

Article

Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)

Mild Aliphatic and Benzylic Hydrocarbon C–H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Sascha H. Combe, Abolfazl Hosseini, Alejandro Parra, and Peter R. Schreiner

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b02829 • Publication Date (Web): 20 Jan 2017

Downloaded from http://pubs.acs.org on January 20, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Mild Aliphatic and Benzylic Hydrocarbon C–H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Sascha H. Combe,[‡] Abolfazl Hosseini,[‡] Alejandro Parra,[#] and Peter R. Schreiner^{*,‡}

[‡]Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany [#]Departamento de Química Orgánica, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain Keywords: alkyl chlorides, benzylic chlorides, N-hydroxyphthalimide (NHPI), phthalimido-N-oxyl (PINO), radicals

ABSTRACT: We present the controlled monochlorination of aliphatic and benzylic hydrocarbons with only *one* equivalent of substrate at 25-30 °C using *N*-hydroxyphthalimide (NHPI) as radical initiator and commercially available trichloroisocyanuric acid (TCCA) as the chlorine source. Catalytic amounts of CBr₄ reduced the reaction times considerably due to the formation of chain-carrying •CBr₃ radicals. Benzylic C–H chlorination affords moderate to good yields for arenes carrying electron-withdrawing (50-85%) or weakly electron-donating groups (31-73%); cyclic aliphatic substrates provide low yields (24-38%). The products could be synthesized on gram scale followed by simply purification via distillation. We report the first direct side-chain chlorination of 3-methylbenzoate affording methyl 3-(chloromethyl)benzoate, which is an important building block for the synthesis of vasodilator taprostene.

INTRODUCTION

Benzylic and alkyl chlorides are used for the production of a very large variety and quantity of chemicals.¹ In 1853, Cannizzaro first explored the thermal side-chain chlorination of toluene using elemental chlorine.² Sixty years later, BASF published a patent that described the chlorination of *para*-toluenesulfonyl chloride with PCl₅ and Cl₇ under irradiation.³ The growing significance and ubiquity of these compounds have urged scientists to develop methods with various aliphatic C-H bond chlorination agents including Cl₂,⁴ SO₂Cl₂,⁵ NaOCl,⁶ ^tBuOCl,⁷ Et₄NCl,⁸ benzyltrimethylammonium tetrachloroiodate (BTMAICl₄),⁹ 1,3-dichloro-5,5-dimethylhydantoin,¹⁰ trichloroisocyanuric acid (TCCA),11 and NaCl/HCl.12 These radical-type chlorination reactions often require heating or irradiation, and some chlorination agents are explosive, toxic as well as highly corrosive. The once-common solvent for side-chain chlorination reactions, CCl_{41} is now forbidden in many countries due to its carcinogenic and ozone depleting nature. Chlorination using elemental chlorine often results in nearly inseparable multiple sidechain chlorinated products. To avoid polychlorination nearly all of the methods mentioned above need a very large excess of substrate or, in many instances, the substrate is used as solvent^{4-5,7,11} (Table 1), which represents the major drawback. For that reason the substrates typically are restricted to liquids. An additional drawback especially when using NaOCl or ^tBuOCl is the formation of oxygenated products.^{6b,7c} Recently Whiting and coworkers invented a visible light nano-Ag/AgCl catalyzed

reaction using brine and hydrogen chloride as chlorine source.¹² The crude product NMR spectra also indicated the formation of oxygenated products. There are only very few robust methods for the selective catalytic chlorination of aliphatic C-H bonds.^{6a,14} For instance, sodium hypochlorite can be employed as the chlorine source in the presence of a manganese porphyrin catalyst. An L-Mn^{IV}-OCl complex is suggested to transfer a chlorine atom to the substrate, thereby regenerating an Mn^V=O complex responsible for hydrogen abstraction.^{6a} The substrate scope is limited to aliphatic hydrocarbons and the only example of an aromatic side-chain chlorination is toluene that afforded 38% GC-yield of unisolated benzyl chloride; as the isolation of the pure chlorination products often is as challenging as the reactions themselves (and often is not reported), there still is a considerable need for controlled catalytic and safe chlorination reactions.

In continuation of our previous studies on C–H bond halogenations,¹⁵ we herein report a safe, cheap, atom economic, air and moisture tolerating approach for the side-chain chlorination of a range of arenes and alkanes with yields (of isolated product) of up to 85% at 25–30 °C with *N*-hydroxyphthalimide 1 (NHPI) as radical initiator.

Scheme 1: Formation of PINO (2)[.]

Table 1. Comparison of different chlorination methods for some arenes

 #	Starting material ^a	Product	Conditions	Yield [%]
 1	toluene	benzyl chloride	SO ₂ Cl ₂ , DBPO, reflux, 0.25 h	80 ^{b,e,5a}
2	toluene	benzyl chloride	SO_2Cl_2 , $Pd(PPh_3)_4$, reflux, 2–5 h	82 ^{b,e,5b}
3	toluene	benzyl chloride	SO ₂ Cl ₂ , AIBN, reflux, 0.25 h	70 ^{b,e,5c}
ر 4	toluene	benzyl chloride	BTMAICL. AIBN. reflux. $4-7$ h	65 ^{b,e,9}
т 5	toluene	benzyl chloride	t-BuOCl AIBN 40 °C N 4 h	00 ^{b,e,7c}
5 6	toluene	benzyl chloride	Cl CSO Cl by up % 8b	80 ^{b,e,16}
-	toluene	benzyl chloride	PCl reflux to b	07 ^{b,e,17}
/ 8	toluono	bonzyl chlorido	TCCA DBDO CCL $= 8 ^{\circ}\text{C}$ a b	97 1 ^{b,e,11}
0	toluene	benzyl chloride	$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$	44 9 , ^{b,e,18}
9	toluene	benzyl chloride	FINCE, 15 C, N_2 , 211 Et NCL (a - again, related to mCDPA) mCDPA do	04 ^{c,8a}
10	toluene	benzyr chioride	gassed CH ₃ CN, N ₂ , r.t. 3 min	II odf62
11	toluene (3 equiv.)	benzyl chloride	NaOCI (0.33 M, pH = 11, 1 equiv.), manganese por- phyrin (0.03 equiv.) TBACI (0.04 equiv.) CH CL r t	38 ^{c,u,i,0a}
12	toluene (1 equiv.)	benzyl chloride	Et ₄ NCl (10 equiv.), CH ₃ C(O)OOH (4 equiv.), CH ₃ CN, N ₂ , 22 °C, 8 h	3 ^{d,8b,19}
13	toluene (1 equiv.)	benzyl chloride	KCl (7.5 equiv.), KHSO ₄ (5 equiv.), CH ₂ Cl ₂ , r.t., 1 h	48 ^{c,d,g,20}
14	toluene (1 equiv.)	benzyl chloride	NaCl/HCl, nano Ag/AgCl (0.09 equiv.), hv, r.t., 5–9 h	40 ^{h,12}
15	toluene (1 equiv.)	benzyl chloride	TCCA (0.4 equiv.), Cu(OAc), H,O (0.02 equiv.),	58 ^{b,f}
-		,	NHPI (0.1 equiv.), CBr ₄ (0.1 equiv.), CH ₂ Cl ₂ , 25 °C, 22	2
			h	
16	<i>p</i> -xylene	₄-methylbenzyl chloride	SO ₂ Cl ₂ , Pd(PPh ₂)., reflux, 2–5 h	85 ^{b,e,5b}
17	<i>p</i> -xylene	4-methylbenzyl chloride	SO CL zeolite (NaX) reflux 1 h	72 ^{b,e,5d}
18	<i>p</i> -xylene	4-methylbenzyl chloride	$CLCSO_{1}CLDBPO_{10}C_{2}h$	80 ^{b,e,16}
10	<i>p</i> -xylene	4-methylbenzyl chloride	Cl reflux by $2 h$	84 ^{b,e,21}
20	<i>p</i> -xylene (1 equiv.)	4-methylbenzyl chloride	NCS (1 equiv) DCF 80 °C $12-14$ h	62 ^{b,ed,22}
20	p-yylene (requiv.)	4-methylbenzyl chloride	[Hmim][NO] (2 equiv.) 27% HCl (1 equiv.) 80 °C	05 10 ^{c,d,e,23}
21	<i>p</i> -xylene (requiv.)	4-inethyloenzyr enionae	48 h	io edfar
22	<i>p</i> -xylene (1 equiv.)	4-methylbenzyl chloride	CsCl (1 equiv.), NCS (1 equiv.), powdered glass, 120 W, 102 °C, 4 min	50 ^{C,u,1,24}
23	<i>p</i> -xylene (1 equiv.)	4-methylbenzyl chloride	TCCA (0.4 equiv.), $Cu(OAc)_2 H_2O$ (0.02 equiv.),	31 ^{b,f}
			h	
24	3-chlorotoluene	3-chlorobenzyl chloride	SO_3Cl_3 , Pd(PPh_3), reflux, 2-5 h	45 ^{b,e,5b}
25	3-chlorotoluene (1	3-chlorobenzyl chloride	TCCA (0.4 equiv.), Cu(OAc), H,O (0.02 equiv.),	55 ^{b,f}
1	equiv.)	3	NHPI (0.1 equiv.), CBr. (0.1 equiv.), CH ₂ Cl ₂ , 25 $^{\circ}$ C, 40	<i></i>
	1		h	
26	⊿-chlorotoluene	4-chlorobenzyl chloride	SO ₂ Cl ₂ , DBPO, reflux, 0.25 h	$70^{b,e,5a}$
27	4-chlorotoluene	4-chlorobenzyl chloride	SO CL. $Pd(PPh_{1})$, reflux 2-5 h	87 ^{b,e,5b}
-/ 28	4-chlorotoluene	4-chlorobenzyl chloride	NaCl/HCl nano $Ag/AgCl$ (o on equiv.) by rt 5-0 h	27 ^{h,12}
20	4-chlorotoluene (1	4-chlorobenzyl chloride	TCCA (0.4 equiv) Cu $(OAc) \cdot H O (0.02 \text{ equiv})$	27 72 ^{b,f}
29	4 emotorordence (1	4 emotobenzyr emotide	NHPI (0.1 equiv.), CR_{r} (0.1 equiv.), $CH Cl_{22} = 0.022$ equiv.),	15
	cquiv.)		h	
20	4-toluic acid meth-	4-(chloromethyl)	NCS $(2, 2, equiv)$ DBPO CH CO H 2 h	76 ^{b,f,25}
50	vlester (1 equiv.)	henzoic acid mothyl actor	$1.00 (2.2 \text{ cquiv.}), DDI O, CII_3 O_2 II, 3 II$	70 70
21	A-toluic acid meth	4-(chloromethyl)	$K \in \Omega_{0}$ (8 equiv.) MeCN/set NeCl ($y/y = 1/1$) 100 °C	67 ^{c,d,f,26}
יכ	vlester (1 equiv)	henzoic acid methyl ester	$n_{2}o_{2}o_{3}$ (0 equiv.), meen jat. Naci (v/v = 1/1), 100°C,	57
	Justice (1 equiv.)	Sentore acra mentyr cour	1 11	

10

11 12 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

The Journal of Organic Chemistry

#	Starting material ^a	Product	Conditions	Yield [%]
32	4-toluic acid meth- ylester (1 equiv.)	4-(chloromethyl) benzoic acid methyl ester	TCCA (0.4 equiv.), $Cu(OAc)_2 H_2O$ (0.02 equiv.), NHPI (0.1 equiv.), CBr_4 (0.1 equiv.), CH_2Cl_2 , 25 °C, 24 h	85 ^{b,f}
33	4-cyanotoluene	4- (chloromethyl)benzonitrile	SO ₂ Cl ₂ , Pd(PPh ₃) ₄ , reflux, 2–5 h	50 ^{b,e,5b}
34	4-cyanotoluene (1 equiv.)	4- (chloromethyl)benzonitrile	TCCA (0.4 equiv.), $Cu(OAc)_2 H_2O$ (0.02 equiv.), NHPI (0.1 equiv.), CBr_4 (0.1 equiv.), CH_2Cl_2 , 25 °C, 19 h	59 ^{b,f} (70) ^{b,f,i}

^aUsed as solvent ^bIsolated. ^cNot isolated. ^dDetermined by GC-MS. ^cYield related to chlorine source. ^fYield related to substrate. ^gYield related to oxidant. ^hConversion; crude mixture isolation, no mass given and therefore no yield calculable. ⁱ2 equiv. substrate.

NHPI serves as a precursor for the phthalimido-*N*-oxyl **2** (PINO) radical (Scheme 1), which abstracts hydrogen atoms from C–H bonds²⁷ and which is widely used in the oxidation of hydrocarbons, C–C as well as C–N couplings.²⁷ PINO can be generated in the presence of some metal catalyst or a strong oxidant.^{15d,28} So far only the Minisci group developed a method for the halogenation of hydrocarbons with NHPI as the catalyst. The reaction proceeds at 100 °C and needs stoichiometric amounts of CuCl₂ as the chlorine source.²⁹

Among various chlorinating reagents, TCCA is often used for chlorination^{5d,13a,20} and oxidation reactions,³⁰ because it is safe, easy to handle, non-toxic, and a suitable substitute for chlorine gas.³¹ TCCA was first reported in 1902 by Chattaway and Wadmore and is now produced at a scale of about 10⁶ tons per year; it is mainly used as a disinfectant and in food chemistry.³¹ All chlorine atoms in TCCA are typically utilized and it generally has a higher solubility than *N*-chlorosuccinimide (NCS), allowing highly concentrated reaction mixtures and reduction of the volume of organic solvent.

RESULTS AND DISCUSSION

Inspired by this, we chose toluene **3** as model substrate in the presence of TCCA and catalytic amounts of NHPI and cobalt acetate as the radical initiator for our first studies.

Table 2. Initial evaluation of reaction conditions forthe side-chain chlorination of toluene

	3 (1.2	5 mmol)	NHPI (0.12 o(OAc) ₂ •4H ₂ O TCCA (0.5 solvent (2)	5 mmol) (0.025 mmo 5 mmol) mL), r.t.)) ► () 4a	CI		CI CI 4d
_	#	t [h]	Solvent	Conv. [%] ^a	4a ^b	4b ^b	4c ^b	4d ^b
	1 ^{c,d}	16	CH Cl	33	73	12	15	-
	1	19		81	41	25	34	-
	2 ^c	16	AcOH	78	30	51	19	-
	3 ^e	18	CH ₂ Cl ₂	28	86	7	7	-
	4	5	MeCN	80	16	36	48	-
	_f	16	CHCI	48	98	2	traces	-
	5	40	CHCl ₃	46	98	2	traces	-
	6	16	LA DCE	46	100	-	-	-
	U	40	1,2-DCE	35	100	-	-	-
	7	16	CCl ₄	45	100	-	-	-

#	<i>t</i> [h]	Solvent	Conv. [%] ^a	4a ^b	4b ^b	4c ^b	$4d^{b}$
	40		93	82	-	-	18
8 g	24	CC1	52	96	-	-	4
0	48	CCI ₄	91	88	-	-	12
oh	24	CC1	81	90	-	-	10
9	48	CCI ₄	89	82	-	-	18
10 ⁱ	24	CC1	11	100	-	-	-
10	48		51	100	-	-	-
11 ^j	46	CCl_4	-	-	-	-	-
12 ^k	48	CCl ₄	-	-	-	-	-
13	48	CCl	-	-	-	-	-

^aDetermined by GC-MS. ^bGC-MS ratios. ^cTCCA (1.25 mmol). ^dAfter 16 h MeOH (2.5 mmol) added. ^cTBHP (0.125 mmol) added. ^fAfter 40 h additional TCCA (0.5 mmol) added with no further conversion. ^gCo(OAc)_2•4H_2O (0.0125 mmol). ^hCo(OAc)_2•4H_2O (0.0625 mmol). ⁱCo(OAc)_2•4H_2O (0.125 mmol). ⁱWithout Co(OAc)_2•4H_2O. ^kNCS (1.25 mmol) instead of TCCA.

Using CH₂Cl₂ as solvent afforded 24% of benzyl chloride 4a after 16 h (Table 2, entry 1). Adding two equivalents of CH₂OH to the reaction or using AcOH as solvent increased the amount of core substitution product (Table 2, entry 2). We found that 0.4 equiv. of TCCA (about 1.2) equiv. Cl•) is enough for the reaction to proceed smoothly. Adding tert-butyl hydroperoxide (TBHP) did not accelerate the reaction (Table 2, entry 3). In MeCN mainly 4b and 4c were produced (Table 2, entry 4). Increasing the solvent polarity increased the ability of the system for aromatic substitution (Table 2, entry 4), however, the use of DMF or DMSO as solvent led to a violent reaction without formation of products, probably due to reagent decomposition.³² In CHCl₃ and 1,2-dichloroethane the reaction stopped at about 45% (Table 2, entries 5 and 6), even after adding more TCCA. Somewhat expected and equally unfortunate, the best results were obtained in CCl₄, giving mainly benzyl chloride 4a and some benzal chloride 4d (entry 7). Variation of the amount of Co(OAc), (Table 2, entries 7–10) showed that 2 mol% gave the best results (Table 2, entry 7). Higher concentrations of Co(OAc)₂ had an adverse effect on the outcome of the reaction leading to lower conversion even after long reaction times (Table 2, entry 10). The cobalt catalyst is crucial for this reaction and no product formed in the absence of Co(OAc)₂ (Table 2, entry 11). The use of NCS only led to quantitative recovery of the starting materials, even at higher dilution (Table 2, entries 12-13). This may be due to its lower solubility or lower oxidation potential as compared to TCCA.³¹

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46 47

48

49

50

51

52 53

54 55

56

57 58

59 60 To support the assumption that catalytically active trihalomethyl radicals (here •CCl₃) are involved in the reaction,^{15a-c,33} we performed the reaction in CH₂Cl₂ in the presence of CBr₄. Benzyl radicals can react with CBr₄ to form •CBr₃ radicals and the corresponding bromide. The formation of benzyl bromide 5 confirms our mechanistic suggestion (Table 3, entry 1). Additionally -and somewhat surprisingly-, we observed that CBr₄ seemed to catalyze the first stage of the reaction (Table 3, entries 1-2). Encouraged by these results, we tested catalytic amounts of CBr₄ (Table 3, entries 3-7) and found that with 10 mol% CBr₄ the reaction reached nearly its maximum conversion after 16 h (Table 3, entry 5). Lower and higher CBr₄ loadings (Table 3, entries 3-4 and 6-7) as well as using HCBr₃ instead of CBr₄ (Table 3, entries 8-11) or HCCl₃ (Table 3, entry 12) gave inferior results. The reaction did not proceed with less than 5 mol% of NHPI (Table 3, entries 13-14). An NHPI loading of 10 mol% (Table 3, entry 5) was sufficient and gave nearly the same result as with higher catalyst loadings (Table 3, entry 15). Even higher TCCA loadings drastically slowed the reaction probably due to decreased solubility (Table 3, entries 16-17), which is in agreement with our first result (Table 2, entry 1). Remarkably, the reaction still proceeds in the presence of water albeit somewhat more slowly (Table 3, entries 18-19). The reaction is temperature dependent and is best performed at ambient temperature (25 °C) (Table 3, entries 20-21).

 Table 3. Optimization of reaction conditions for the side-chain chlorination of toluene

		Co	NHPI (0.125 mmol 0(OAc) ₂ •4H ₂ O (0.025) Cl mmol) [Br	
	Í] _	TCCA (0.5 mmol)	\rightarrow		
			CH ₂ Cl ₂ (2 mL)			
	3 (1.25	i mmol)	r.t.	4a	5	
-	#	t	Additive	Conditions		Conv.
_		[h]	[mmol]			[%] ^a
	1	20	CBr ₄ (1.25)	-		53 [°]
		43				65
	2	17	-	-		31
		42				64
	3	16	CBr_4 (0.0125)	-		33
		40				58
	4	16	CBr ₄ (0.0625)	-		39
		40				63
	5	16	CBr ₄ (0.125)	-		69
		40				79
	6	16	CBr ₄ (0.188)	-		47
		40				58
	7	16	CBr_{4} (0.25)	-		24
		14				49
	8	16	HCBr ₃ (0.125)	-		25
		40				45
	9	16	HCBr ₃ (0.188)	-		28
		40				54
	10	16	HCBr ₃ (0.25)	-		30
		40				55

#	t	Additive	Conditions	Conv.
	[h]	[mmol]		[%] ^a
11	16	HCBr ₃ (0.625)	-	47
	40			63
12	16	HCCl ₃ (0.125)	-	22
	40			45
13	40	CBr ₄ (0.125)	No NHPI	-
14	40	CBr ₄ (0.125)	NHPI (o.o63 mmol)	-
15	40	CBr ₄ (0.125)	NHPI (0.25 mmol)	77
16	41	CBr ₄ (0.125)	TCCA (0.75 mmol)	33
17	41	CBr ₄ (0.125)	TCCA (1.00 mmol)	24
18	16	CBr ₄ (0.125)	H ₂ O (0.125 mmol)	16
	40			44
19	16	CBr ₄ (0.125)	H ₂ O (0.375 mmol)	1
	40			37
20	18	CBr ₄ (0.125)	18 °C	44
21	19	CBr ₄ (0.125)	25 °C	74
22	16	CBr ₄ (0.125)	Cu(OAc) ₂ •H ₂ O (0.025 mmol)	47
	40			75
23	16	CBr ₄ (0.125)	Cu(acac) ₂	50
	40		(0.025 mmol)	62
24	16	CBr ₄ (0.125)	CuCl ₂	34
	40		(0.025 mmol)	79

^aConversion of the starting material to 4a determined by GC-MS. ^bOnly here 5 was obtained after 20 h in the ratio 10 : 1 (4a : 5) and disappeared over the course of the reaction.

Finally, it is also possible to substitute $Co(OAc)_2$ for less toxic $Cu(OAc)_2$ (Table 3, entry 22).

With the optimized reaction conditions in hand (CBr₄ (0.125 mmol), CH₂Cl₂ (2 mL), Cu(OAc)₂•H₂O (0.025 mmol), NHPI (0.125 mmol), substrate (1.25 mmol), TCCA (0.5 mmol), 25 °C, termed P1), the scope and limitations of the reaction were examined (Scheme 2). In general, sidechain chlorination provides moderate to good yields for arenes carrying an electron-withdrawing (50-85%) and a weakly electron-donating group (31-73%); modest to strong electron donating groups favor the S_EAr reaction.^{11,30b,34} The stabilization of the resulting substituted tolyl radicals plays an important role concerning the yield, giving the following experimentally observed order: p > o > m, which is consistent with benzyl radical stabilization. Deactivating groups destabilize the radical, hence the substitution at the meta-position gives the lowest Electron-withdrawing groups adjacent to the vield.35 radical also have a destabilizing effect mostly in the proximity to the radical center.³⁶ Consequently, highest yields are obtained for the para-products. Unlike p-tolunitrile however for o- and m-tolunitrile no reaction occurred even when Co(OAc)₂ was used instead of Cu(OAc)₂. 3methylpyridine showed only traces of the desired product, while 2-methylpyridine gave less than 5% of the crude chlorinated product (¹H NMR). This result is in agreement with the results Jeromin and co-workers, when they examined the side-chain chlorination of Nheterocycles using TCCA as chlorine source and DMF as catalyst.32 When they used radical initiators no increase of the reaction rate was observed - it is believed that the reaction is working similar to that for the α -chlorination

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

of ketones for these kinds of substrates. In the case of methyl 3-(chloromethyl)benzoate **15** we report the first direct side-chain chlorination. Structure **15** is an important building block in the synthesis of taprostene,³⁷ a stable prostacyclin analogue used as vasodilator.³⁸ The chlorination of ethylbenzene gave a 2°/1° selectivity of 10:1. Cumene reacted sluggishly and gave an inseparable reaction mixture of core and side-chain chlorinated products. Adamantane reacted very fast to 1-chloroadamantane **18a** and 2-chloroadamantane **18b** in a 5:1 ratio (GC-MS of crude mixture), which is comparable to Cl-radical mediated adamantane chlorinations.³⁹ Remarkably, virtually no oxygenated products were obtained for any substrate examined.

Scheme 2. Substrate scope for the side-chain chlorination of various toluene derivatives; yields of isolated pure products given

Method P1: CBr₄ (0.125 mmol), CH₂Cl₂ (2 mL), Cu(OAc)₂•H₂O (0.025 mmol), NHPI (0.125 mmol), substrate (1.25 mmol), TCCA (0.5 mmol), 25 °C. ^aAccording to P2. ^bDetermined by ¹H NMR. ^cSubstrate (2.5 mmol) used; yield related to TCCA.

The formation of doubly chlorinated products can be diminished to traces or even avoided by reducing the reaction time and by using two equivalents of the substrate. Doubling the amount of the substrate also increased the product yield as exemplified with ptolunitrile. We also investigated the C-H bond chlorination of cyclic and acyclic alkanes on gram scale (Scheme 3). As bromocyclohexane was obtained with CBr₄ as catalyst it had to be omitted. A reason for this observation may lie in the differences of the bond dissociation energies of the products. The bond dissociation energy (BDE) difference for the RCH,-Br bond in benzyl bromide (BDE = 63 kcal mol⁻¹)⁴⁰ and bromoethane (BDE = 72 kcal mol⁻¹) ¹)⁴⁰ is about 9 kcal mol⁻¹. This energy difference seems to allow homolytic cleavage of benzyl bromide (Table 3, entry 1). 2-Bromopropane has a BDE about 74 kcal mol⁻ ^{1,40} i.e., bromocyclohexane is stable under the reaction conditions. Cyclic substrates with various ring sizes (Scheme 3) were chlorinated in low yields (24-38%) and could be purified by simple distillation. As expected, the chlorination of *n*-hexane gave a mixture of three regioisomers, preferentially 3-chlorohexane 19a and 2chlorohexane 19b (3:3:1, ¹H NMR).

Scheme 3. Chlorination of hydrocarbons on gram scale; yields of isolated pure products given

Method P2: CH_2Cl_2 (90 mL), $Cu(OAc)_2 H_2O$ (1.16 mmol), NHPI (5.80 mmol), substrate (58.0 mmol), TCCA (23.2 mmol). ^aAccording to P1; without CBr_4 . ^bDetermined by ¹H NMR.

Based on the results presented here, literature reports, and our computations at the Mo6-2X/cc-pVTZ and B3LYP-D3/6-31G(d,p) level of theory (see SI for computational details), we propose a mechanism as shown in Scheme 4.

 $Cu(OAc)_2$ and TCCA (23) generate the PINO radical (2)⁴¹ that abstracts an H• radical from 3 to form the corresponding benzyl radical (24) in an endergonic step (ΔG_{298} = 11.9 kcal mol^{-1}) (**Initiation**). The chain length of NHPI is one (Table S1), which means that NHPI serves only as radical initiator. Radical 24 subsequently reacts with 23 to form product 4a as well as 25 ($\Delta G_{298} = -15.8 \text{ kcal mol}^{-1}$). Radical 25 is also able to abstract an H• radical from 3 $(\Delta G_{208} = -37.4 \text{ kcal mol}^{-1})$ and forms 26; the latter reacts further until all chlorine is consumed and cyanuric acid (27) precipitates from the reaction mixture as a white solid (catalytic cycle B)." The computed reaction enthalpies for the hydrogen abstraction from 3 with dichloroisocyanuric acid radical 25, monochlorisocyanuric acid radical, cyanuric acid radical ($\Delta G_{298} = -26.1$ to -27.6kcal mol⁻¹) and •CBr₃ radical ($\Delta G_{298} = -4.4$ kcal mol⁻¹) show an overall highly exergonic process. The formation and precipitation of 27 is suggested to be the driving force of the reaction.

Scheme 4. Suggested mechanism for the side-chain chlorination of toluene

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

CBr₄ catalyzes the reaction considerably (Table 3, entry 5) due to the favored formation of •CBr₃ radicals ($\Delta G_{298} = -$ 9.3 kcal mol⁻¹). When all PINO is consumed trihalomethyl radicals carry on the chain reaction (Table S2). Even if one equivalent of **24** is used to produce •CBr₃ radicals, homolytic cleavage of **5** (Table 3, entry 1) as well as C–H abstraction of **3** by a •CBr₃ radical gives overall two equivalents of **24** (catalytic cycle **A**).

In summary, we report a powerful method for the catalytic chlorination of benzylic and aliphatic hydrocarbon C–H bonds using TCCA as a cheap and efficient chlorine source. The metal catalyst Co(OAc)₂⁴¹ that is often employed for the generation of the hydrogen-abstracting PINO radical, could be replaced by less toxic Cu(OAc)₂. Our present approach has the advantage of being mild, safe, cheap, scalable, and that it allows a controlled monochlorination with only *one* equivalent of substrate. A full elucidation of the reaction mechanism is now under investigation.

EXPERIMENTAL SECTION

General Information: All chemicals were purchased in reagent grade or better quality and used without further purification; Cu(OAc)₂•H₂O >99%, Co(OAc)₂•4H₂O >98%, NHPI >99% (TCI), TCCA ≤100%. All solvents were distilled before usage with exception of 1,2-dichloroethane. All boiling points were measured with a precision thermometer of Amarell (up to 250 °C). Analytical thin-layer chromatography (TLC) was performed on SIL G UV₂₅₄ with a fluorescence indicator. Visualization of the TLC plate was performed by UV (254 nm), 5% phosphomolybdic acid in CH₃CH₂OH or permanganate stain. Column chromatography was performed using silica gel 60 (0.040-0.063 mm). ¹H and ¹³C spectra were measured at 25 °C with 200 MHz and 400 MHz spectrometers, using TMS or the solvent peak (CHCl₂: 7.26 ppm; 77.16 ppm) as the internal standard. Reaction progress was monitored

by GC-MS analyses with a Quadrupol-MS (EI) and a GC equipped with a fused silica GC column (30 m \times 0.250 mm, 0.25 micron DB–5MS stationary phase: 5% phenyl and 95% methyl silicone) using He (4.6 grade) as carrier gas; T-program standard 90–250 °C (10 °C/min heating rate), injector and transfer line 250 °C.

General procedure for the chlorination (P1): In a 5 mL reaction vessel Cu(OAc)₂·H₂O (5.00 mg, 0.025 mmol, 0.02 equiv.), *N*-hydroxyphthalimide (20.4 mg, 0.125 mmol, 0.1 equiv.), CBr₄ (41.5 mg, 0.125 mmol, 0.1 equiv.) was diluted in CH₂Cl₂ (2 mL) and stirred for 0.5 min at 25 °C. Subsequently TCCA (116 mg, 0.500 mmol, 0.4 equiv.) and the substrate (1.25 mmol, 1.0 equiv.) was added and the vessel was sealed. After an additional stirring for 17–22 h at 25 °C, the reaction mixture was diluted with sat. brine (10 mL), extracted with CH₂Cl₂ (3x10 mL), dried over MgSO₄ and concentrated under reduced pressure.

General procedure for the chlorination on gram scale without CBr_4 (P2): In a 250 mL reaction vessel $Cu(OAc)_2 \cdot H_2O$ (0.232 g, 1.16 mmol, 0.02 equiv.), *N*-hydroxyphthalimide (0.946 g, 5.80 mmol, 0.1 equiv.) was diluted in CH_2Cl_2 (95 mL) and stirred for 0.5 min at 25 °C. Subsequently TCCA (5.39 g, 23.2 mmol, 0.4 equiv.) and the substrate (58.0 mmol, 1.0 equiv.) was added and the vessel was sealed. After an additional stirring for 20–96 h at 25–30 °C, the reaction mixture was diluted with sat. brine (100 mL), extracted with CH_2Cl_2 (3x80 mL), dried over MgSO₄ and concentrated under reduced pressure.

Benzyl chloride (**4a**):⁴² According to (**P**₁). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 9:1) to give the chloride **4a** (91.9 mg, 0.726 mmol, 58% as a colorless liquid, $R_f = 0.48$; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41-7.30$ (m, 5 H), 4.60 (s, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.6$, 128.9, 128.7, 128.6, 46.4 ppm.

4-methylbenzyl chloride (6a):⁴³ According to (**P1**). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 19:1) to give the chloride **6a** (54.9 mg, 0.390 mmol, 31%) as a colorless liquid, R_f = 0.51; ¹H NMR (400 MHz, CDCl₃): δ = 7.29 (d, 2 H, *J* = 8.1 Hz), 7.18 (d, 2 H, *J* = 7.8 Hz), 4.58 (s, 2 H), 2.37 (s, 3 H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 138.4, 134.7, 129.6, 128.7, 46.4, 21.3 ppm.

1,4-Bis(chloromethyl)benzene (6b):⁴⁴ According to (P1). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 19:1) to give the chloride 6b (26.6 mg, 0.152 mmol, 12%) as a colorless solid, $R_f = 0.35$; m.p. 98–99 °C (Lit. 98 °C)⁴⁵; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.39$ (s, 4 H), 4.59 (s, 4 H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.8$, 129.1, 45.8 ppm.

3-methylbenzyl chloride (7):⁴² According to (**P**₁). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 19:1) to give the chloride 7 (58.4 mg, 0.415 mmol, 33%) as a colorless liquid, R_f = 0.48; ¹H NMR (400 MHz, CDCl₃): δ = 7.27-7.13 (m, 4 H), 4.57 (s, 2 H), 2.37 (s, 3 H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 138.6, 137.5, 129.5, 129.3, 128.8, 125.8, 46.5, 21.5 ppm.

1-chloro-1-phenylethane (8):⁴⁶ According to (**P1**). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, pentane) to give the chloride **8** (45.9 mg, 0.327 mmol, 26%) as a colorless liquid, $R_f = 0.29$; According to (**P2**). The residue was purified by distillation after 18 h to give a mixture of (2-chloroethyl)benzene (403 mg, 2.87 mmol, 5%) and **8** (2.97 g, 21.1 mmol, 36%) as a colorless liquid, bp = 60 °C (10 mbar); yield determined by 'H-NMR; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.44-7.26$ (m, 5 H), 5.10 (q, 1 H, *J* = 6.8 Hz), 1.86 (d, 3 H, *J* = 6.8 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 143.0$, 128.8, 128.4, 126.6, 58.9, 26.7 ppm.

1-(chloromethyl)naphthalene (9):⁴² According to (**P1**). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 19:1) to give the chloride **9** (34 mg, 0.192 mmol, 15%) as a light brownish viscous oil, $R_f = 0.18$; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.17$ -8.14 (m, 1 H), 7.91–7.84 (m, 2 H), 7.63–7.58 (m, 1 H), 7.56–7.51 (m, 2 H), 7.46–7.41 (m, 1 H), 5.07 (s, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 134.1$, 133.2, 131.3, 129.9, 129.0, 127.8, 126.9, 126.3, 125.4, 123.8, 44.7 ppm.

2-chlorobenzyl chloride (**11**):⁴² According to (**P1**). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 12:1) to give the chloride **11** (136 mg, 0.842 mmol, 67%) as a colorless liquid, R_f = 0.48; ¹H NMR (400 MHz, CDCl₃): δ = 7.48–7.44 (m, 1 H), 7.42–7.37 (m, 1 H), 7.30–7.24 (m, 2 H), 4.70 (s, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 135.2, 134.2, 131.0, 130.1, 130.0, 127.3, 43.7 ppm.

3-chlorobenzyl chloride (12):^{46b} According to (P1). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 12:1) to give the chloride 12 (110 mg, 0.684 mmol, 55%) as a colorless liquid, R_f = 0.46; ¹H NMR (400 MHz, CDCl₃): δ = 7.40 (bs, 1 H), 7.31-7.27 (m, 3 H), 4.55 (s, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 139.4, 134.7, 130.1, 128.9, 128.7, 126.8, 45.4 ppm.

4-chlorobenzyl chloride (13):⁴² According to (**P1**). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 20:1) to give the chloride **13** (147 mg, 0.912 mmol, 73%) as a colorless solid, $R_f = 0.37$; m.p. 28–29 °C (Lit. 28 °C)⁴⁷; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36$ –7.30 (m, 4 H), 4.55 (s, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 136.1$, 134.5, 130.1, 129.1, 45.5 ppm.

Methyl 2-(chloromethyl)benzoate (14):⁴⁸ According to (P1). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 9:1) to give the chloride 14 (141 mg, 0.764 mmol, 61%) as a colorless liquid, $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.98$ (d, 1 H, J = 7.8 Hz), 7.57–7.49 (m, 2 H), 7.43–7.37 (m, 1 H), 5.05 (s, 2 H), 3.93 (s, 3 H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.2$, 138.9, 132.7, 131.2, 131.0, 129.2, 128.5, 52.4, 44.6 ppm.

Methyl 3-(chloromethyl)benzoate (15):³⁷ According to (**P1**). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 9:1) to give the chloride **15** (115 mg, 0.625 mmol, 50%) as a colorless liquid, $R_f = 0.10$; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.06$ (s, 1 H), 7.99 (d, 1 H, J = 7.8 Hz), 7.58 (d, 1 H, J = 7.6 Hz),

7.43 (t, 1 H, *J* = 7.7 Hz), 4.61 (s, 2 H), 3.92 (s, 3 H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 166.6, 138.0, 133.1, 130.8, 129.8, 129.6, 129.0, 52.3, 45.6 ppm.

Methyl 4-(chloromethyl)benzoate (16):⁴⁹ According to (**P1**). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 9:1) to give the chloride **16** (196 mg, 1.06 mmol, 85%) as a colorless solid, $R_f = 0.12$; m.p. 36–37 °C (Lit. 38–39 °C)⁴⁹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.03$ (d, 2 H, J = 8.2 Hz), 7.46 (d, 2 H, J = 8.2 Hz), 4.61 (s, 2 H), 3.92 (s, 3 H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.7$, 142.4, 130.3, 130.2, 128.6, 52.4, 45.5 ppm.

4-(chloromethyl)benzonitrile (17):⁵⁰ According to (**P**1). The residue was purified by column chromatography (silica gel, 2 x 27 cm column, hexane/Et₂O 4:1) to give the chloride 17 (112 mg, 0.741 mmol, 59%)/(160 mg, 1.06 mmol, 70%)⁵¹ as a colorless solid, R_f = 0.22; m.p. 80–81 °C (Lit. 81 °C)⁵²; ¹H NMR (400 MHz, CDCl₃): δ = 7.69–7.64 (m, 2 H), 7.51 (d, 2 H, *J* = 8.3 Hz), 4.60 (s, 2 H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 142.5, 132.7, 129.3, 118.5, 112.4, 45.0 ppm.

Chlorocyclopentane (**20**):⁴² According to (**P2**). The residue was purified by distillation. However **20** formed an azeotrope with CH_2Cl_2 (60 °C), hence remaining CH_2Cl_2 was removed under reduced pressure (25 mbar) while the flask was cooled with an ice bath to give the chloro compound **20** (1.86 g, 17.7 mmol, 31%) as a colorless liquid, ; ¹H NMR (400 MHz, CDCl₃): δ = 4.43–4.33 (m, 1 H), 2.05–1.81 (m, 6 H), 1.73–1.58 (m, 2 H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 62.3, 37.2, 23.1 ppm.

Chlorocyclohexane (21):⁴² According to (P2). The residue was purified by distillation to give the chloro compound 21 (2.60 g, 22.2 mmol, 38%) as a colorless liquid, bp = 39 °C (25 mbar); ¹H NMR (400 MHz, CDCl₃): δ = 4.05–3.97 (m, 1 H), 2.11–2.02 (m, 2 H), 1.84–1.74 (m, 2 H), 1.72–1.60 (m, 2 H), 1.58–1.48 (m, 1 H), 1.42–1.24 (m, 3 H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 60.5, 36.9, 25.3, 25.0 ppm.

Chlorocyclooctane (22):⁵³ According to (P2). The residue was purified by distillation to give the chloro compound 22 (2.01 g, 13.8 mmol, 24%) as a colorless liquid, bp = 80 °C (10 mbar); ¹H NMR (400 MHz, CDCl₃): δ = 4.23 (sept, 1 H), 2.16–2.06 (m, 2 H), 2.05–1.91 (m, 2 H), 1.83–1.68 (m, 2 H), 1.65–1.42 (m, 8 H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 63.7, 35.3, 27.6, 25.1, 23.7 ppm.

ASSOCIATED CONTENT

Supporting Information. Spectra of all compounds, computations and procedure, Cartesian coordinates and absolute energies of all optimized structures "This material is available free of charge via the Internet at http://pubs.acs.org."

AUTHOR INFORMATION

Corresponding Author

*prs@org.chemie.uni-giessen.de

ACKNOWLEDGMENT

This work was supported by the Justus-Liebig University.

REFERENCES

Page 8 of 9

(1) Beilstein, F.; Geitner, P. Liebigs Ann. Chem. 1866, 139, 331.

(2) (a) Cannizzaro, M. S. Compt. Rend. **1855**, *41*, 517; (b) Darmstaedter, L.; du Bois-Reymond, R.; Schaefer, C. Handbuch zur Geschichte der Naturwissenschaften und der Technik; 2. Aufl. 1908. Softcover reprint of the original 2nd ed. 1908 ed.; Springer, 1908.

(3) Friedländer DRP 234913, 1913.

(4) (a) Qinghua, C.; Kongfu, L. CN103787874 A, 2014; (b) Ding, L.; Tang, J.; Cui, M.; Bo, C.; Chen, X.; Qiao, X. *Ind. Eng. Chem. Res.* **2011**, 50, 11143.

(5) (a) Kharasch, M. S.; Brown, H. C. J. Am. Chem. Soc. 1939, 61, 2142; (b) Matsumoto, H.; Nakano, T.; Kato, M.; Nagai, Y. Chem. Lett. 1978, 7, 223; (c) Ford, M. C.; Waters, W. A. J. Chem. Soc. 1951, 1851; (d) Delaude, L.; Laszlo, P. J. Org. Chem. 1990, 55, 5260; (e) Kurdyukov, A. M. Russ. J. Appl. Chem. 2007, 80, 1566.

(6) (a) Liu, W.; Groves, J. T. *J. Am. Chem. Soc.* **2010**, *132*, *12847*; (b) Querci, C.; Strologo, S.; Ricci, M. Tetrahedron Lett. **1990**, *31*, 6577.

(7) (a) Clark Jr., B. F. *Chcm. News* **1931**; (b) Kenner, J. *Nature* **1945**, *156*, 369; (c) Walling, C.; Jacknow, B. B. *J. Am. Chem. Soc.* **1960**, 82, 6108.

(8) (a) Kojima, T.; Matsuo, H.; Matsuda, Y. *Chem. Lett.* **1998**, 27, 1085; (b) He, Y.; Goldsmith, C. R. *Synlett* **2010**, 2010, 1377.

(9) Kajigaeshi, S.; Kakinami, T.; Moriwaki, M.; Tanaka, T.; Fujisaki, S. *Tetrahedron Lett.* **1988**, 29, 5783.

(10) Zhang, Y.; Yamamoto, H.; Shibatomi, K. US20080275253, 2008.

(11) Juenge, E. C.; Beal, D. A.; Duncan, W. P. J. Org. Chem. 1970, 35, 719.

(12) Liu, S.; Zhang, Q.; Li, H.; Yang, Y.; Tian, X.; Whiting, A. *Chem. Eur. J.* **2015**, *21*, 9671.

(13) (a) Tanemura, K.; Suzuki, T.; Nishida, Y.; Horaguchi, T. *Tetrahedron* **2010**, *66*, 2881; (b) Tanemura, K.; Suzuki, T.; Nishida, Y.; Horaguchi, T. *Tetrahedron Lett.* **2008**, *49*, 6419.

(14) Quinn, R. K.; Könst, Z. A.; Michalak, S. E.; Schmidt, Y.; Szklarski, A. R.; Flores, A. R.; Nam, S.; Horne, D. A.; Vanderwal, C. D.; Alexanian, E. J. *J. Am. Chem. Soc.* **2016**, *138*, 696.

(15) (a) Schreiner, P. R.; Lauenstein, O.; Kolomitsyn, I. V.; Nadi, S.; Fokin, A. A. Angew. Chem. Int. Ed. **1998**, *37*, 1895; (b) Schreiner, P. R.; Lauenstein, O.; Butova, E. D.; Fokin, A. A. Angew. Chem. Int. Ed. **1999**, *38*, 2786; (c) Schreiner, P. R.; Lauenstein, O.; Butova, E. D.; Gunchenko, P. A.; Kolomitsin, I. V.; Wittkopp, A.; Feder, G.; Fokin, A. A. Chem. Eur. J. **2001**, *7*, 4996; (d) Zhuk, T. S.; Gunchenko, P. A.; Korovai, Y. Y.; Schreiner, P. R.; Fokin, A. A. Theor. Exp. Chem. **2008**, *44*, 48.

(16) Huyser, E. S.; Giddings, B. J. Org. Chem. 1962, 27, 3391.

(17) Kimbrough Jr., R. D.; Bramlett, R. N. J. Org. Chem. 1969, 34, 3655.

(18) Banks, D. F.; Huyser, E. S.; Kleinberg, J. J. Org. Chem. 1964, 29, 3692.

(19) Goldsmith, C. R.; Coates, C. M.; Hagan, K.; Mitchell, C. A. J. Mol. Catal. A: Chem. **2011**, 335, 24.

(20) Çimen, Y.; Akyuz, S.; Türk, H. New J. Chem. 2015, 39, 3894.

(21) Xie, G.; Zheng, Q.; Huang, C.; Chen, Y. Synth. Commun. 2003, 33, 1103.

(22) Thirumamagal, B. T. S.; Narayanasamy, S.; Venkatesan, R. Synth. Commun. 2008, 38, 2820.

(23) Chiappe, C.; Leandri, E.; Tebano, M. *Green Chem.* 2006, 8, 742.

(24) Bucos, M.; Villalonga-Barber, C.; Micha-Screttas, M.; Steele, B. R.; Screttas, C. G.; Heropoulos, G. A. *Tetrahedron* **2010**, *66*, 2061.

(25) Pathi, S. L.; Kankan, R. N.; Puppala, R. 2008MU02726, 2008.

Catal. 2013, 355, 1077. (27) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800.

(28) Ishii, Y.; Iwahama, T.; Sakaguchi, S.; Nakayama, K.; Nishiyama, Y. J. Org. Chem. **1996**, *61*, 4520.

(26) Gu, L.; Lu, T.; Zhang, M.; Tou, L.; Zhang, Y. Adv. Synth.

(29) Minisci, F.; Porta, O.; Recupero, F.; Gambarotti, C.; Paganelli, R.; Pedulli, G. F.; Fontana, F. *Tetrahedron Lett.* **2004**, *45*, 1607.

(30) (a) De Luca, L.; Giacomelli, G.; Masala, S.; Porcheddu, A. *J. Org. Chem.* **2003**, *68*, 4999; (b) Hubbard, A.; Okazaki, T.; Laali, K. K. *Australian Journal of Chemistry* **2007**, *60*, 923; (c) Jing, Y.; Daniliuc, C. G.; Studer, A. *Org. Lett.* **2014**, *16*, 4932; (d) Mishra, A. K.; Nagarajaiah, H.; Moorthy, J. N. *Eur. J. Org. Chem.* **2015**, 2015, 2733.

(31) Tilstam, U.; Weinmann, H. *Org. Process Res. Dev.* 2002, 6, 384.

(32) Jeromin, G. E.; Orth, W.; Rapp, B.; Weiß, W. Chem. Ber. 1987, 120, 649.

(33) Fokin, A. A.; Lauenstein, O.; Gunchenko, P. A.; Schreiner, P. R. J. Am. Chem. Soc. 2001, 123, 1842.

(34) Maraš, N.; Kočevar, M. Monatsh. Chem. 2015, 146, 697.

(35) (a) Naidu, V. R.; Ni, S.; Franzén, J. *ChemCatChem* **2015**, *7*, 1896; (b) Gronert, S.; Keeffe, J. R. *J. Phys. Org. Chem.* **2013**, *26*, 1023.

(36) Nonhebel, D. C.; Walton, J. C. *Free-radical Chemistry*; Cambridge University Press, 1974.

(37) Bergman, N. A.; Halvarsson, T. J. Org. Chem. 1988, 53, 2548.

(38) (a) Virgolini, I.; Fitscha, P.; O'Grady, J.; Barth, H.; Sinzinger, H. *Prostaglandins Leukot. Essent. Fatty Acids* **1989**, 38, 31; (b) Virgolini, I.; Fitscha, P.; Sinzinger, H.; Barth, H. *Eur. J. Clin. Pharmacol.* **1990**, 38, 347.

(39) Smith, G. W.; Williams, H. D. J. Org. Chem. 1961, 26, 2207.

(40) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.

(41) Yoshino, Y.; Hayashi, Y.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 1997, 62, 6810.

(42) (4a) SDBS No. 1724; (7) SDBS No. 6157; (9) SDBS No. 5939; (11) SDBS No. 1585; (13) SDBS No. 3551; (20) SDBS No. 4784; (21) SDBS No. 2131, Spectral Database for Organic Compounds, accessed 2017-01-03.

(43) Alonso, F.; Barba, I.; Yus, M. Tetrahedron 1990, 46, 2069.

(44) Tong, Y.-Y.; Wang, R.; Xu, N.; Du, F.-S.; Li, Z.-C. J. Polym.

Sci. Pol. Chem. 2009, 47, 4494.

(45) Richter, R.; Tucker, B. J. Org. Chem. 1983, 48, 2625.

(46) (a) Parham, W. E.; Bradsher, C. K.; Reames, D. C. J. Org.

Chem. **1981**, *46*, 4804; (b) Ding, R.; He, Y.; Wang, X.; Xu, J.; Chen, Y.; Feng, M.; Qi, C. *Molecules* **2011**, *16*, 5665.

(47) Fuchs, R. J. Am. Chem. Soc. 1957, 79, 6531.

(48) Hori, M.; Kataoka, T.; Shimizu, H.; Tsutsumi, K. J. Org. Chem. 1987, 52, 1397.

(49) Newman, S. G.; Bryan, C. S.; Perez, D.; Lautens, M. *Synthesis* **2011**, 2011, 342.

(50) Metzger, A.; Argyo, C.; Knochel, P. *Synthesis* 2010, 2010, 882.

(51) Substrate (2.5 mmol); yield related to TCCA.

(52) Baker, J. W.; Brieux, J. A. L.; Saunders, D. G. J. Chem. Soc. **1956**, 404.

(53) Kirchen, R. P.; Sorensen, T. S. J. Am. Chem. Soc. 1979, 101, 3240.

For Table of Contents Only

