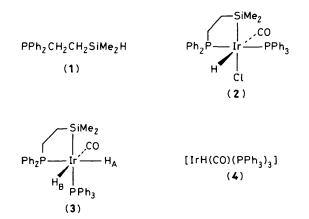
Intramolecular Rearrangement Behaviour of a Dihydridoiridium()) Complex formed by Regiospecific 'Chelate-assisted' Hydrosilylation

Mary J. Auburn and Stephen R. Stobart*


Department of Chemistry, University of Victoria, British Columbia, Canada V8W 2Y2

Addition of PPh₂CH₂CH₂SiMe₂²H to [IrH(CO)(PPh₃)₃] is regiospecific as evidenced by formation of a *cis* adduct

 $[Ir(PPh_2CH_2CH_2SiMe_2)(CO)(PPh_3)(H)(^2H)]$ in which ²H nuclei are initially restricted to a single co-ordination position; subsequent rearrangement whereby ²H becomes equally distributed among the two hydridic sites is intramolecular with $\Delta G_{298}^{\pm} = 19.3 \pm 3.2$ kcal mol⁻¹ (1 kcal = 4.184 kJ).

Reaction of dihydrogen with co-ordinatively unsaturated Ir¹ complexes is well-established but the stereochemically labile character of the adducts so formed has only recently been recognized. Thus Brown *et al.*¹ have concluded that slow isomerization which follows H₂ addition to $[Ir(diphos)_2]^+$ [diphos = bis(diphenylphosphino)ethane] and related cations is an intramolecular process, while Drouin and Harrod² have suggested a bimolecular pathway involving a yet uncharacterized hydrido-bridged di-iridium intermediate to account for H/D site-exchange in deuterio-isotopomers of $[IrH_3-(CO)(PPh_3)_2]$. Here we show that rearrangement of a *cis* dihydridoiridium(III) complex synthesized by an entirely different route is intramolecular.

A 'chelate-assisted' hydrosilylation reaction³ occurred rapidly under mild conditions between the phosphinoethylsilane⁴ $PPh_2CH_2CH_2SiMe_2H$ (1) and $[Ir(Cl)(CO)(PPh_3)_2]$ ('Vaska's complex') affording complex (2) which has been characterized crystallographically.⁵ Subsequent treatment with LiAlH₄ resulted in formation in high yield of a cis dihydride for which structure (3) can be unambiguously assigned from ${}^{1}H$ and ${}^{31}P$ n.m.r. data; the same product may also be obtained via reaction of the silane (1) with $[IrH(CO)(PPh_3)_3]$ (4). The high-field region of the ¹H n.m.r. spectrum (250 MHz) for compound (3) showed in equal ratio H_A , $\delta -10.64$, dd, ²J 108.8 (to trans P), 16.9 Hz (to cis P) and H_B, δ -10.59, apparent t, ${}^{2}J$ 18 Hz (two *cis* P). Reaction of complex (2) with LiAl²H₄ afforded a monodeuterio-analogue $[^{2}H_{1}]$ -(3) with H distributed (¹H n.m.r.) equally between A and B sites. By when compound (4) was treated with contrast $PPh_2CH_2CH_2SiMe_2^2H$ {*i.e.* $[^2H_1]$ -(1)}, initially the product $[{}^{2}H_{1}]$ -(3) showed only a triplet proton resonance attributable to H_B; but after a short time a weak signal corresponding to the characteristic H_A multiplet could be resolved which slowly increased in intensity (Figure 1) to a limiting $1:1 H_A/H_B$ ratio. Complex (3) showed no incorporation of ²H after 24 h/25 $^{\circ}$ C in [²H₈]tetrahydrofuran (THF) solution; the isotopomer [²H₂]-(3) which was synthesized via $[{}^{2}H_{1}]$ -(2) using successive deuteriation steps underwent no H/D exchange with complex

(4), also in THF solution/24 h/25 °C; and no loss in isotopic purity of complex $[{}^{2}H_{2}]$ -(3) was detectable after stirring in solution (18 h/25 °C) with excess of undeuteriated (1).

These observations are consistent with regiospecific addition of the silane (1) to complex (4) *i.e.* coplanar entry of P, Si, and H affording the dihydride (3); and with a subsequent slow equilibration which interconverts H_A and H_B by an intramolecular mechanism. Appropriately the rate of change in intensity of the n.m.r. signals illustrated in Figure 1 is linear, $k_{obs} = 4.30(\pm 0.20) \times 10^{-2} \,\mathrm{s}^{-1}$ at 28 °C. Addition of a tenfold excess of free PPh₃ did not significantly affect the rate and examination of the temperature-dependence of k_{obs} yielded $\Delta G_{298}^{\pm} = 19.3 \pm 3.2 \,\mathrm{kcal \, mol^{-1}}$ (1 kcal = 4.184 kJ) for the rearrangement process.

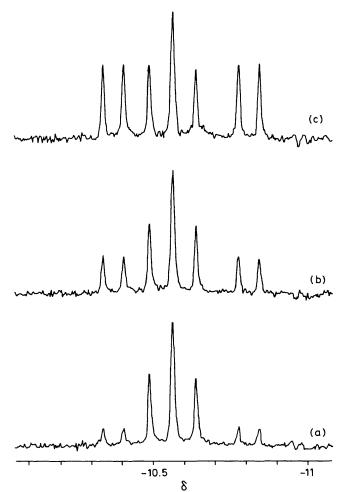


Figure 1. ¹H N.m.r. spectrum of the product $[^{2}H_{1}]$ -(3) of reaction between silane $[^{2}H_{1}]$ -(1) and complex (4) after (a) 1 h, (b) 5 h, and (c) 48 h at 28 °C.

The high stability towards intramolecular distortion of the octahedral configuration has been emphasized⁶ and accounts for the rarity of stereochemically non-rigid six-co-ordinate molecules.^{6,7} An important exception is provided by a family of dihydridoiron complexes,^{6,7} most of which are exclusively *cis* and are fluxional, typified by FeH₂[P(OEt₃)]₄ for which $\Delta G_{298}^{\pm} = 13.7 \text{ kcal mol}^{-1}$ for degenerate intramolecular exchange, although a few examples exist as equilibrium mixtures of *cis* and *trans* isomers which interchange with similar free energies of activation.⁷ Barriers to corresponding dynamic behaviour of ruthenium analogues however are estimated⁷ to be substantially higher and directly comparable with that reported here for non-degenerate rearrangement of compound (3).

In conclusion we suggest that metal-centred rearrangement of dihydridoiridium(III) species may not be uncommon as believed hitherto.¹ More particularly it seems to us that such an intramolecular process would adequately account for all of the experimental data described by Drouin and Harrod,² since an exchange similar to that we have characterized for compound (3) would inevitably lead to a 1:2 equilibrium distribution of ²H (reflecting statistical axial/equatorial siteoccupancy) in a trihydrido-complex formed by reaction of complex (4) with ²H₂, exactly as was observed.² We thank the Natural Sciences and Engineering Research Council of Canada, the University of Victoria, and Imperial Oil Ltd. for financial support, Engelhard Industries for a generous loan of iridium trichloride, and Christine Greenwood for valuable assistance in obtaining n.m.r. spectra.

Received, 10th October 1983; Com. 1341

References

- 1 J. M. Brown, F. M. Dayrit, and D. Lightowler, J. Chem. Soc., Chem. Commun., 1983, 414.
- 2 M. Drouin and J. F. Harrod, Inorg. Chem., 1983, 22, 999.
- 3 R. D. Holmes-Smith, S. R. Stobart, T. S. Cameron, and K. Jochem, J. Chem. Soc., Chem. Commun., 1981, 937.
- 4 R. D. Holmes-Smith, R. D. Osei, and S. R. Stobart, J. Chem. Soc., Perkin Trans. 1, 1983, 861.
- 5 M. J. Auburn, R. D. Holmes-Smith, S. R. Stobart, E. M. Brennan, and T. S. Cameron, unpublished results.
- 6 J. P. Jesson and E. L. Muetterties, in 'Dynamic Nuclear Magnetic Resonance Spectroscopy,' eds. L. A. Jackman and F. A. Cotton, Academic Press, New York, 1975, ch. 8.
- 7 P. Meakin, E. L. Muetterties, F. N. Tebbe, and J. P. Jesson, J. Am. Chem. Soc., 1971, 93, 4701; P. Meakin, E. L. Muetterties, and J. P. Jesson, *ibid.*, 1973, 95, 75.