

Journal of Organometallic Chemistry 533 (1997) 73-77

1.4-Addition of 1.1.2.2-tetrachlorodimethyldisilane to 1.4-diaza-1.3-dienes, synthesis and molecular structure of 1.6-disila-2.5-diaza-1.1.6.6-tetrachloro-1.6-dimethyl-2.5-di-p-tolyl-3.4-diphenyl-hexa-3-ene

U. Herzog a, G. Roewer a, B. Ziemer b, B. Herrschaft b

* Institut f\u00e4r Anorganische Chemie der TU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg, Germany b Institut f\u00fcr Chemie der Humboldt-Universit\u00e4t Berlin, Hessische Str. 1-2, D-10115 Berlin, Germany

Received 17 July 1996; revised 26 September 1996

Abstract

Reaction of 1.1.2.2-tetrachlorodimethyldisilane (4) with 1.4-diazadienes like benzildianil (1), benzildi-p-tolil (2) and benzildi-p-anisil (3) leads to a 1.4-addition product of the disilane under cleavage of the Si-Si bond (1a, 2a, 3a). The structure of 2a was determined by X-ray crystallography (crystal data: monoclinic, P_2/n , a = 14.661(4), b = 12.283(2), c = 17.564(5) Å, $\beta = 103.13^\circ$, Z = 4, R = 0.0585 for 5992 independent reflections). Surprisingly, 2a was found to be in the cis-configuration with almost C_2 symmetry and a torsion angle of only 13°. Owing to statistical disorder, some bond lengths are not in the expected range.

Keywords: Silicon; Disilanes; 1.4-Diazadienes

1. Introduction

1.6-disila-2.5-diazahexa-3-enes and 2-sila-1.3-diazacyclopent-4-enes were prepared earlier by tom Dieck et al. [1] starting from 1.4-diazadienes, R₃SiCl and potassium:

Weidenbruch et al. [2] obtained 1.4-diaza-2.3-disilacyclohexa-5-enes as products of a [4+2]-cycloaddition of

Corresponding author.

tetra-t-butyldisilene (generated photochemically from cyclo-Si₃ 'Bu₆) with 1.4-diisopropyl- as well as 1.4-di-cyclohexyl-1.4-diazadiene:

Because of the bulky substituents, the X-ray structure analysis for $R = \text{cyclo-}C_6H_{11}$ revealed a very long SiSi bond distance of 246.9 pm within this strained six-membered ring. 1.3-Diaza-2-silacyclopent-4-enes with two 'Bu substituents at the silicon atom were prepared from the same 1.4-diazadienes with Li and 'Bu₂SiCl₂ according to Ref. [1]. The X-ray structure analysis for $R = \text{cyclo-}C_6H_{11}$ showed a nearly planar five-membered ring with almost normal SiC, SiN as well as CN bond distances. With an angle sum of 360°, the nitrogen atoms are planar surrounded in the five- as well as in the six-membered ring.

We report a new, very surprising way to obtain 1.6-disila-2.5-diazahexa-3-enes starting from methylchlorodisilanes.

During our investigations concerning the partial hydrogenation of methylchlorodisilanes with tributylstannane in the presence of a Lewis base catalyst [3-5], we also investigated 1.4-diazadienes like 1 as catalyst:

$$R_2$$
MeSi-SiMeRCl + Bu₃SnH $\stackrel{\text{cat.}}{\rightarrow}$ R_2 MeSi-SiMeRH + Bu₃SnCl R = Cl, Me (3)

Whereas SiC!Me₂-SiCIMe₂ (5) could be hydrogenated to SiHMe₂-SiCIMe₂ and SiHMe₂-SiHMe₂ in the presence of 1, surprisingly no hydrogenation took place with SiCl₂Me-SiCl₂Me (4). Using a higher content of 1 (solvent:toluene), small amounts of SiHCIMe-SiCl₂Me and SiH₂Me-SiCl₂Me could be detected, but after standing overnight colourless crystals of a compound having the elemental composition Si₂Cl₄Me₂·1 were formed.

2. Results and discussion

Reaction of 4 with the 1.4-diazadienes 1, 2 and 3 respectively in a 1:1 molar ratio in toluene at ambient temperature yields the 1.4-addition products 1a, 2a and 3a;

(4)

Table 1 Melting points and results of the elemental analysis of 1a, 2a and 3a

Compound	M.p. (°C)	H. (mass%)		Elemental analysis			
		Calc.	Found	C (mass%)		N (mass%)	
				Calc.	Found	Calc.	Found
la	184-185 *	4.45	4.54	57.15	57.22	4.76	4.74
2a	161-163 *	4.91	5.02	58.44	58.70	4.54	4.49
3m	decomp. > 165	4.66	4.83	55.56	55.79	4.32	4.30

^{*} Melts under decomposition (turns yellow).

Table 2 NMR chemical shifts of 1a, 2a and 3a (ppm)

Compound		1a	2a	3a	
¹ H	SiMe	0.07	0.06	0.09	
	R(CH ₃)	_	2.29	3.77	
	Аг-Н	7.05-7.80	7.05-7.50	6.80-7.50	
13C	l and 2	140.1	139.8 (163.7)	139.9	
		140.6	140.7 (137.6)	140.7	
	3 and 4	128.3	128.0 (128.2)	128.0	
		128.3	128.2 (128.6)	128.2	
	5	130.9	130.9 (130.9)	131.0	
	6	147.9	144.8 (146.8)	140.0	
	7	121.0	121.2 (120.4)	123.1	
	8	129.6	129.9 (129.0)	114.1	
	9	123.5	132.8 (134.5)	156.0	
	10	7.1	7.1	6.9	
	11		20.7 (20.9)	55.5	
²⁹ Si		~ 2.9	-3.2	-3.2	

Values in brackets are those for 2.

On the contrary, no addition products could be detected using 5 instead of 4.

Table 1 shows the melting points as well as the results of the elemental analysis, and Table 2 the ¹H, ¹³C and ²⁹Si NMR chemical shifts of compounds 1a, 2a and 3a.

2.1. Molecular structure of 2a

2a crystallizes monoclinically, in space group $P2_1/n$ (No. 14). The unit cell has dimensions: a = 14.661(4), b = 12.283(2), c = 17.564(5) Å and $\beta = 103.13(2)^\circ$, Z = 4. Fig. 1 shows an ORTEP drawing [6] of the molecular

Fig. 1. ORTEP drawing of 2a (30% probability).

structure of 2a. The quality of the X-ray structure analysis does not allow a discussion of the geometric details of the molecule. The shape of the thermal ellipsoids proposes that during cooling the crystal down to 200 K several disorders of the molecule are frozen, which could not be resolved by X-ray.

Nevertheless, the structure found shows clearly that 2a occurs in the cis-configuration with a twist of only 12.8(4)° between both halves of the molecule. This can be explained following the reaction path

In the case of 2.2' bipyridyl, the first formed complex is stable up to ambient temperature [7]. Further heating or addition of a donor solvent led to a cleavage of the Si-Si bond. The most characteristic features of 4 · bipy are the stretched Si-Si bond and the unequal and comparatively long Si-Cl bonds at the six-fold coordinated silicon atom [8].

3. Experimental

3.1. Preparation of la, 2a and 3a

3g (13 mmol) 4 and 10 mmol 1, 2 and 3 respectively were dissolved in 30 ml of dried toluene. After standing for two days the solvent and excess 4 were removed in vacuum and the residue was recrystallized from dried n-hexane. 1a and 2a are colourless, 3a is pale yellow. Single crystals of 2a were prepared by slow crystallization from a hot saturated solution in n-hexane. 1a crystallizes in thin plates not suitable for X-ray study.

Table 3 Crystallographic data for 2s

Crystanographae data for an		
wavelength	0.71073 Å	
crystal size	$0.6 \times 0.4 \times 0.3 \mathrm{mm}^3$	
θ range	2.19-26.00°	
index ranges	$-17 \le j \le 18, -14 \le k \le 15, -21 \le l \le 21$	
reflections collected	20297	
independent reflections	5992	
absorption correction	none	
refinement method	full-matrix least-squares on F ²	
goodness-of-fit on F2	0.992	
$R_1[I>2\sigma(I)]$	0.0585	
$wR_2(I > 2\sigma(I)]$	0.1465	
final difference map peaks	-0.634 to 0.560 e Å $^{-3}$	

3.2. Characterization

Elemental analyses were carried out using a Voss-Heraeus CHN-O Rapid. NMR measurements were performed using a Bruker MSL 300 at resonance frequencies of ¹H: 300.13 MHz and ¹³C: 75.470 MHz with broad band decoupling and ²⁹Si: 59.627 MHz with inverse gated decoupling. All chemical shift data have been determined in CDCl₃ with TMS as internal standard.

3.3. X-ray crystallographic analysis of 2a

The measurements were carried out on a Stoe IPDS diffractometer [9] at 200 K under nitrogen. For structure solution and refinement a SHELX program system [10] was used. See Table 3.

Further details of the structure determination may be obtained from the Fachinformationszentrum Karlsruhe (depository number CSD-405737).

Acknowledgements

We wish to thank Professor N. Auner for supplying us with X-ray facilities and the Deutsche Forschungsgemeinschaft for financial support.

References

- [1] H. tom Dieck, B. Bruder and K.-D. Franz, Chem. Ber., 116 (1983) 136.
- [2] M. Weidenbruch, A. Lesch and K. Peters, J. Organomet. Chem., 407 (1991) 31.
- [3] U. Herzog, G. Roewer and U. Pätzold, J. Organomet. Chem., 494 (1995) 143.
- [4] U. Herzog, G. Roewer and K. Herzog, in N. Auner and J. Weis (eds.), Organosilicon Chemistry II, VCH, Weinheim, 1996, pp. 31-36.
- [5] U. Pätzold, G. Roewer and U. Herzog, J. Organomet. Chem., 508 (1996) 147.
- [6] C.K. Johnson, FORTRAN Thermal Ellipsoid Plot, Program for Crystal Structure Illustrations, ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- [7] D. Kummer, A. Balkir and H. Köster, J. Organomet. Chem., 178 (1979) 29.
- [8] G. Sawitzki and H.G. von Schnering, Chem. Ber., 109 (1976) 3728.
- [9] Stoe computer software IPDS diffractometer. 1996.
- [10] G.M. Sheldrick, Acta Crystallogr., A46 (1993) 467.