

NIH Public Access Author Manuscript

Synlett. Author manuscript; available in PMC 2010 January

Published in final edited form as:

Synlett. 2009; 2009(7): 1077–1080. doi:10.1055/s-0028-1088222.

Direct Conversion of Aldehydes and Ketones to Allylic Halides by a NbX₅₋[3,3] Rearrangement

Fraser F. Fleming^{*}, P. C. Ravikumar, and Lihua Yao

NbX₅-[3,3] Rearrangement.

Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282-1530 Fax: (412) 396 5683

Abstract

$R^{2} \xrightarrow{\text{BrMg}} R^{2} \xrightarrow{\text{BrMg}} R^{2} \xrightarrow{\text{BrMg}} R^{2} \xrightarrow{\text{Nb}^{*}X} \xrightarrow{\text{Nb}^{*}X}$

Sequential addition of vinylmagnesium bromide and NbCl₅, or NbBr₅, to a series of aldehydes and ketones directly provides homologated, allylic halides. Transposition of the intermediate vinyl alkoxide is envisaged through a metalla-halo-[3,3] rearrangement with concomitant delivery of the halogen to the terminal carbon. The [3,3] rearrangement is equally effective for the conversion of a propargyllic alcohol to the corresponding allenyl bromide.

Keywords

Niobium pentachloride; niobium pentabromide; alkyl halides; halogenation; rearrangements

Allylic halides occupy a privaleged position as electrophiles.¹ Activation of the carbon-halogen bond by adjacent π electrons dramatically facilitates nucleophilic displacement,² allowing otherwise difficult bond constructions with a diverse range of carbon, heteroatom, and organometallic nucleophiles.³ Allylic halides prepared as intermediates during total syntheses are typically prepared by halogenation of allylic alcohols. These in turn are often obtained by olefination-reduction sequences⁴ because the direct "halo-olefination" of carbonyls with Wittig-type procedures is circumvented by elimination in the reagent.

[©] Thieme Stuttgart

^{*}E-mail: flemingf@duq.edu.

A conceptually direct method for converting aldehydes and ketones to allylic halides is through a sequenced vinyl addition-metalla-halo-[3,3]-rearrangement (Scheme 1).⁵ Addition of vinylmagnesium bromide to an aldehyde or ketone generates the bromomagnesium alkoxide $2^{,6}$ potentially allowing transmetallation to a more oxophilic metal capable of weakening the carbon-oxygen bond for a metalla-halo-[3,3]-rearrangement.⁷ Particularly Lewis acidic halometal alkoxides **3** may cause competitive ionization and halogenation leading to a mixture of allylic halide regioisomers⁸ whereas metals bearing more nucleophilic halides would favor the rearranged allylic halide **4**.

TiCl₄ effectively promotes this sequence with aromatic aldehydes and with magnesium alkoxides derived from deprotonation of allylic alchohols.⁷ Results presented below show that NbCl₅ and NbBr₅ expand the scope of this vinyl addition-metalla-halo-[3,3]-rearrangement to include aromatic *and* aliphatic aldehydes and aromatic and aliphatic ketones. In addition, the [3,3] rearrangement is equally effective for the conversion of a propargylic alcohol to the corresponding bromoallene implying a concerted rearrangement in distinction to the related reactions with TiCl₄.

Exploring the viability of a sequenced vinyl addition-metalo-halo-[3,3]-rearrangement initially focused on identifying an optimal metal and solvent combination. Using the potassium alkoxide **6** as a prototype, a diverse range of metal chlorides were evaluated for their effectiveness in providing the allylic chloride **4a** (Scheme 2). Screening several oxophilic metals⁹ identified dry¹⁰ niobium pentachloride¹¹ in 1,4-dioxane as the optimal combination. After only 10 minutes at room temperature the alcohol **5** was completely converted to the allylic chloride **4a** in essentially quantitative yield. ¹H and ¹³C NMR analysis of the crude product indicated the material to be pure.¹²

The use of niobium pentachloride is particularly intriguing because this strong Lewis acid¹³ is employed under *basic* conditions. These conditions contrast with many related reactions¹⁴ in which transition metal halides exhibit reactivity similar to that of HCl which might be liberated by contact of the reagent with moisture.¹⁵ Mechanistically attack of the alkoxide **6** on NbCl₅ might trigger rearrangement from the niobiate **3a** having an expanded coordination sphere (Scheme 2).¹⁶ Sequential ionization and chlorination of **3a** is a mechanistic possibility, although the absence of regio- and stereoisomers suggests this to be a minor reaction manifold. Synthetically the NbCl₅ rearrangement offers the advantage over related phosphonium-based reagents in facile isolation of (*E*)-allylic chlorides simply by an aqueous extraction to remove inorganic species.

Optimizing the metalo-halo-[3,3]-rearrangement with the allylic alcohol **5** provided a platform for directly converting aldehyde **1a** to the allylic chloride **4a** (Scheme 3). Partial ring opening of THF¹⁷ by NbCl₅ led to a procedure in which vinylmagnesium bromide¹⁸ was added to a 10 °C, THF solution of aldehyde **1a** followed by dilution with four volumes of 1,4-dioxane and addition of solid NbCl₅ (1.2 equiv). After 30 minutes the solution was washed with aqueous HCl and concentrated to provide the crude chloride¹⁹ **4a** (99%).²⁰

The naphthyl-substituted allylic chloride **4a** is challenging to purify. Silica-based purification methods resulted in significant mass loss suggesting partial alkylation of the solid-phase.¹² Consequently the crude chloride **4a** was redissolved in THF and reacted with sodium phenylsulfenylate (Scheme 3). The procedure efficiently provided the sulfide **7a** ratifying the efficiency of the niobium rearrangement in generating essentially pure allylic chloride **4a**.

Performing the vinyl addition-niobium rearrangement-sulfenylate displacement with a series of aldehydes efficiently provides the corresponding sulfides (Table 1). Aromatic aldehydes and ketones smoothly rearrange in the presence of NbCl₅ (Table 1, entries 1-5). The nitrile-containing aromatic aldehyde **1e** was less reactive toward NbCl₅ but was effectively

halogenated with NbBr₅ (Table 1, entry 5). Aliphatic aldehydes are converted to the corresponding allylic chlorides with NbCl₅ but greater efficiency is obtained with NbBr₅ (Table 1, entries 6-7). The aliphatic ketone cyclohexanone reacted sluggishly even with NbBr₅ (Table 1, entry 8). In each case analysis of the intermediate allylic halide shows complete rearrangement prior to the sulfenylate displacement.

The metalo-halo-[3,3]-rearrangement is best suited to hydrocarbons. A conjugated aldehyde (Table 1, entry 4) and a nitrile (Table 1, entry 5) are readily tolerated whereas an acetal is not. ²¹ Effort to further probe the functional group tolerance is in progress.

The metalla-halo-[3,3]-rearrangement is not limited to the addition of vinylmagnesium halide to aldehydes and ketones. The strategy was extended to halogenation of the propargylic alcohol **8a** with the expectation that a concerted rearrangement would favor a haloallene (Scheme 4). Deprotonating **8a** and adding NbCl₅ afforded only a trace of the corresponding chloro allene at room temperature with full conversion requiring heating the reaction mixture to reflux. Under these thermal conditions considerable decomposition occurred whereas substituting NbBr₅ triggerred a smooth rearrangement at room temperature. After 2 h the bromoallene **10a** was obtained in 78% yield.

Direct transformation of aldehydes and ketones to the corresponding allylic halides is readily achieved through a vinyl addition metalo-halo-[3,3]-rearrangement strategy. Sequential addition of vinylmagnesium bromide and NbCl₅ or NbBr₅ to aromatic and aliphatic aldehydes and ketones provides essentially pure allylic chlorides for use in subsequent displacement reactions. The [3,3] rearrangement is equally effective in the case of a propargyllic alcohol, which provides the corresponding allenyl bromide. Synthetically, the addition-niobium halide rearrangement provides an efficient and direct conversion of aldehydes and ketones to allylic halides in one synthetic operation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Financial support from the National Institutes of Health (2R15AI051352-03) and in part from the National Science Foundation (0808996 CHE, 0421252 HRMS, and 0614785 for NMR facilities) is gratefully acknowledged.

References

- (1). For recent applications in synthesis see: (a) Smith AB III, Basu K, Bosanac T. J. Am. Chem. Soc 2007;129:14872. [PubMed: 17997560] (b) Kashin D, Meyer A, Wittenberg R, Schöning K-U, Kamlage S, Kirschning A. Synthesis 2007:304. (c) Boukouvalas J, Robichaud J, Maltais F. Synlett 2006:2480. (d) Mandal AK, Schneekloth JS Jr. Kuramochi K, Crews CM. Org. Lett 2006;8:427. [PubMed: 16435851] (e) Zhang T, Liu Z, Li Y. Synthesis 2001:393. (f) Tada M, Nishiiri S, Zhixiang Y, Imai Y, Tajima S, Okazaki N, Kitano Y, Chiba K. J. Chem. Soc. Perkin Trans. 1 2000:2657.
- (2). Kirby, AJ. Stereoelectronic Effects. Oxford University Press; Bath, UK: 1998. Ch. 5.
- (3). Magid RM. Tetrahedron 1980;36:1901.
- (4). For a recent example see: Arteaga JF, Domingo V, del Moral J. F. Quílez, Barrero AF. Org. Lett 2008;10:1723. [PubMed: 18380440]
- (5). For a related rearrangement with BBr₃ see: Punna S, Meunier S, Finn MG. Org. Lett 2004;6:2777. [PubMed: 15281767]
- (6).
- (7). An elegant and complementary method using TiCl₄ was recently communicated: Fuchter MJ, Levy J-N. Org. Lett 2008;10:4919. [PubMed: 18834136]

- (8). Mechanistic studies indicate that tertiary allylic alcohols afford mainly primary allylic chlorides on treatment with dry HCl although accompanied by significant side products: Kishali N, Polat MF, Altundas R, Kara Y. Helv. Chim. Acta 2008;91:67.
- (9). Initial reagent screening with high valent metals identified TiCl₄, ZrCl₄, and NbCl₅ as being effective. NbCl₅ provided the greatest conversion with the minimal solvent cleavage. For the strong M-O bond energy in this series see: (a) Loock H-P, Simard B, Wallin S, Linton C. J. Chem. Phys 1998;109:8980. (b) Conner JA. Top. Curr. Chem 1977;71:71.
- (10).
- (11). (a) Yadav JS, Bhunia DC, Krishna KV, Srihari P. Tetrahedron Lett 2007;48:8306. (b) Coe EM, Jones CJ. Polyhedron 1992;11:3123.
- (12).
- (13). Nowak I, Ziolek M, Chem Rev. 1999;99:3603.
- (14). Smitha G, Chandrasekhar S, Reddy CS. Synthesis 2008:829.
- (15).
- (16). Gibson VC, Kee TP, Shaw A. Polyhedron 1988;7:2217.
- (17). NbCl₅ is known to cleave diethyl ether to afford ethyl chloride: Cowley A, Fairbrother F, Scott N. J. Chem. Soc 1958:3133.

(18).

(19). The chloride is contaminated by 2-5% of the corresponding bromide which could arise by direct displacement or by rearrangement of the intermediate alkoxide through a bimetallic magnesiumniobium alkoxide: Jain R, Rai AK, Mehrotra RC. Synth. React. Inorg. Met.-Org. Chem 1985;15:789.

(20).

(21).

Scheme 1. Vinyl Addition-Metalla-Halo-[3,3]-Rearrangement.

Scheme 2. Metalla-Halo-[3,3]-Rearrangement.

Scheme 4. NbBr₅-Rearrangement to an Allenyl Bromide.

Table 1

Sequential Addition-Chlorination-Sulfenylation.

1

^aPerformed with NbBr5 rather than NbCl5.