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The generation of a bihelical (figure of 8) motif has been illustrated by trans opening of EDTAA with
L-cystine-di-OMe and D-penicillamine disulfide-di-OMe. In the former case the open cyclic system, arising
by cis addition, was secured as a minor product.

� 2013 Elsevier Ltd. All rights reserved.
Introduction crystallization from ether, afforded cyst-di-OMe di hydrochloride
Bihelical (figure of 8) structures represent a versatile motif in
several domains, with total synthesis of bihelical alanine t-RNA
(Yeast), the role of such motifs in the initiation of transcription1

and the key role it played in the first total synthesis of a gene2 have
made creation of such systems as an objective in several DNA–pro-
tein interaction studies. Figure of 8 motifs are increasingly found in
toxic cyclic peptides.3

In continuation of our interest in figure of 8 motifs4 we report
here the one step formation to such systems by reaction of
L-cyst-di-OMe(3) and EDTAA.5,6 It was envisioned that compound
1 with a staggered NCH2CH2N bridge is likely to undergo a trans
addition with cyst-di-OMe, harboring an orthogonally disposed –
S–S– unit, leading to a bihelical system. In the event this proved
largely correct (Scheme 1).

Synthesis

The reaction of L-cystine with trimethylsilyl chloride in dry
MeOH solution stirring overnight and concentration, followed by
2, mp: 164 �C in quantitative yields.7 The free base 3, generated
in �74% yields with aqueous sodium carbonate, extracted with
methylene chloride and then evaporated, was used without delay.
An ice cooled and stirred suspension of 1 in CH2Cl2, when mixed
with, in drops, over 1 h, to an equivalent amount of freshly pre-
pared 3 in CH2Cl2 gave a clear solution. The product precipitated
slowly and was completed by leaving stirred for overnight and fil-
tered to afford a powdery white solid, whose mass spectra con-
firmed the formation of a 1:1 adduct (73%, mp: 178–184 �C). The
adduct was insoluble in most solvents. To a suspension of this in
MeOH freshly prepared diazomethane was added and the resulting
tetramethyl ester chromotographed on silica gel. Elution with
chloroform/methanol = 98:2 afforded 0.150 g of solid that showed
molecular weight expected for the 1:1 adduct ester (57%). However
the 1H NMR in CDCl3 showed the presence of two amide protons at
8.45 and 8.1 ppm in the ratio of �7:3 (in DMSO-d6 both the amide
protons were shifted to 8.36 and 8.22, respectively).

HPLC performed in a biomed C4 column and elution with a lin-
ear gradient of A–B (A = H2O, 0.1% TFA; B = CH3CN, 0.1% TFA)
showed largely a mixture of two peaks in the ratio of 75:25 with
retention times, 9.016 and 12.039 min, respectively.

Careful chromatography enabled the separation of the mixture
to their pure components. The mass spectra showed that both were
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Scheme 3. Opening of EDTAA with D-penicillamine disulfide-di-OMe.
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Scheme 1. Opening of EDTAA with L-cyst-di-OMe.
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1:1 adducts. The major isomer is identified as 4 and the minor 5.
Their 1H and 13C NMR (S1–S4) had a similar profile excepting for
the significant differences in the appearance of the amide and
CaH Protons. Detailed studies (vide infra) have established the bih-
elical structure for 4, arising from a trans opening of 1 and an open
cyclic structure for 5 from the alternate cis mode (Scheme 1).

Further proof for the bihelical structure for 4 was secured from
6 obtained in quantitative yields from methanolic opening of 1
(Scheme 2) for which MO calculations showed an overwhelming
preference for a configuration having transoriented CH2COOMe
groups and a staggered conformation for the –NCH2CH2N– bridge,
an arrangement that is expected to undergo cyclization, in a trans
mode with cyst-di-OMe, leading to 4. Indeed, the condensation of 6
with cyst-di-OMe (3) gave exclusively 4.

To explore the effect of steric factors on the course of the adduct
formation, 1 was condensed with D-penicillamine disulfide
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Scheme 2. Condensation of 6 with cyst-di-OMe.
di-OMe, where the –SCH2– pairs of 3 are replaced by –S(CH3)2–,
precisely under conditions described for 3. The reaction exclusively
afforded in 62% yields 9, the methyl analog of the bihelical 4
(Scheme 3), whose spectral properties were completely in agree-
ment with the assigned structure.

1H NMR studies

The primary focus of NMR studies was on 4 and 9, which have
been assigned bihelical structures and 5, a cyclic profile. Com-
pounds 4 and 5 arise respectively, by the trans opening of 1 and
the alternate cis mode with L-cystine di-OMe (Scheme 1). The ste-
rically crowded D-pencillaminedisulfide-di-OMe offered only bihe-
lical 9 by trans opening of 1 (Scheme 3). Extensive studies clearly
show that 4 and 9 have a compact profile in contrast to a flexible
one for 5. Temperature dependent NMR studies in DMSO-d6 in
the range of 30–60 �C showed for the NH protons of pure 4 and
5, dd/dT values �3 ppb/K and �2.5 ppb/K and linear decay of their
chemical shifts, suggesting strongly that the amide NH is involved
in intra molecular hydrogen bonding in both cases.

The 1H NMR of bihelical 4 as well as 9 and cyclic 5 is in support
of the structural assignment and clearly distinguishes the struc-
tural profile. In 4, 5, and 9 each proton of CH2COOMe and NCH2CO
is clearly resolved as doublet suggestive of distal positioning of
these groups.

An expanded version of 1H NMR of bihelical 4 and cyclic 5
(Fig. 1) in the region d 2.7–3.6 ppm presented below suggests
features that are in agreement with the proposed structures.

In 4 the �NCH2 CH2 N� protons appear as clean doublets at d
2.7 and 2.92 ppm and in 5 as a clustered multiplet at 2.87. We sug-
gest that in the bihelical structure 4 the orthogonal placement of
S–S bridge makes such divergence in chemical shifts. The b CH2

(doublets) protons in 4 and 5 are seen as a pair of doublet of dou-
blets. The eight NCH2CO protons (doublets) are seen in 4 (d: 3.3,
3.49, 3.53, 3.6) and in 5 (d: 3.34, 3.44, 3.50, 3.56). We feel that in
the bihelical 4 the ring NCH2CO protons appear as cluster with
the external NCH2CO as widely separated doublets. A similar pro-
file like 4 was seen in the bihelical 9. In the cyclic 5 they are closely
spaced.

The ROESY spectra of 4, 5, and 9 (500 MHz, CDCl3) clearly pro-
vided support for the structural assignments. At the outset a ROESY
spectrum of the mixture enabled a direct comparison of the spatial
connectivities of the amide NH at d 8.45 ppm of 4 and that of 5 at d
8.2 ppm. The ROESY spectrum of 4 (Fig. S7, Supplementary data)
showed that the NH peak at 8.45 ppm exhibited spatial relation-
ship with –NCH2 CH2 N-(weak), b CH2and NCH2CO, and CaH
protons.

The ROESY spectrum of 5 (Fig. S8, Supplementary data) showed
that the NH peak at 8.2 ppm is spatially connected to –NCH2 CH2

N-(strong), b CH2–, NCH2CO, and CaH protons. The ROESY spec-
trum of 9 (Fig. S9, Supplementary data) exhibited the spatial rela-
tionship between the amide protons with that of the methyl
protons, the well separated –NCH2CH2N– protons as well as dou-
blets formed by protons of NCH2CO and –CH2COOMe with clarity.
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Figure 1. Expanded spectrum of compound 4 and 5.
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Figure 2. CD spectrum of 4.
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Figure 4. CD spectrum of 9.
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In conclusion the 2D NMR studies clearly support the assigned
structures for 4, 5, and 9.

Optical Rotation

The optical rotation of 4, secured from L-cystine exhibited a va-
lue of ½a�23

D +112.4� (c = 0.5 CHCl3) and for 9 from D-penicillamine
disulfide ½a�23

D �106.8�(c = 0.25 CHCl3). These suggest, as reported
in our earlier work,4 that the chirality of the bihelical topology is
largely controlled by that of the linker. In sharp contrast, the opti-
cal rotation of the open module 5 was found to be ½a�23

D �30.0�
(c = 0.4 CHCl3).

Circular Dichroism Studies

The results from CD studies in trifluoroethanol(TFE) for com-
pounds 4, 5, and 9, provided strong support for the bihelical nature
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Figure 3. CD spectrum of 5.
of 4 and 9. The CD of 4, secured from L-cystine, showed a band at
211 nm with positive ellipticity (Fig. 2) similar to the spectra of
peptides adopting a b-turn configuration. The CD of 9 (Fig. 4), from
D-penicillamine disulfide showed a mirror profile to that of 4, with
a negative band at 211 nm, again suggesting a b-turn configura-
tion. The CD of 5 in TFE (Fig. 3) showed a shallow positive band
at 219 nm, suggesting a flexible conformation.

Molecular orbital calculations

Optimized energy calculations were done using ab initio and
high level density functional theory (M06-2X/6-31G⁄) using GAUSS-

IAN 09 program.8 As described in the present work, the bihelical
compound 4 has been secured by transition state that overwhelm-
ingly prefers a trans mode of amidation of EDTAA (1) and the
10, 0.00 11, 0.15 

Scheme 4. The M06-2X/6-31G⁄ energy minimized structures of EDTAA in two
conformations. M06-2X/cc-pVTZ//M06-2X/6-31G⁄, relative energies are given in
kcal/mol.8
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Figure 5. The M06-2X/6-31G⁄ energy minimized structures of 4, 5, and 9.
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Scheme 5. Enery minimized conformations of possible methanol opened product
of 1, optimized at M06-2X/6-31G⁄ level of theory. The M06-2X/cc-pVTZ//M06-2X/
6-31G⁄ relative energies are given in kcal/mol.
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methanol opened di ester 6 with cyst-di-OMe harboring an orthog-
onally disposed –S–S– profile. Molecular orbital calculations show
that 1 has two closely related minimum energy representations 10
and 11, where both the representations have staggered –NCH2

CH2N– conformation (Scheme 4).
Calculation shows that the methanolic opening overwhelmingly

prefers a trans mode suggesting a conformation of 12 over 13
thus supporting the bihelical structure for the condensation
product with cyst-di-OMe (Scheme 5). These findings clearly
support the bihelical structure for the condensation product with
cyst-di-OMe (Scheme 2).

The energy minimized conformations for the bihelical 4 and 9
and the cyclic 5 are presented in Figure 5.

Apart from mechanistic and spectral considerations the M.O
calculations provide a clean picture of the double helical nature
of 4, 9 and a cyclic profile for 5.

In compound 4 from L-cystine the –S–S– bridge forms part of a
right handed helix while the –NCH2CH2N– containing link is left
handed. The situation is precisely reversed in 9 derived from
D-D-penicillamine disulfide. As expected in the open 5 these two
elements are nearly parallel.

Conclusion

The present work suggests a simple strategy for securing bihe-
lical modules with diverse capabilities. Indeed 4 and 9 endowed
with pair of CH2COOMe and COOMe can be precursors for protein
clusters, DNA recognition systems, and potential drug targets.
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