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Methyl 2,4-Dioxopentanoate to Methyl E-2-Methyl-2-butenoate
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Starting from photocycloaddition of methyl 2,4-dioxopentano-
ate to methyl tiglate, an electron-deficient olefin, methyl-migrated
monocyclofarnesyl sesquiterpenoids, d,l-sollasin a and d, anti-
bacterial compounds, were synthesized.

Methyl 2,4-dioxopentanoate (1) is a versatile Cs photosynthon
to obtain homologous isoprenoids;! e.g., iridanes from 1 and
isoprene,? cyclonerodanes from 1 and myrcene.3 Particularly, its
usefulness has been verified by the reactions with conjugated ole-
fins2-5 or by easy furnishment of five-membered carbocyclesS:7
in high regioselectivity. However, the photocycloadditions ex-
amined have been limited to that with olefins having electron-do-
nating substituents, such as cycloalkenes,8 alkyl- and alkoxy-
ethenes,? and arylethenes.!0 Therefore, it is worthy of investigat-
ing the reactivity and regioselectivity of the photochemical reac-
tion of 1 with an electron-deficient olefin, methyl E-2-methyl-2-
butenoate (methyl tiglate, 2a).

Irradiation of a benzene solution 1 and 2a in a quartz vessel
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under nitrogen atmosphere for 3 h afforded, after silica-gel chro-
matography, five photoproducts (3, 43%, 4, 3.5%, 5, 8%, 6,
1.5%, and 7, 3%). Among them, 3, 4, and 5 were retro-aldol-
ized [2+2] cycloadducts; 3 and 4 were diastereomers each other,
and § was their regioisomer.

In the 1H NMR spectra, 5 showed an AB-type pair of doub-
lets, J=18 Hz, while 3 and 4 showed an each A BX-spin system.
Therefore, their regiochemistry was assigned as depicted in
Scheme 1. Assuming a retention of geometrical structure of 2a
during the reaction, the major product, 3, was assigned as
(3R*,4S *)-derivative, and 4, as (3R*,4R*)-. This assignment
was supported by NOE measurement. The structure of 3 sug-
gested that the cycloaddition was controlled by not the electronic
effect, but the stability of the delocalized diradical intermediate;
i.e., less-substituted site of the olefins formed a linkage to 3-posi-
tion of 1.11

This means that the tetrasubstituted cyclohexenone from the
major product 3 could be employed for synthesis of methyl-mi-
grated monocyclofarnesyl derivatives, e.g., sollasin d, isolated
from a marine sponge, Poecillastra sollasi, 1213 as an antibacterial
compounds against Candida albicans and Cryptococcus neoform-
ans. Herein the total synthesis of sollasin d as well as sollasin a
in the racemic form is described. Recently, Angers and Canonne
synthesized sollasin a.14

The cyclization of 3 gave a desired cyclohexenone (8). Re-
moval of the oxygen functions was then achieved via diisobutyl-
aluminum hydride reduction of 8 to a triol (9), acetylation to a tri-
acetate (10), Birch reduction (with lithium in liquid ammonia in
the presence of 2-propanol) to a (1,2,6-trimethylcyclohex-2-en-
yl)methanol (11), and PDC-oxidation to an aldehyde (12). The
Grignard reaction with allylmagnesium chloride of 12 gave a
homoallyl alcohol (13), and the Wacker reaction!3 with its acetate
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(14) afforded a p-acetoxy ketone (15). Elimination and dithionite-
reduction under phase-transfer conditions'® of 15 afforded a
common precursor (16).

The final step of the synthesis was accomplished by Wittig-
Horner reaction;!7 i.e., 16 was condensed at room temperature
for 72 h with the anion prepared from methyl (diethoxyphosphor-
yDacetate 17 to give sollasin a (18)18 in 70% yield, and with the
anion carrying a-pyrone chromophore (19) to give sollasin d
(20) in 71% vyield. The spectral data stated in literaturel? were
identical within experimental error to our totally synthesized sam-
ples.

It is interesting to note that the irradiation of 1 with methyl Z-
2-methyl-2-butenoate (methyl angelate, 2b), afforded two com-
mon major products, 3 and 4 in different ratio; the ratio of 3:4
was 3:7 after 15 h, and 4:6 after 30 h, and furthermore, 2a was
detected in the recovered butenoate fractions. Irradiation of 2b
without adding 1 caused no photoisomerization. Consequently,
the isomerizations between 2a and 2b should occur via an ex-
ciplex formation (1---2)*.
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Finally, the present procedure will offer an applicability of 1 as
a photosynthon to prepare sterically crowded alicyclics.
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