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Abstract: Concise biomimetic syntheses of the Strychnos-
Strychnos-type bis-indole alkaloids (¢)-leucoridine A (1) and
C (2) were accomplished through the biomimetic dimerization
of (¢)-dihydrovalparicine (3). En route to 3, the known
alkaloids (++)-geissoschizoline (8) and (¢)-dehydrogeissoschi-
zoline (10) were also prepared. DFT calculations were
employed to elucidate the mechanism, which favors a stepwise
aza-Michael/spirocyclization sequence over the alternate
hetero-Diels–Alder cycloaddition reaction.

Complex natural products continue to spark the creativity of
synthetic organic chemists, and the indole alkaloids are an
excellent example.[1] In 2010, Kam and co-workers isolated
(¢)-leucoridines A (1) and C (2), complex Strychnos-Strych-
nos alkaloids from the stem-bark extracts of Leuconotis
griffithii (Figure 1).[2] Cursory inspection of 2 suggests it can
be readily prepared through the hydrolysis of the indolenine
nucleus in 1, which itself appears to be a dimer of the
monoterpene indole alkaloid (¢)-dihydrovalparicine (3).[3]

Bis-indoles 1 and 2 showed moderate cytotoxicity against
KB cells (IC50 values of 0.57 and 10.91 mg mL¢1, respectively)

and vincristine-resistant KB/VJ300 cells (IC50 values of 2.39
and 11.80 mgmL¢1, respectively). While the biological activ-
ities of these congeners justifies their study, we were
particularly drawn to the complex molecular architectures
of 1 and 2 and hypothesized that these natural products are
most likely formed through a highly stereoselective dimeri-
zation of (¢)-dihydrovalparicine (3).[2] Spirocyclization to
form the epimeric C16 congener would be precluded on steric
grounds by the rigid and bulky (S)-2-ethyl-4-azatricy-
clo[5.3.3.04,8] undecane nucleus.[4] Over the years, we have
developed synthetic methods for the concise syntheses of
various Strychnos alkaloids.[5] Accordingly, we sought to test
our biogenetic hypothesis that 1 and 2 could be synthesized
through the dimerization of (¢)-dihydrovalparicine (3).

Further consideration of our biogenetic hypothesis led us
to propose two mechanistic pathways by which 3 could
dimerize (Scheme 1). On the one hand, 1 could be assembled
through a stepwise aza-Michael addition of the indolenine
nitrogen of one monomer to the electrophilic C16-C22 alkene

of another, followed by diastereoselective spirocyclization
onto an activated C16’-C22’ alkene.[6] On the other hand,
a concerted and highly diastereoselective hetero-Diels–Alder
reaction could be envisioned.[7]

To distinguish between these two mechanistic possibilities,
we first turned to computational quantum chemistry. A search
for transition states (TSs) corresponding to the two pathways
was performed at the SMD-M06-2X/6-31 + G(d) level of
theory.[8] Computations were based primarily on the reaction
of 3 with another monomer of 3 protonated at the indolenine
nitrogen atom, which corresponds to the most likely acid-

Figure 1. Structures of leucoridine A (1), B (2), and the proposed
biogenetic precursor dihydrovalparicine (3).

Scheme 1. The two possible mechanisms for the biomimetic dimeriza-
tion of (¢)-leucoridine A (1) from (¢)-dihydrovalparicine (3): stepwise
aza-Michael/spirocyclization and hetero-Diels–Alder reaction.
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catalyzed pathway (see below). An extensive search failed to
locate a transition state corresponding to a concerted hetero-
Diels–Alder cycloaddition, thus suggesting that such a path-
way is not viable. Instead, we identified a stepwise aza-
Michael/spirocyclization pathway with the free energy profile
(298 K) given in Figure 2. The reaction proceeds through
initial formation of a pre-reaction complex followed by the
aza-Michael addition via TS1, with a free energy barrier of
22.0 kcal mol¢1. The resulting adduct undergoes rotation
about the formed C¢N bond, followed by cyclization via
TS2, which lies 28.5 kcalmol¢1 higher in free energy than the
separated reactants. This yields the conjugate acid of leucor-
idine A (1), which is 12.7 kcal mol¢1 lower in free energy than
the separated reactants.

We also considered the non-acid-catalyzed dimerization
of 3 at the same level of theory. Initially, we considered the
dimerization of 2-vinyl-3H-indole as a model for the non-
acid-catalyzed dimerization of 3. In this case, we located TS
structures for both stepwise and concerted pathways. The
barrier for the concerted pathway is predicted to be 1.6 kcal
mol¢1 higher in free energy than that for the stepwise
pathway. However, for the non-acid-catalyzed dimerization
of 3, a systematic scan over the formation and breaking of C¢
C and C¢N bonds revealed that only a stepwise pathway
exists on this potential energy surface (see the Supporting
Information).

In this non-acid-catalyzed stepwise pathway, the cyclo-
addition step is rate limiting, lying 5.8 kcal mol-1 higher in
free energy than the initial aza-Michael addition. Thus,
regardless of whether this process proceeds via protonation
of the indolenine nitrogen, computations support a stepwise
aza-Michael/spirocyclization mechanism.

To test our biogenetic hypothesis, we focused on an
expedient synthesis of dihydrovalparicine (3). Accordingly,
we began with tetracycle (¢)-4, which was prepared in four
operations from commercial N-tosyl indole 3-carboxaldehyde
(Scheme 2).[5e] Removal of the N-Boc group in 4 with TFA
followed by site-selective N-alkylation with (Z)-2-iodo-2-
butenyl bromide[9] afforded 5 in 75 % yield over two steps.[5d]

To install the fifth ring in 3, we employed a tactic developed
by Rawal,[10] namely the intramolecular Heck reaction, which
furnished (¢)-akuammicine (6)[5d] in 70% yield.

At this stage, stereoselective hydrogenation of the ethyl-
idene moiety in 6 under the agency of AdamsÏs catalyst
delivered (¢)-dihydroakuammicine (7)[11] in 82 % yield. With
7 in hand, we made use of KuehneÏs conditions (i.e.,
NaBH3CN in AcOH) to reduce the vinylogous carbamate,
which afforded a separable mixture of C16 diastereomers (a/
b = 7:1) in 79 % yield.[12] Reduction of the carbomethoxy
group in the requisite major diastereomer with LiAlH4 gave
the known indole alkaloid (++)-geissoschizoline (8) in 80%
yield.[13] Moreover, we were able to obtain a single-crystal X-
ray structure of 8 to confirm the stereochemical course of
both reduction reactions.

The conversion of (++)-geissoschizoline (8) into (¢)-
dihydrovalparicine (3) required 1) chemoselective indoline-
to-indolenine oxidation in the presence of the primary C22
hydroxyl group and 2) dehydration of the latter to install the
C16-C22 olefin. Execution of the first task proved problem-
atic and TES protection of the C22 carbinol with TESOTf and
Et3N had to be employed (79 % yield). Screening various
oxidation conditions revealed Pb(OAc)4 buffered with Et3N
to be the best approach, furnishing indolenine 9 in 48%
yield.[14] Gratifyingly, we were able to perform single-crystal

Figure 2. Free-energy profile of the acid-catalyzed stepwise aza-Michael/spirocyclization pathway (298 K).
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X-ray analysis on 9 to unambiguously confirm its structure.
The second task began with removal of the TES group with
HF·Pyr in 82% yield, which gave the known alkaloid (¢)-
dehydrogeissoschizoline (10).[13] Dehydration of the C16
carbinol was best realized with trifluoroacetic acid (TFA),
a tactic initially reported by Vanderwal and co-workers.[15] In
the event, we obtained a 78 % yield of (¢)-dihydrovalparicine
(3) following careful purification over neutral alumina.

With (¢)-dihydrovalparicine (3) in hand, we proceeded to
test our biogenetic hypothesis. Attempts to effect the
dimerization reaction under neutral conditions by heating
solutions of 3 in various solvents (e.g., THF, 1,4-dioxane,
toluene, DMF, diglyme) at temperatures up to 145 88C (sealed
tube) for 16–48 h resulted in either decomposition or
recovered starting material. We reasoned that the dimeriza-
tion reaction would proceed more readily under acidic
conditions (i.e., electrophilic activation) through protonation
of the indolenine nitrogen. To this end, we screened a variety
of conditions and ultimately found that heating a solution of 3
in toluene at 105 88C for 16 h in the presence of 25 mol% TFA
afforded (¢)-leucoridine A (1) in 40% yield of isolated
product (Scheme 2). While we were delighted to have
prepared the targeted natural product, a more efficient
process for the dimerization of 3 was sorely needed. The
sensitive nature of 3 suggested that bypassing its isolation
would surely increase the yield of 1; moreover, sequestration
of water would drive the equilibrium toward dimerization.
After extensive experimental optimization, we discovered
that when (¢)-dehydrogeissoschizoline (10) was treated with
2.1 equivalents of TFA and 4 è molecular sieves in CH2Cl2

for 24 h, we obtained (¢)-leucoridine A (1) in a satisfactory
73% yield (Scheme 2).[16]

Finally, we found that the addition of 12N HCl to
a solution of 1 in THF for 24 h resulted in ring-opening of

the indolenine to deliver (¢)-leucoridine C (2) in 47% yield.
Spectroscopic data for synthetic (¢)-1 and (¢)-2 (e.g., 1H and
13C NMR, IR, HRMS, optical rotation) were in complete
agreement with those reported by Kam and co-workers.[2, 17] In
summary, we have accomplished the first asymmetric total
syntheses of the Strychnos-Strychnos alkaloids (¢)-leucoridi-
nes A (1) and C (2) by employing a biomimetic dimerization
reaction of (¢)-dihydrovalparicine (3). We optimized the
syntheses of 1 and 2 by preparing 3 in situ by dehydrating (¢)-
dehydrogeissoschizoline (10) with TFA in the presence of 4 è
molecular sieves. Finally, we employed DFT calculations to
elucidate the mechanism of dimerization, and the results
suggest that a stepwise aza-Michael/spirocyclization sequence
is operative as opposed to the alternative hetero-Diels–Alder
pathway.
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Scheme 2. Synthesis of (¢)-dihydrovalparicine (3) and its biomimetic dimerization to form (¢)-leucoridines A (1) and C (2).
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