Photolysis of matrix-isolated acetyl chloride and infrared spectrum of the 1:1 molecular complex of hydrogen chloride with ketene in solid argon

N. Kogure, T. Ono, E. Suzuki, F. Watari*

Department of Applied Chemistry and Molecular Science, Faculty of Engineering, Iwate University, Morioka 020, Japan

(First received 21 September 1992; in final form 18 December 1992)

Abstract

Acetyl chloride in an argon matrix decomposed on irradiation to generate ketene and hydrogen chloride, which formed the ketene \cdots HCl complex. The fundamental vibrational frequency of HCl in the complex was observed at 2679 cm⁻¹, i.e. 191 cm⁻¹ below the frequency of the corresponding HCl monomer in solid argon. The fundamental frequency of DCl in the ketene- $d_2 \cdots$ DCl complex formed by photolysis of acetyl chloride- d_3 was observed at 1939 cm⁻¹, i.e. 140 cm⁻¹ below the frequency of the corresponding DCl monomer in solid argon.

Introduction

Since the hydrogen-bonded complex of HCl with nitrogen was studied by matrix isolation infrared (IR) spectroscopy [1], the complexes of HCl with various bases of π -electron donors and lone-pair electron donors have been studied in low-temperature matrices [2]. The HCl stretching frequencies in the complexes were found to be spread over a wide range, from a complex with a weak base to one with a strong base. The HCl complexes with very weak bases such as CO and CO_2 [1] gave bands at 2816 cm⁻¹ for CO, and at $2854 \,\mathrm{cm}^{-1}$ for CO₂, and the complexes with very strong bases such as trimethylamine [3] and ammonia [4] gave bands at $1486 \,\mathrm{cm}^{-1}$ and 1371 cm⁻¹, respectively, in argon matrices. The HCl complex with ethylene (a π -electron donor base) gave a band at 2753 cm^{-1} [1] and the complex with acetone (a lone-pair donor) gave a band at 2392 cm^{-1} [5] in solid argon.

Matrix-isolated acetyl chloride decomposed on irradiation ($\lambda > 270$ nm) to form ketene and HCl [6]. In examining the photolysis of acetyl chloride in an argon matrix, we found that the HCl absorption shifted to a lower frequency. In this paper we report on the photolysis of acetyl chloride and acetyl chloride- d_3 in argon matrices, and a complex of HCl with ketene.

Experimental

Acetyl chloride was prepared by reacting acetic acid with phosphorous trichloride. Acetyl chloride d_3 was prepared from acetic acid- d_4 (MSD ISO-TOPES, Montreal) in a similar manner. Ketene and ketene- d_2 were prepared by pyrolysis at 973 K of acetone and acetone- d_6 (MSD ISOTOPES, Montreal), respectively, and purified by trap-to-trap distillation under vacuum. Argon matrix gas (Nihon Sanso) was used without further purification.

^{*} Corresponding author.

A sample was diluted with argon in an argon/ sample (200:1) mixture using a standard manometric procedure. The mixture was deposited for 3h at a rate of $2-3 \text{ mmol h}^{-1}$ onto a CsI window which was mounted on a rotatable cold head of a CTI Cryodyne model 21 closed-cycle cryocooler and maintained at 20 K. The matrix, cooled to 10 K, was irradiated through a quartz window fitted on a vacuum shroud set at right angles; CsI windows were used for IR measurement. Irradiation was performed using a 500 W high pressure mercury arc (Ushio Denki) through a water filter (10 cm) equipped with quartz windows.

IR spectra $(4000-250 \text{ cm}^{-1})$ were recorded at 10 K on a Hitachi Model 260-50 grating spectrometer, which was calibrated using standard gases [7].

Results and discussion

Irradiation of matrix-isolated acetyl chloride and acetyl chloride- d_3 for 3 h resulted in almost complete disappearance of the initial IR spectra (Figs. 1(a) and 2(a)) and the appearance of new absorptions (Figs. 1(b) and 2(b)). The observed frequencies of the photoproducts are collected in Table 1. A prominent absorption was observed at $2138 \,\mathrm{cm}^{-1}$ in the spectrum of the photolysis product of acetyl chloride (Fig. 1(b)). This absorption is in good agreement with the characteristic absorption of free ketene (2137 cm^{-1}) in solid argon (Table 1). Comparing the spectra of the photoproducts with those of free ketene and ketene- d_2 in solid argon, apart from slight frequency shifts, almost all absorptions of the photoproducts correspond well with those of ketene and ketene- d_2 (Table 1).

In each of the photoproduct spectra, other sharp and strong absorptions were observed at 2679 cm^{-1} (Fig. 1(b)) and 1939 cm^{-1} (Fig. 2(b)).

A matrix IR spectrum of HCl has been thoroughly investigated and, even at high dilution, the vibration due to HCl has been observed as a multiplet in the 2900 cm^{-1} region [9]. In Fig. 1(b), there are no absorptions in this

Fig. 1. IR spectra of (a) a matrix prepared by depositing an Ar/CH_3COCl (200:1) sample for 3 h and (b) the matrix after subsequent 3 h irradiation.

Fig. 2. IR spectra of (a) a matrix prepared by depositing an Ar/CD_3COCl (200:1) sample for 3 h and (b) the matrix after subsequent 3 h irradiation.

CH ₃ COCl ^a	H ₂ CCO	Assignment ^b	CD ₃ COCl ^a	D ₂ CCO	Assignment ^b
3251	3255	$\nu_2 + \nu_4$	2436	2446	$2\nu_3$
3145	3151	ν_5 H ₂ CCO	2364	2367	$\nu_5 D_2 CCO$
3053	3060	ν_1 H ₂ CCO	2300	2305	CHDCCO
2679		HCI	2249	2256	$\nu_1 D_2 CCO$
2138	2137	$\nu_2 H_2 CCO$	2150	2146	$\nu_{3} + \nu_{4}$
2084	2083	$\nu_2(^{13}C)$	2118	2110	$\nu_2 D_2 CCO$
1378	1377	ν_3 H ₂ CCO	2074	2064	$\nu_{3} + \nu_{6}$
1122	1122	$\nu_8 + \nu_9$	1939		DCl
	1110	ν_4 H ₂ CCO	1717		?
984	972	$\nu_6 H_2 CCO$	1217	1221	$\nu_3 D_2 CCO$
618	591	ν_8 H ₂ CCO	1021	1035	CHDCCO
569		? -		921	$\nu_4 D_2 CCO$
528	527	$\nu_9 H_2 CCO$	880	858	$2\nu_9$
435	438	$\nu_7 H_2 CCO$	854	848	$\nu_6 D_2 CCO$
			556	543	$\nu_8 D_2 CCO$
			514		? ~ ~
			448	434	$\nu_9 D_2 CCO$
			424		? ~ ~
			370	371	$\nu_7 D_2 CCO$

Table 1 Observed frequencies (cm⁻¹) of the products produced by photolysis of CH₃COCl and CD₃COCl in argon matrices, and of H₃CCO and D₂CCO in argon matrices

^a Precursor.

^b The numbering and assignments for ketene and ketene-d₂ reported by Moore and Pimentel [8] were applied.

region. Upon co-deposition of argon/ketene (200:1) and argon/HCl (200:1) samples, a new absorption was observed at $2679 \,\mathrm{cm}^{-1}$ together with absorptions due to free HCl in the $2900 \,\mathrm{cm}^{-1}$ region. In addition, upon co-deposition of argon/ ketene- d_2 and argon/DCl samples, free DCl absorptions were accompanied by a new absorption at $1938 \,\mathrm{cm}^{-1}$ [10]. The frequency ratio (2679/ 1939 = 1.381) is in good agreement with the ratio (2870/2079 = 1.380) for free HCl and DCl fundamental vibrations in argon matrices [11]. Consequently, it is concluded that the absorptions of the photolysis products of acetyl chloride and acetyl chloride- d_3 at 2679 and 1939 cm⁻¹ are due to HCl and DCl stretchings, respectively. These frequencies are 191 and $140 \,\mathrm{cm}^{-1}$ respectively, below the HCl and DCl fundamental frequencies in solid argon.

The absence of free HCl absorptions in Fig. 1(b) shows that the HCl generated by the photolysis of acetyl chloride in the argon matrix should be trapped, together with the ketene generated by

the elimination of HCl from acetyl chloride in the same matrix cage, effectively forming a 1:1 complex. Formation of the complex weakens the HCl bond, and causes the stretching vibration of HCl to be shifted to a lower frequency.

In the complex of HCl with allene, which is isoelectronic with ketenc, the HCl stretching mode has been observed at 2736 cm^{-1} [12]. In the ketene-HCl system, the perturbed H-Cl stretching frequency is displaced to 57 cm^{-1} below that of the allene...HCl complex. This implies that the strength of the interaction between HCl and ketene is more than that in the allene...HCl complex.

References

- 1 A.J. Barnes, H.E. Hallam and G.F. Scrimshaw, Trans. Faraday Soc., 65 (1969) 3172.
- 2 A.J. Barnes, J. Mol. Struct., 100 (1983) 259, and references cited therein.
 - T. Zeegers-Huyskens and L. Sobczyk, Spectrochim.

Acta, Part A, 46 (1990) 1693, and references cited therein.

- 3 A.J. Barnes, J.N.S. Kuzniarski and Z. Mielke, J. Chem. Soc., Faraday Trans. 2, 80 (1984) 465.
- 4 A.J. Barnes, T.R. Beech and Z. Mielke, J. Chem. Soc., Faraday Trans. 2, 80 (1984) 455.
- 5 M.J. Nowak, K. Szczepaniak and J.W. Baran, J. Mol. Struct., 47 (1978) 307.
- 6 J.S. Shirk, Ph.D. thesis, University of California Berkeley, 1967.
- 7 IUPAC, Tables of Wavenumbers for the Calibration of

Infrared Spectrometers, 2nd edn, Pergamon Press, New York, 1977.

- 8 C.B. Moore and G.C. Pimentel, J. Chem. Phys., 38 (1963) 2816.
- 9 A.J. Barnes, H.E. Hallam and G.F. Scrimshaw, Trans. Faraday Soc., 65 (1969) 3150.
- 10 N. Kogure, E. Suzuki and F. Watari, in preparation.
- 11 S.B.H. Bash and B.S. Ault, J. Phys. Chem., 88 (1984) 3600.
- 12 A.J. Barnes and S. Holroyd, Spectrochim. Acta, Part A, 39 (1983) 579.