4.96	1690

Table 3. Chemical shifts (δ , ppm) and $v_{CO}(cm^{-1})$ for 7-acetyl-6,14ethenomorphinane derivatives

For the 5 β proton of the 7 α and 7 β derivatives Fulmor reported¹⁵ chemical shifts of 4.57 ± 0.05 and 5.07 ± 0.12 ppm, respectively. For the numerous new *N*-substituted 7-acetyl-6,14-ethenomorphinane derivatives we also observed that - in agreement with the above literature data - the chemical shift of the 5 β proton of the 7 β derivatives is larger than that of the 7 α isomers. A similar phenomenon

was observed with the acetyl group, as well. The NMR and IR spectral data of the prepared compounds are summarized in Table 3.

The biological investigation of the prepared new derivatives will be the subject of a forthcoming paper.

Experimental

Melting points were measured with a Büchi-535 instrument and the data are uncorrected. The ¹H-NMR spectra were obtained with a Varian - Gemini - 200 spectrometer at 20 °C (internal standard TMS). Optical rotations were determined with a Polmat - A (Zeiss - Jena) polarimeter and the IR spectra were recorded with a Digilab FTS - 40 spectrometer. Column chromatography was performed on Kieselgel 60 (0.063 - 0.2 mm) adsorbed using a 9 : 1 (v/v) eluent for the separation of **6a-g** and **7a-g**. TLC was accomplished on precoated Kieselgel 60 F254 foils (Merck) with the following eluent systems (each v/v): 8 : 2 benzene - methanol, 9 : 1 chloroform - methanol, 5 : 4 : 1 chloroform - acetone - diethylamine. The spots were visualized with UV light or with the Draggendorf reagent.

The large-scale reaction of thebaine (1) and methyl vinyl ketone was executed according to a literature procedure⁹. Catalytic hydrogenation of the obtained mixture of 2a and 2b was performed without separation⁸ to obtain a mixture of 3a and 3b.

Separation of (5R, 6R, 7S, 9R, 13S, 14S) and (5R, 6R, 7R, 9R, 13S, 14S)-7-acetyl-4,5-epoxy-18, 19-dihydro-3, 6-dimethoxy-17-methyl-6, 14-ethenomorphinane (3a and 3b)

By the hydrogenation of a mixture (10 kg) of the vinone (2a) and β -the vinone

(2b) 9157 g of dihydrothevinone (3a) was obtained. From the mother liquor a second corp (472 g) was obtained, which proved to be mostly Bdihydrothevinone. To the product 185 g L-(+) tartaric acid and water (5500 ml) were added, and the mixture was stirred at 70-80 °C until complete dissolution of the solid materials. The solution was then concentrated to its half volume under diminished pressure and cooled to room temperature, when the bitartarate of the 7α -derivative (3a) crystallized in 80-90 % purity and the filtrate was enriched in the 7 β -isomer. Following alkalization of this mother liquor with 25 % aqueous ammonia the free base was extracted with chloroform. The combined chloroform extract was washed with water, dried (Na2SO4), concentrated and the residue was crystallized from ethanol to result in the selective crystallization of the 7ß compound. Repeated recrystallization from ethanol afforded 92 g of βdihydrothevinone (3b) of 98-99 % purity. Mp: 173-174 °C [lit.10 mp 166 °C] -¹H-NMR (CDCl₃): $\delta = 0.88$ (m, 1H, 8 α -H), 2.27 (s, 3H, 7 β -Ac), 2.31 (s, 3H, NCH3), 3.43 (s, 3H, 6-OCH3), 3.88 (s, 3H, 3-OCH3), 4.97 (d, 1H, 5β-H), 6.57 (d, 1H, 1-H), 6.72 (d, 1H, 2-H) - $[\alpha]D^{25} = -196.0$ (c = 1, CHCl₃) - MS (70 eV): m/z (%) = 383 (100) [M⁺] - C₂₃H₂₈NO₄ (383.4).

The separation of the mixture of **2a** and **2b** was accomplished in an essentially similar way. **2b**: Mp: 206-208 °C (EtOH) [lit.¹⁰ mp. 200-202 °C] - ¹H-NMR (CDCl₃): $\delta = 1.62$ (m, 1H, 8 α -H), 2.27 (s, 3H, 7 β -Ac), 2.36 (s, 3H, NCH₃), 3.23 (d, J = 18 Hz, 1H, 10 β -H), 3.60 (s, 3H, 6-OCH₃), 3.81 (s, 3H, 3-OCH₃), 4.98 (d, J = 1.3 Hz, 1H, 5 β -H), 5.47 (d, J = 9 Hz, 1H, 19-H), 6.03 (dd, J₁ = 9 Hz, J₂ = 1.3 Hz, 18-H), 6.48 (d, 1H, 1-H), 6.62 (d, 1H, 2-H) - [α]D²⁵ = -232 (c = 1, CHCl₃) - MS (70 eV): m/z (%) = 381 (40) [M⁺], 206(100) - C₂₃H₂₆NO4 (381.4).

(5R, 6R, 7R, 9R, 13S, 14S)-7-acetyl-4, 5-epoxy-18, 19-dihydro-3, 6-dimethoxy-6, 14-ethenomorphinane (4)

To a solution of 3b (11.3 g, 29.5 mmol) in abs. benzene (150 ml) diethyl azodicarboxylate (7.5 ml, 48.2 mmol) was added and the mixture was refluxed for 16 hrs. After evaporation of the solvent the residue was taken up with ethanol (150 ml), pyridine chlorohydrate (4.5 g) was added, the mixture was stirred at room temperature for 24 hrs and then evaporated. The residue was dissolved in water (400 ml), 5 % HCl (150 ml) was added and extracted with ether (3 x 100 ml). The aqueous layer was alkalized with 25 % aqueous ammonia and extracted with chloroform (3 x 100 ml). The combined chloroform extract was washed with a saturated NaCl solution and then with water, dried over Na2SO4 and evaporated. From the residue the bitartarate salt (12.3 g, 80 %) was prepared, mp. 210-211 °C. For further experiments, as well as for analytical purposes the free base 4 was prepared and crystallized from ether, mp. 152-153 °C. ¹H-NMR (CDCl₃): $\delta = 0.85$ (m, 1H, 8 α -H), 2.30 (s, 3H, 7 β -Ac), 3.43 (s, 3H, 6-OCH₃), 3.87 (s, 3H, 3-OCH3), 4.80 (d, 1H, 5β-H), 6.56 (d, 1H, 1-H), 6.72 (d, 1H, 2-H) $- [\alpha]D^{25} = -202.8$ (c = 1, CHCl₃) - MS (70 eV): m/z (%) = 369 (100) [M⁺] -C22H27NO4 (369.4).

General procedure for the synthesis of (5R,6R,7R,9R,13S,14S)-7-Acetyl-4,5-epoxy-18,19-dihydro-3,6-dimethoxy-17-substituted-6,14-ethenomorphinanes (5a-f)

The syrupy free base 4 was prepared from the bitartarate salt (3 g, 5.8 mmol) and dissolved in abs. N,N-dimethylformamide (25 ml). This solution was treated with sodium hydrogen carbonate (1.75 g) and the alkyl bromide (8.7 mmol)

[cyclopropylmethyl bromide, β -phenylethyl bromide, n-propyl bromide, allyl bromide, 3,3-dimethylallyl bromide and propargyl bromide] and stirred at 90 °C for 20 hrs. After removal of the inorganic salt by filtration the solvent was distilled off, the residue was suspended in water, the pH was made alkaline by the addition of aqueous ammonia and the mixture was extracted with chloroform. The combined organic layer was washed with water, dried over Na₂SO₄ and evaporated. The syrupy residue was crystallized from ethanol. The physical and ¹H-NMR spectral data of the products are collected in Table 1 and Table 2, respectively.

General procedure for the Grignard reaction of **5a-f** with methyl magnesium iodide

To the Grignard reagent prepared from magnesium shavings (0.35 g) and methyl iodide (0.9 ml) in abs. toluene (4 ml) and abs. ether (11 ml) a solution of 3.40 mmol of the *N*-substituted β -dihydronorthevinone derivative (**5a-f**) in abs. toluene (7 ml) was dropwise added over a period of 1 h. Then the solution was stirred under gentle reflux for 1 h, allowed to cool to room temperature and poured into 50 ml of saturated aqueous ammonium chloride solution. The mixture was extracted with toluene (3 x 20 ml), the combined organic phase was washed with a saturated sodium chloride solution, dried (Na₂SO₄) and evaporated to obtain a two-component product (TLC). The physical and spectral data of the pure products obtained by means of column chromatography are summarized in Tables 1 and 2.

Rearrangement of 7g upon the action of acid

A mixture of 7g (0.2 g, 0.5 mmol) and 2N HCl (4 ml) was stirred for 10 min,

when TLC showed that the starting material had reacted. The reaction mixture was alkalized with 25 % aqueous ammonia, extracted with chloroform, dried over Na₂SO₄ and then evaporated. **9**: ¹H-NMR (CDCl₃): δ = 1.68 (s, 3H, 20-Me), 1.74 (s, 3H, 20-Me), 2.35 (s, 3H, NMe), 3.08 (d, J = 18 Hz, 1H, 10\beta-H), 3.82 (s, 3H, 3-OMe), 5.80 (s, deuterable, 1H, 4-OH), 6.63 (s, 2H, 1-H, 2-H) - MS (70 eV): m/z (%) = 367 (100) [M⁺], 310 (30), 293 (12) - IR: v_{CO} = 1700 cm⁻¹ - mp. 287-290 °C [HCl] - C₂₃H₂₉NO₄ (367.4)

Reaction of 6g with cyanogen bromide

To a solution of 6g (3.9 g, 9.7 mmol) in chloroform (20 ml; previously dried over CaCl₂) was treated with cyanogen bromide (1.9 g, 18 mmol) at room temperature for 24 hrs. The solvent and the excess of the reagent were removed by evaporation, the residue was diluted with ethanol (50 ml) and the mixture was concentrated to its half volume. Upon cooling crystalline **6h** was separated, which was filtered off and dried. The product was then transformed into the corresponding *N*-demethyl derivative **6i** with KOH in diethyleneglycol as previously described in the literature^{7,16}.

N-Alkylation reactions

To a mixture of **6i** (1.1 g, 2.8 mmol), abs. *N*,*N*-dimethylformamide (6 ml) and NaHCO₃ (0.6 g) the required alkylating agent (4.2 mmol) [cyclopropylmethyl bromide, β -phenylethyl bromide, n-propyl bromide] was added, and it was stirred at 95 °C for 20 hrs. The inorganic salts were then filtered off, the solvent was evaporated under diminished pressure, the residue was suspended in water, alkalized with a small volume of aqueous ammonia, extracted with chloroform

and evaporated. The obtained syrupy products were crystallized from the suitable solvent.

Hydrolysis and O-demethylation of the cyanamide **6h** was carried out in one step as described in the literature⁷ to obtain **8i**. N-Alkylation of this compound was carried out according to our procedure⁸ by application of 1.1 equivalent of the alkylating agent to obtain **8d-f** with good yields.

O-demethylation of 6e in a nPrSH/NaH/N,N-dimethylformamide system

To a suspension of NaH (0.23 g) in abs *N*,*N*-dimethylformamide (2 ml) npropanethiol (0.12 ml) in abs. *N*,*N*-dimethylformamide (3 ml) was added under a N₂ atmosphere. After stirring for 5 min a solution of **6e** (0.4 g, 0.8 mmol) in *N*,*N*-dimethylformamide (3 ml) was added and the reaction mixture was boiled under reflux for 4 hrs. It was then cooled, acidified to pH = 2 with 1N HCl and extracted with ether (30 ml). The aqueous phase was alkalized with aqueous ammonia, extracted with a 9 : 1 (v/v) chloroform - methanol mixture and the organic layer was evaporated under diminished pressure. From the residue the bitartarate salt was prepared with L-(+) tartaric acid, which was filtered to obtain 0.36 g (70 %) **8e**.

Acknowledgement The authors thank *Mrs. Julianna Nagy* and *Mrs. Julianna Kabay* for their technical assistance. This work was financially supported in part by a grant (*OTKA I/3 reg. No.: 1722*) obtained from the National Science Foundation (Hungary).

References

- Morphine alkaloids Part 130. For Part 129. see Simon, C.; Hosztafi, S.;
 Makleit, S. *Tetrahedron* 1994, 50, 9757-9768.
- 1a. Sandermann, W. Ber. Dtsch. Chem. Ges. 1938, 71, 648-650.
- Schöpf, C.; von Gottberg, K.; Petri, W. Justus Liebigs Ann. Chem. 1938, 536, 216-257.
- 2. Bentley, K. W.; Thomas, A. F. J. Chem. Soc. 1956, 1863.
- 3. Bentley, K. W.; Hardy, D. G. Proc. Chem. Soc. 1963, 220.
- Bentley, K. W. The Morphine Alkaloids; In Manske, R. H. F. (ed.) The Alkaloids (Chem. and Physiology) Vol. XIII. Chapter 1. Academic Press New York - London; 1971, pp. 75-163.
- Casy, A. F.; Parfitt, R. T. Opioid Analgesics, Chemistry and Receptors; Plenum Press, New York and London 1986.
- Maat, L. Novel Thebainlike Morphinan-dienes and their Diels-Alder Adducts; In Phan, P. T. K.; Rice, K. (eds.), Drugs of Abuse: Chemistry, Pharmacology, Immunology and AIDS; NIDA Research Monograph 1990, pp. 96, 35-49.
- 7. Marton, J.; Szabó, Z.; Hosztafi, S. Liebigs Ann. Chem. 1993, 915-919.
- Marton, J.; Hosztafi, S.; Berényi, S.; Simon, Cs.; Makleit, S. Monatsch. Chem. (accepted for publication)
- 9. Bentley, K. W.; Hardy, D. G. J. Am. Chem. Soc. 1967, 89, 3267-3273.
- Bentley, K. W.; Hardy, D. G.; Meek, B. J. Am. Chem. Soc. 1967, 89, 3273-3280.

- Bentley, K. W.; Burton, M.; Uff, B. C. J. Med. Chem. 1984, 27, 1276-1280.
- Uff, B. C.; Mallard, A. S.; Davis, J. A.; Henson, R. Magn. Reson. Chem. 1985, 23(6), 454-459.
- 13. Mazza, M. S. Magn. Reson. Chem. 1993, 31, 444-446.
- Bentley, K. W.; Hardy, D. G.; Crocker, H. P.; Hadlesey, D. I.; Mayor, P. A. J. Am. Chem. Soc. 1967, 89, 3312-3321.
- Fulmor, W.; Lancaster, J. E.; Morton, G. O.; Brown, J. J.; Howel, C. F.;
 Nora, C. T.; Hardy, R. A. J. Am. Chem. Soc. 1967, 89, 3322-3330.
- Bentley, K. W. Brit. Pat. 1, 136,214, 1968; Chem. Abstr. 1969, 70, 78218s.

(Received in the UK 23 August 1994)