Article

Novel Syntheses of Enantiopure Hexahydroimidazo[1,5-b]isoquinolines and Tetrahydroimidazo[1,5-b]isoquinolin-1(5H)-ones via Iminium **Cation Cyclizations**

Alan R. Katritzky,* Kazuyuki Suzuki, and Hai-Ying He

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200

katritzky@chem.ufl.edu

Received May 8, 2002

Condensations of chiral diamines 11a-c with benzotriazole and formal dehyde gave benzotriazolyl intermediates 12a-c; similar condensations of α -amino-amides 10a-c with benzotriazole and paraformaldehyde gave 14a-c. Subsequent treatment of 12a-c and 14a-c with AlCl₃ led to enantiopure tricyclic 1,2,3,5,10,10a-hexahydroimidazo[1,5-b]isoquinolines 1a-c and 2,3,10,10atetrahydroimidazo[1,5-b]isoquinolin-1(5H)-ones 15a-c, respectively, via Lewis acid promoted iminium cation cyclizations.

Introduction

Following our recent syntheses of optically active imidazolidines **6** from N-Boc- α -amino acids,¹ we have now developed routes to novel tricyclic 1,2,3,5,10,10a-hexahydroimidazo[1,5-b]isoquinolines 1 and 2,3,10,10a-tetrahydroimidazo[1,5-b]isoquinolin-1(5H)-ones 2. The nearest known analogues of 1 and 2 are 10,10a-dihydroimidazo-[1,5-b] isoquinoline-1,3(2H,5H)-diones **3**, which are of interest as inhibitors of inflammation,^{2a,b} apoprotein B-100 biosynthesis,^{2c} and matrix-degrading metalloproteinase.2d

Parent compound **3** ($\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{R}^3 = \mathbb{H}$) was obtained by cyclization of 1,2,3,4-tetrahydro-3-isoquinolinecarboxylic acid with KOCN.^{2a,b} Significant synthetic activity to prepare derivatives of **3** has involved (i) *N*-alkylation of **3** ($\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{R}^3 = \mathbb{H}$) with N-(2-chloroethyl)piperidine;^{2a,b} (ii) Mannich condensation of **3** ($R^1 = R^2 =$ $R^3 = H$) with formaldehyde and secondary amines;³ and (iii) modification of **3** ($\mathbb{R}^1 = \mathbb{H}$, alkyl, or Ph, $\mathbb{R}^2 = \mathbb{R}^3 = \mathbb{H}$) via bromination and nucleophilic substitutions.^{2c,4} Additional analogues of 3 have been made by (iv) solid phase supported intramolecular cyclization of N-CBZ-α-aminoamides.⁵ No previous reports have been found for the preparation of compounds of type 1 and 2.

Optically active imidazolidines 6 were synthesized by Mannich condensations of chiral diamines 4 with benzotriazole and formaldehyde, followed by the nucleophilic substitutions of the benzotriazolyl group in **5**.¹ Previous syntheses of 1,4-dihydro-3(2*H*)-isoquinolinones,^{6a} tetrahydro[1,3]oxazolo[3,4-b]isoquinolin-3-ones,^{6b} and tetrahydroisoquinolines^{6c} by intramolecular cyclizations utilizing Lewis acid-activated benzotriazole as a leaving group suggested a route to 1 by iminium cation Lewis acidpromoted cyclizations of intermediates 5 (Scheme 1). Success of the methodology led to its extension to prepare 2,3,10,10a-tetrahydroimidazo[1,5-b]isoquinolin-1(5H)ones 2.

Results and Discussion

Preparation of Chiral Diamines 11a-c from N-**Boc-Phe-OH** (7). *N*-Boc- α -amino-amides **9a**-**c** were readily obtained from optically active N-Boc-Phe-OH (7) and primary amines 8a-c (R = *p*-CH₃C₆H₄, *c*-C₆H₁₁, or PhCH₂) by using the mixed anhydride method.⁷ We previously used excess HCl/EtOAc to remove the N-Boc protection group (usually needs 12-24 h until the disappearance of **9**).^{1,7a} We now find that 8 equiv of CF₃COOH in dry CH_2Cl_2 efficiently removes *N*-Boc in 2–5 h giving the α -amino-amides **10a**-**c** in \geq **88%** yields. Treatment of **10a**-c with 6 equiv of LiAlH₄ in refluxing THF for 2 days afforded chiral diamines 11a-c in $\ge 90\%$ yields. Intermediates **9a**-**c**, **10a**-**c**, and **11a**-**c** were all used as crude products for the subsequent reactions.

Syntheses of 1,2,3,5,10,10a-Hexahydroimidazo-[1,5-*b*]isoquinolines 1a–c. Mannich condensation of

⁴ Author to whom correspondence should be addressed.

⁽¹⁾ Katritzky, A. R.; Suzuki, K.; He, H.-Y. J. Org. Chem. 2002, 67, 3109.

^{(2) (}a) Schwan, T. J. U.S. Patent 4,001,245, 1977; Chem. Abstr. 1977, 86, 155553q. (b) Schwan, T. J.; Goldenberg, M. M.; IIse, A. C. *J. Pharm. Sci.* **1978**, *67*, 718. (c) Sierra, M. L.; Pianetti, P. M. C. PCT Int. Appl. WO 98 56,790, 1998; Chem. Abstr. 1999, 130, 52421k. (d) Kukkola, P. J.; Robinson, L. A.; Sakaki, J.; Nakajima, M. PCT Int. Appl. WO 99
42,443, 1999; *Chem. Abstr.* 1999, 131, 184961s.
(3) Niopas, I.; Smail, G. A. Collect. Czech. Chem. Commun. 1990,

^{55. 540.}

^{(4) (}a) Niopas, I.; Smail, G. A. J. Chem. Soc., Perkin Trans. 1 1991, 113. (b) Niopas, I.; Smail, G. A. J. Chem. Soc., Perkin Trans. 1 1991, 119.

⁽⁵⁾ Dressman, B. A.; Spangle, L. A.; Kaldor, S. W. Tetrahedron Lett. 1996, *37*, 937.

^{(6) (}a) Katritzky, A. R.; Lan, X.; Zhang, Z. J. Heterocycl. Chem. **1993**, 30, 381. (b) Katritzky, A. R.; Cobo-Domingo, J.; Yang, B.; Steel, P. J. Tetrahedron: Asymmetry **1999**, 10, 255. (c) Katritzky, A. R.; He, H.-

Y.; Jiang, R.; Long, Q. *Tetrahedron: Asymmetry* **2001**, *12*, 2427. (7) (a) Katritzky, A. R.; Xu, Y.-J.; He, H.-Y.; Steel, P. J. *J. Chem. Soc.*, *Perkin Trans.* **1 2001**, 1767. (b) Douat, C.; Heitz, A.; Martinez, J.; Fehrentz, J.-A. Tetrahedron Lett. 2000, 41, 37.

SCHEME 1

SCHEME 2^a

a, R = *p*-MeC₆H₄; **b**, R = *c*-C₆H₁₁; **c**, R = PhCH₂

^{*a*} Conditions: (i) ClCOOBu-*i*, *N*-methylmorpholine; (ii) CF₃COOH; (iii) aq NaOH; (iv) LiAlH₄; (v) BtH, 2 HCHO (aq); (vi) AlCl₃.

chiral diamines **11a**–**c** with 1 equiv of benzotriazole and 2 equiv of formaldehyde (37% aqueous solution) in an aqueous solution at 25 °C gave benzotriazolyl intermediates **12a**–**c** in 93%, 96%, and 90% yields, respectively. Compounds **12a**,**c** were obtained solely as benzotriazol-1-yl isomers; **12b** was obtained as a mixture of Bt¹ and Bt² isomers in ca. 26:1 ratio.

Treatment of crude 12a-c with 3 equiv of AlCl₃ in refluxing CH₂Cl₂ afforded 2-substituted-1,2,3,5,10,10a-hexahydroimidazo[1,5-*b*]isoquinolines 1a-c (Scheme 2). The structures of 1a-c are clearly supported by their ¹H, ¹³C NMR spectra and microanalyses. Lewis acid AlCl₃ facilitates loss of the benzotriazolyl anion to form an iminium cation, which then undergoes intramolecular cyclization to afford 1a-c.

Syntheses of 2,3,10,10a-Tetrahydroimidazo[1,5-*b*]isoquinolin-1(5*H*)-ones 15a-c (cf. Scheme 3). The reaction of α -amino-amide 10a with benzotriazole and formaldehyde in aqueous solution at 25 °C did not produce the desired cyclized compound 14a; instead acyclic 13 was obtained in 92% yield, due to the lower nucleophilic activity of amide nitrogen. Therefore, stronger conditions using azeotropic distillation with paraformaldehyde were applied and Bt intermediates 14a-c were prepared in 92%, 91%, and 94% yields, respectively.

SCHEME 4^a

^{*a*} For *trans*-**16a**, the *cis*-**16'a** was isolated in 31% yield. ^{*b*}This route resulted in a mixture of *trans*-**18a**-**c** and *cis*-**18'a**-**c** in a ratio range from 4:1 to 5:1.

Attempts to purify 14a-c by column chromatography failed due to their significant decomposition on silica gel. Therefore, compounds 14a-c were used directly for the subsequent cyclizations.

The subsequent treatment of 14a-c with 3 equiv of AlCl₃ in refluxing CH₂Cl₂ furnished 2,3,10,10a-tetrahydroimidazo[1,5-*b*]isoquinolin-1(5*H*)-ones 15a-c in 82%, 83%, and 78% yields, respectively. The structures of 15a-c are clearly supported by their ¹H, ¹³C NMR spectra and microanalyses. The two methylene protons at the 5-position in 15a-c appear at 3.7–4.0 ppm as a typical AB system with ca. 14 Hz coupling constant.

We attempted direct treatment of α -amino-amide **10a** with excess paraformaldehyde in the presence of AlCl₃, but could not isolate any desired tricyclic **15a**. This result proves the necessity of using benzotriazole.

Syntheses of Chiral 3-Substituted-2,3,10,10a-tetrahydroimidazo[1,5-*b*]isoquinolin-1(5*H*)-ones 18a-c (cf. Scheme 4). We further investigated the modification of 2,3,10,10a-tetrahydroimidazo[1,5-*b*]isoquinolin-1(5*H*)ones 15 at the 3-position. In agreement with the previous reactions of α -amino-amides and aldehydes,⁸ we obtained

^{(8) (}a) Polonski, T. *Tetrahedron* **1985**, *41*, 611. (b) Sunjic, V.; Kajfez, F.; Blazevic, N.; Oklobdzija, M.; Mildner, P. J. Heterocycl. Chem. **1975**, *12*, 995.

16b,**c** as the sole trans-isomers; however, *trans*-**16a** was isolated in 38% yield together with the corresponding *cis*-**16'a** in 31% isolated yield. The absolute configurations of *trans*-**16a**-**c** and *cis*-**16'a** were determined by NOE experiments. For example, strong positive NOE effect between H(2) (5.81 ppm, s) and H(5) (4.00 ppm, t) in **16'a** confirms its cis-configuration. For *trans*-**16a**-**c**, no positive NOE effect was observed between H(2) and H(5); however, small but distinct NOE effects between H(2) and PhC H_2 at the 5-position prove their trans-configurations.

Reaction of **16a**-**c** with benzotriazole and aqueous formaldehyde readily gave Bt intermediates **17a**-**c**, which were directly treated with AlCl₃ to furnish enantiopure *trans*-3-substituted-2,3,10,10a-tetrahydroimidazo-[1,5-*b*]isoquinolin-1(5*H*)-ones **18a**-**c**. The same route from *cis*-**16'a** led to enantiopure *cis*-**18'a**. The ¹H NMR spectra show that NC*H*N (5.68 ppm, d) in *trans*-**18a** appears at a lower field than NC*H*N (5.32 ppm, d) in *cis*-**18'a**. The positive NOE effect of H(3) and H(10a) in **18'a** also confirms its cis-configuration.

We attempted reactions of 16a-c with paraformaldehyde and AlCl₃ in the absence of benzotriazole. The crude NMR spectra of the products show a mixture of trans-**18a**–**c** and *cis*-**18**′**a**–**c** in a ratio ranging from 4:1 to 5:1. It is impossible to separate *trans*-18a-c and *cis*-18'a-c by column chromatography due to their very close retention factors on alumina or silica gel TLC plate. This result indicates the possible Lewis acid-promoted ring opening and closing of the five-membered ring in 16a-c. We further treated trans-16a with AlCl₃ only, and did observe the formation of cis-16'a in 1:4 ratio. Therefore, we believe that the nitrogen at the 1-position may coordinate with $AlCl_3$ to form intermediate A, which undergoes ring opening to generate an iminium cation intermediate **B**. The lone electron pair of the nitrogen in B attacks the iminium cation from above (I) or below (II) the plane, leading to *trans*-16a and *cis*-16'a, respectively.

Attempts to Synthesize 1,2a,3,4a,5,9b-Hexahydrobenzo[g]imidazo[2,1,5-cd]indolizin-4(2H)-one (23). We recently reported reaction of succindialdehyde (19) with benzotriazole and N-phenylethylenediamine leading to 1-phenyl-5-(benzotriazol-1-yl)hexahydro-1H-pyrrolo-[1,2-a]imidazole 20. The benzotriazolyl group at the 5-position in 20 is readily removed by nucleophilic substitutions with Grignard reagents, allylsilanes, silyl enol ethers, or triethyl phosphite to furnish novel 1-phenyl-5-substituted-hexahydro-1H-pyrrolo[1,2-a]imidazoles **21** [Nu = alkyl, aryl, allyl, and $P(O)(OEt)_2$] (Scheme 6).⁹ Since chiral diamines **11a**–**c** were readily obtained in high yields, our initial idea intended to use chiral diamine **11a** instead of *N*-phenylethylenediamine, to control the two new chiral centers at the 5- and 7a-positions. Subsequent treatment of Bt intermediates 22 was supposed to undergo intramolecular cyclizations at the tethered phenyl group to give 23.

Reaction of chiral diamines **11a** with succindialdehyde (**19**, obtained by treatment of 2,5-dimethoxytetrahydrofuran with 0.1 M HCl) and benzotriazole in CH_2Cl_2 at room temperature for 24 h readily afforded Bt intermediates **22** as single enantiomers in 81% yield (Scheme 6).

^{*a*} Ar = p-MeC₆H₄; reflux of only *trans*-**16a** resulted in a mixture of *trans*-**16a** and *cis*-**16'a** in ca. 4:1 ratio.

SCHEME 6

The stereochemistry of **22** was determined by NOE NMR experiments. ¹H NMR spectra of **22** show that H(3), H(7a), and H(5) appear at 3.7 (multiplet), 5.1 (doublet–doublet), and 6.0 ppm (triplet), respectively. A significant positive NOE effect was observed between H(3) and H(5), and no NOE effect was observed between H(7a) with either H(3) or H(5). Thus, NOE analysis demonstrates that H(3) and H(5) in **22** are in cis-orientation, while H(3) and H(7a) are in trans-orientation.

Treatment of **22** with 2 equiv of $AlCl_3$ or $ZnBr_2$ did not afford the desired **23**, but gave a decomposed mixture possibly due to the labile NCHN moiety in the presence of a Lewis acid.

In summary, starting from easily available *N*-Boc- α amino acids, we have developed an efficient method for the preparation of novel enantiopure 1,2,3,5,10,10ahexahydroimidazo[1,5-*b*]isoquinolines **1a**-**c**, 2,3,10,10atetrahydroimidazo[1,5-*b*]isoquinolin-1(5*H*)-ones **15a**-**c**, and **18a**-**c** via Lewis acid-promoted iminium cation intramolecular cyclizations.

Experimental Section

 $^1\mathrm{H}$ (300 MHz) and $^{13}\mathrm{C}$ (75 MHz) NMR spectra were recorded in CDCl₃ (with TMS for $^1\mathrm{H}$ and chloroform-*d* for $^{13}\mathrm{C}$ as the internal reference). Column chromatography was performed

⁽⁹⁾ Katritzky, A. R.; Qiu, G.; He, H.-Y.; Yang, B. *J. Org. Chem.* **2000**, *65*, 3683.

on silica gel (200–425 mesh). All of the reactions were carried out under nitrogen.

General Procedure for the Preparation of Chiral α -Amino-amides 10a-c and Diamines 11a-c from N-Boc-Phe-OH (7). α -Amino-amides 10a-c and diamines 11a-c were prepared from N-Boc-Phe-OH (7) and primary amines **8a**-c according to our recent paper.^{1,7a,10}

General Procedure for the Preparation of Benzotriazolyl intermediates 12a–c. A mixture of a diamine 11a–c (3.0 mmol), BtH (0.36 g, 3.0 mmol), and formaldehyde (37% aqueous solution, 0.49 g, 6 mmol) in CH₃OH/H₂O (10 mL/5 mL) was stirred at 25 °C for 4 h. The precipitate formed was filtered and washed with cool Et₂O to give 12a–c, which was used directly for the subsequent reactions. For microanalyses and optical activity, crude 12a–c was recrystallized from appropriate solvents.

Data for 1-{[(5.5)-5-benzyl-3-(4-methylphenyl)tetrahydro-1*H***-imidazol-1-yl]methyl}-1***H***-1,2,3-benzotriazole (12a):** white microcrystals (from EtOH); yield 93%; mp 94–95 °C; $[\alpha]^{25}_{D}$ +1.8 (*c* 1.70, CHCl₃); ¹H NMR δ 2.21 (s, 3H), 2.74 (dd, *J* = 13.2, 8.3 Hz, 1H), 3.08 (t, *J* = 7.6 Hz, 1H), 3.22–3.31 (m, 2H), 3.58–3.63 (m, 1H), 4.24, 4.39 (AB, *J* = 5.0 Hz, 2H), 5.56, 5.67 (AB, *J* = 13.7 Hz, 2H), 6.35 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.1 Hz, 2H), 7.22–7.40 (m, 6H), 7.48 (d, *J* = 3.6 Hz, 2H), 8.05 (d, *J* = 8.2 Hz, 1H); ¹³C NMR δ 20.3, 39.2, 52.2, 61.2, 63.7, 68.2, 109.7, 112.3, 120.0, 124.0, 126.4, 126.6, 127.7, 128.6, 129.0, 129.7, 133.5, 138.1, 144.0, 146.0. Anal. Calcd for C_{244P25N5}: C, 75.17; H, 6.57; N, 18.26. Found: C, 74.95; H, 6.77; N, 18.29.

Data for 1-{[(5.5)-5-benzyl-3-cyclohexyltetrahydro-1*H***imidazol-1-yl]methyl}benzotriazole (12b)**: obtained as a mixture of Bt¹ and Bt² isomers in 26:1 ratio, and NMR data are reported for the major Bt¹ isomer; white needles (from EtOH); yield 96%; mp 94–95 °C; $[\alpha]^{25}_D$ +30.5 (*c* 1.64, CHCl₃); ¹H NMR δ 1.02–1.14 (m, 5H), 1.53–1.67 (m, 5H), 1.90 (br s, 1H), 2.41 (dd, J = 8.8, 6.8 Hz, 1H), 2.65–2.77 (m, 2H), 2.99 (dd, J = 13.4, 6.1 Hz, 1H), 3.43–3.48 (m, 1H), 3.70 (s, 2H), 5.31, 5.49 (AB, J = 13.5 Hz, 2H), 7.20–7.48 (m, 8H), 8.04 (d, J = 8.2 Hz, 1H); ¹³C NMR δ 24.4, 24.6, 25.8, 31.6, 31.7, 41.1, 56.3, 61.4, 61.5, 65.1, 72.3, 109.8, 119.8, 123.8, 126.3, 127.3, 128.4, 129.1, 133.4, 138.8, 145.8 Anal. Calcd for C₂₃H₂₉N₅: C, 73.57; H, 7.78; N, 18.65. Found: C, 73.94; H, 8.17; N, 18.77.

Data for 1-{[(5.5)-3,5-dibenzyltetrahydro-1*H***-imidazol-1-yl]methyl**}-**1***H***-1,2,3-benzotriazole (12c)**: white microcrystals (from EtOH); yield 90%; mp 81–82 °C; $[\alpha]^{25}_{D}$ +40.8 (*c* 1.87, CHCl₃); ¹H NMR δ 2.34 (dd, J = 9.4, 6.5 Hz, 1H), 2.67–2.81 (m, 2H), 2.92 (dd, J = 13.2, 6.6 Hz, 1H), 3.42, 3.52 (AB, J = 13.2 Hz, 2H), 3.52–3.60 (m, 1H), 3.62, 3.70 (AB, J = 6.3 Hz, 2H), 5.38, 5.43 (AB, J = 13.6 Hz, 2H), 7.12–7.45 (m, 13H), 8.05 (d, J = 8.1 Hz, 1H); ¹³C NMR δ 41.3, 57.8, 58.6, 61.8, 55.7, 73.9, 109.8, 119.8, 123.8, 126.3, 127.0, 127.3, 128.2, 128.3, 128.4, 129.2, 133.4, 138.3, 138.8, 145.9. Anal. Calcd for C₂₄H₂₅N₅: C, 75.17; H, 6.57; N, 18.26. Found: C, 75.03; H, 6.32; N, 18.30.

General Procedure for the Preparation of 1,2,3,5,10,-10a-Hexahydroimidazo[1,5-*b*]isoquinolines 1a–c. A mixture of 12a–c (1.0 mmol) and anhydrous AlCl₃ (0.40 g, 3.0 mmol) was refluxed in dry CH₂Cl₂ (20 mL) for 12 h. After cooling, the reaction mixture was added to CH₂Cl₂ (30 mL), washed with 2 M NaOH and brine, and dried over anhydrous K₂CO₃. After removal of the solvent in vacuo, the crude product was purified by column chromatography with hexanes/EtOAc (3:1 to 1:1) as an eluent to give 1a–c.

Data for (10a.S)-2-(4-methylphenyl)-1,2,3,5,10,10a-hexa-hydroimidazo[1,5-*b***]isoquinoline (1a): colorless microcrystals (from hexanes/CHCl₃); yield 76%; mp 189–190 °C; [\alpha]^{25}_{\rm D} -50.3 (***c* **1.68, CHCl₃); ¹H NMR \delta 2.26 (s, 3H), 2.91–3.06 (m, 3H), 3.24 (t, J = 8.2 Hz, 1H), 3.62–3.70 (m, 2H), 3.84 (d, J = 3.6 Hz, 1H), 4.18 (d, J = 14.4 Hz, 1H), 4.60 (d, J = 3.6 Hz,**

(10) Katritzky, A. R.; He, H.-Y.; Verma, A. K. *Tetrahedron: Asymmetry* **2002**, *13*, 933.

1H), 6.45 (d, J = 8.5 Hz, 2H), 7.05–7.19 (m, 6H); ¹³C NMR 20.3, 33.2, 52.8, 53.0, 59.2, 71.1, 111.3, 125.3, 126.0, 126.5, 126.8, 129.1, 129.7, 133.5, 134.0, 144.3. Anal. Calcd for C₁₈H₂₀N₂: C, 81.78; H, 7.63; N, 10.60. Found: C, 81.31; H, 8.18; N, 10.71.

Data for (10a.S)-2-cyclohexyl-1,2,3,5,10,10a-hexahydroimidazo[1,5-*b***]isoquinoline (1b): colorless prism (from hexanes/CHCl₃); yield 77%; mp 101–102 °C; [\alpha]^{25}_{D} –35.5 (***c* **1.66, CHCl₃); ¹H NMR \delta 1.24 (br s, 5H), 1.56–1.62 (m, 1H), 1.74 (br s, 2H), 1.88 (br s, 2H), 2.31 (br s, 1H), 2.63 (t,** *J* **= 8.4 Hz, 1H), 2.76–2.93 (m, 3H), 3.17 (dd,** *J* **= 8.4, 5.5 Hz, 1H), 3.43 (d,** *J* **= 4.6 Hz, 1H), 3.56, 4.02 (AB,** *J* **= 14.3 Hz, 2H), 4.03 (d,** *J* **= 4.6 Hz, 1H), 7.04–7.26 (m, 4H); ¹³C NMR \delta 24.7, 24.8, 26.0, 31.6, 32.2, 33.5, 52.9, 56.0, 58.8, 62.2, 74.1, 125.7, 126.2, 126.7, 129.0, 134.4, 134.8. Anal. Calcd for C₁₇H₂₄N₂: C, 79.64; H, 9.44; N, 10.93. Found: C, 79.94; H, 9.69; N, 10.87.**

Data for (10a.S)-2-benzyl-1,2,3,5,10,10a-hexahydroimidazo[1,5-*b***]isoquinoline (1c):** white needles (from hexanes/ EtOH); yield 85%; mp 73–74 °C; $[\alpha]^{25}_{D}$ –30.3 (*c* 1.77, CHCl₃); ¹H NMR δ 2.64 (t, J = 8.7 Hz, 1H), 2.77–2.95 (m, 3H), 3.21 (dd, J = 8.7, 5.7 Hz, 1H), 3.43, 3.93 (AB, J = 5.4 Hz, 2H), 3.55, 3.99 (AB, J = 14.2 Hz, 2H), 3.84 (s, 2H), 7.04–7.16 (m, 4H), 7.23–7.39 (m, 5H); ¹³C NMR δ 33.5, 52.6, 59.0, 59.1, 60.6, 76.5, 125.9, 126.4, 126.7, 127.0, 128.3, 128.5, 128.9, 134.4, 134.7, 139.4. Anal. Calcd for C₁₈H₂₀N₂: C, 81.78; H, 7.63; N, 10.60. Found: C, 81.52; H, 7.37; N, 10.65.

General Procedure for the Preparation of Benzotriazolyl Intermediates 13 and 14a–c. Using the same procedure as for the preparation of **12a–c**, reaction of **10a** with benzotriazole and aqueous formaldehyde (1 or 2 equiv) led to **13**.

Data for (2.*S*)-2-[(1*H*-1,2,3-benzotriazol-1-ylmethyl)amino]-*N*-(4-methylphenyl)-3-phenylpropanamide (13): white microcrystals (from CH₃OH); yield 92%; mp 136–137 °C; $[\alpha]^{25}_{D}$ -74.5 (*c* 1.76, CHCl₃); ¹H NMR δ 2.32 (s, 3H), 2.70 (br s, 1H), 2.79 (dd, *J* = 13.8, 8.7 Hz, 1H), 3.01 (dd, *J* = 14.1, 4.8 Hz, 1H), 3.61 (dd, *J* = 8.4, 4.5 Hz, 1H), 5.41–5.53 (m, 2H), 6.87–6.89 (m, 2H), 7.08–7.14 (m, 5H), 7.33–7.40 (m, 4H), 7.44 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 8.7 Hz, 1H), 8.67 (s, 1H); ¹³CNMR δ 20.8, 39.0, 60.9, 61.3, 108.8, 119.7, 120.1, 124.1, 127.0, 127.8, 128.6, 128.7, 129.4, 132.5, 134.1, 134.6, 135.9, 146.0, 170.2. Anal. Calcd for C₂₃H₂₃N₅O: C, 71.67; H, 6.01; N, 18.17. Found: C, 71.60; H, 6.25; N, 18.29.

A mixture of **10a**-**c** (2.0 mmol), BtH (0.48 g, 4.0 mmol), and paraformaldehyde (0.18 g, 6.0 mmol) with *p*-TsOH·H₂O (0.08 g, 0.4 mmol) was refluxed in benzene (25 mL) with a Dean– Stark apparatus for 2 h. After cooling, benzene was evaporated and toluene (25 mL) was added, and then the mixture was refluxed for another 1 h. The mixture was washed with 2 M NaOH. The aqueous phase was extracted with EtOAc and the combined organic phase was washed with water and brine and dried over anhydrous K₂CO₃. Removal of solvent in vacuo gave the crude **14a**-**c**, which were directly used for the subsequent reactions. Attempts to purify **14a**-**c** failed due to their significant decomposition on silica gel.

Data for (5.5)-1-(benzotriazolylmethyl)-5-benzyl-3-(4methylphenyl)tetrahydro-4*H***-imidazol-4-one (14a): obtained as a mixture of Bt¹ and Bt² isomers in 3:1 ratio, and NMR data are reported for the major Bt¹ isomer; yellowish oil; yield 92%; ¹H NMR \delta 2.29 (s, 3H), 3.09 (dd, J = 14.2, 7.4 Hz, 1H), 3.35 (dd, J = 14.2, 3.9 Hz, 1H), 3.91 (dd, J = 7.3, 3.8 Hz, 1H), 4.63, 4.85 (AB, J = 5.6 Hz, 2H), 5.41 (s, 2H), 7.06– 7.46 (m, 12H), 8.04 (d, J = 8.2 Hz, 1H).**

Data for (5.5)-1-(benzotriazolylmethyl)-5-benzyl-3-cyclohexyltetrahydro-4*H***-imidazol-4-one (14b): obtained as a mixture of Bt¹ and Bt² isomers in 4:1 ratio, and NMR data are reported for the major Bt¹ isomer; yellowish oil; yield 91%; ¹H NMR \delta 0.90–1.40 (m, 6H), 1.50–1.80 (m, 4H), 2.95 (dd,** *J* **= 13.9, 7.4 Hz, 1H), 3.24 (dd,** *J* **= 13.8, 3.4 Hz, 1H), 3.70–3.81 (m, 2H), 4.21, 4.43 (AB,** *J* **= 5.6 Hz, 2H), 5.31 (d,** *J* **= 4.8 Hz, 2H), 7.11 (d,** *J* **= 8.1 Hz, 1H), 7.27–7.45 (m, 7H), 8.04 (d,** *J* **= 8.1 Hz, 1H).** **Data for (5.5)-1-(benzotriazolylmethyl)-3,5-dibenzyltetrahydro-4***H***-imidazol-4-one (14c):** obtained as a mixture of Bt¹ and Bt² isomers in 5:1 ratio, and NMR data are reported for the major Bt¹ isomer; pale brown oil; yield 94%; ¹H NMR δ 3.04 (dd, J = 14.0, 6.8 Hz, 1H), 3.29 (dd, J = 14.0, 3.7 Hz, 1H), 3.87–3.90 (m, 1H), 4.09, 4.57 (AB, J = 10.7 Hz, 2H), 4.11– 4.13 (m, 1H), 4.32 (d, J = 5.2 Hz, 1H), 5.35 (s, 2H), 6.91–6.93 (m, 2H), 7.11–7.45 (m, 11H), 8.05 (d, J = 8.1 Hz, 1H); ¹³C NMR δ 37.4, 44.9, 62.9, 63.3, 65.1, 109.1, 120.0, 124.2, 126.8, 127.5, 127.7, 127.9, 128.5, 128.7, 130.0, 133.4, 134.9, 137.3, 145.7, 170.6.

General Procedure for the Preparation of 2,3,10,10a-Tetrahydroimidazo[1,5-b]isoquinolin-1(5H)-ones 15a-c. Treatment of crude 14a-c with 3 equiv of AlCl₃ afforded 15a-c with use of the same procedure as for the preparation of 1a-c. The isolated yields of 15a-c were based on α -aminoamides 10a-c.

Data for (10aS)-2-(4-methylphenyl)-2,3,10,10a-tetrahydroimidazo[1,5-*b***]isoquinolin-1(5***H***)-one (15a): colorless needles; yield 82%; mp 185–186 °C; [\alpha]^{25}_{\rm D} -62.7 (***c* **1.66, CHCl₃); ¹H NMR \delta 2.32 (s, 3H), 3.04–3.21 (m, 2H), 3.38–3.43 (m, 1H), 3.83, 4.05 (AB,** *J* **= 14.0 Hz, 2H), 4.48 (dd,** *J* **= 4.8, 1.6 Hz, 1H), 4.76 (d,** *J* **= 5.0 Hz, 1H), 7.10–7.21 (m, 6H), 7.44 (d,** *J* **= 8.5 Hz, 2H); ¹³C NMR \delta 20.8, 29.9, 52.3, 61.4, 69.6, 119.2, 126.2, 126.6, 126.9, 129.4, 129.5, 133.3, 133.7, 134.5, 135.0, 170.9. Anal. Calcd for C₁₈H₁₈N₂O: C, 77.67; H, 6.52; N, 10.06. Found: C, 77.28; H, 6.54; N, 10.10.**

Data for (10a.S)-2-cyclohexyl-2,3,10,10a-tetrahydroimidazo[1,5-*b***]isoquinolin-1(5***H***)-one (15b): colorless microcrystals; yield 83%; mp 72–73 °C; [\alpha]^{25}_{D}–89.8 (***c* **1.75, CHCl₃); ¹H NMR \delta 1.03–1.16 (m, 1H), 1.23–1.42 (m, 4H), 1.66–1.82 (m, 5H), 2.98 (AB dd, J = 15.6, 9.6 Hz, 1H), 3.10 (AB dd, J = 15.6, 4.8 Hz, 1H), 3.28 (dd, J = 9.2, 4.8 Hz, 1H), 3.78, 3.96 (AB, J = 14.1 Hz, 2H), 3.90–3.95 (m, 1H), 4.04 (dd, J = 4.8, 2.1 Hz, 1H), 4.36 (d, J = 4.8 Hz, 1H), 7.08–7.10 (m, 1H), 7.17–7.20 (m, 3H); ¹³C NMR \delta 25.2, 25.2, 25.4, 29.8, 30.2, 30.6, 49.9, 52.3, 60.9, 65.1, 126.1, 126.5, 126.8, 129.3, 133.6, 133.9, 171.3; HRMS** *m***/***z* **calcd for C₁₇H₂₂N₂O 270.1732 (M), found 270.1738. Anal. Calcd for C₁₇H₂₂N₂O: C, 75.52; N, 10.36. Found: C, 75.18; N, 10.32.**

Data for (10a.S)-2-benzyl-2,3,10,10a-tetrahydroimidazo-[1,5-*b***]isoquinolin-1(5***H***)-one (15c):** colorless prism; yield 78%; mp 50–51 °C; $[\alpha]^{25}_{D}$ –64.8 (*c* 1.66, CHCl₃); ¹H NMR δ 3.10 (d, J = 6.6 Hz, 2H), 3.49 (t, J = 6.9 Hz, 1H), 3.77, 3.84 (AB, J = 14.5 Hz, 2H), 4.05 (dd, J = 5.2, 1.8 Hz, 1H), 4.12 (d, J = 5.0 Hz, 1H), 4.29, 4.65 (AB, J = 15.3 Hz, 2H), 7.02–7.15 (m, 3H), 7.16–7.27 (m, 6H); ¹³C NMR δ 30.0, 44.8, 52.4, 60.4, 68.4, 126.3, 126.6, 127.0, 127.5, 127.6, 128.7, 129.2, 133.8, 134.4, 135.6, 172.3. Anal. Calcd for C₁₈H₁₈N₂O: C, 77.67; H, 6.52; N, 10.06. Found: C, 77.50; H, 6.83; N, 10.09.

General Procedure for the Preparation of 2,3,5-Trisubstituted-tetrahydro-4*H*-imidazol-4-ones 16a–c. A mixture of α -amino-amide 10a–c (2.0 mmol), benzaldehyde (0.27 g, 2 mmol), and *p*-TsOH (0.4 mmol) was refluxed in CH₃-OH (15 mL) with anhydrous Na₂SO₄ (3.0 g) for 12 h. After evaporation of CH₃OH in vacuo, the reaction mixture was diluted with EtOAc. The organic phase was washed with 2 M NaOH, water, and brine and dried over anhydrous K₂CO₃. After removal of solvent in vacuo, the residue was purified by column chromatography with hexanes/EtOAc (6:4) as an eluent to give *trans*-16a, *cis*-16'a, and *trans*-16b,c.

Data for (2*R***,5***S***)-5-benzyl-3-(4-methylphenyl)-2-phenyltetrahydro-4***H***-imidazol-4-one (16a): yellowish microcrystals; yield 38%; mp 106–107 °C; [\alpha]^{25}{}_{\rm D} –52.5 (***c* **1.86, CHCl₃); ¹H NMR \delta 1.70 (br s, 1H), 2.24 (s, 3H), 3.09–3.21(m, 2H), 4.13 (t, J = 5.5 Hz, 1H), 5.55 (s, 1H), 7.03, 7.11 (AB, J = 8.5 Hz, 4H), 7.22–7.32 (m, 10H); ¹³C NMR \delta 20.8, 38.0, 60.2, 77.1, 122.0, 126.4, 126.8, 128.5, 128.8, 128.9, 129.4, 129.8, 134.2, 135.1, 137.3, 139.4, 173.7. Anal. Calcd for C₂₃H₂₂N₂O: C, 80.67; H, 6.48; N, 8.18. Found: C, 80.39; H, 6.51; N, 7.94.**

Data for (2*S*,5*S*)-5-benzyl-3-(4-methylphenyl)-2-phenyltetrahydro-4*H*-imidazol-4-one (16'a): yellowish microcrystals; yield 31%; mp 97–98 °C; $[\alpha]^{25}_{D}$ –29.8 (*c* 1.58, CHCl₃); ¹H NMR δ 1.88 (br s, 1H), 2.20 (s, 3H), 3.17 (dd, J=14.1, 4.8 Hz, 1H), 3.40 (dd, J=14.1, 5.4 Hz, 1H), 4.00 (t, J=4.6 Hz, 1H), 5.81 (s, 1H), 6.81 (d, J=7.0 Hz, 2H), 6.98–7.33 (m, 12H); ¹³C NMR δ 20.9, 36.6, 60.9, 77.2, 122.8, 127.0, 127.1, 128.8, 128.9, 129.1, 129.3, 129.9, 134.0, 135.3, 136.4, 138.5, 174.0. Anal. Calcd for C₂₃H₂₂N₂O: C, 80.67; H, 6.48; N, 8.18. Found: C, 80.40; H, 6.30; N, 8.28.

Data for (2*R***,5***S***)-5-benzyl-3-cyclohexyl-2-phenyltetrahydro-4***H***-imidazol-4-one (16b): colorless microcrystals; yield 69%; mp 92–93 °C; [\alpha]^{25}_{D}–32.2 (***c* **1.81, CHCl₃); ¹H NMR \delta 0.87–0.99 (m, 2H), 1.07–1.28 (m, 2H), 1.43–1.61 (m, 5H), 1.65–1.70 (m, 1H), 1.99 (br s, 1H), 2.90 (dd,** *J* **= 13.5, 7.5 Hz, 1H), 3.13 (dd,** *J* **= 13.6, 3.9 Hz, 1H), 3.53–3.64 (m, 1H), 4.07– 4.11 (m, 1H), 5.16 (s, 1H), 7.20–7.34 (m, 10H); ¹³C NMR \delta 25.1, 25.6, 25.7, 29.9, 30.9, 38.7, 52.8, 59.7, 75.0, 126.4, 126.5, 128.3, 128.8, 129.0, 129.7, 137.8, 141.9, 173.6. Anal. Calcd for C₂₂H₂₆N₂O: C, 79.00; H, 7.84; N, 8.38. Found: C, 78.55; H, 7.99; N, 8.29.**

Data for (2*R***,5***S***)-3,5-dibenzyl-2-phenyltetrahydro-4***H***imidazol-4-one (16c): colorless needles (from hexanes/ EtOAc); yield 74%; mp 128–129 °C; [\alpha]^{25}_{\rm D} –19.7 (***c* **1.73, CHCl₃); ¹H NMR \delta 2.15 (br s, 1H), 3.04 (AB dd, J = 13.8, 6.9 Hz, 1H), 3.16 (AB dd, J = 13.8, 4.2 Hz, 1H), 3.46, 5.02 (AB, J = 14.9 Hz, 2H), 4.17 (br s, 1H), 4.96 (s, 1H), 6.85–6.87 (m, 2H), 7.14–7.36 (m, 13H); ¹³C NMR \delta 38.1, 43.9, 59.8, 74.8, 126.7, 126.8, 127.5, 128.0, 128.5, 128.6, 129.1, 129.2, 129.8, 135.5, 137.2, 139.3, 173.6. Anal. Calcd for C₂₃H₂₂N₂O: C, 80.67; H, 6.48; N, 8.18. Found: C, 80.31; H, 6.63; N, 8.13.**

General Procedure for the Preparation of Bt Intermediates 17a–c and 17'a. A mixture of 16a-c or 16'a (1.0 mmol), benzotriazole (0.14 g, 1.2 mmol), and formaldehyde (37% aqueous solution, 0.12 g, 1.5 mmol) was stirred in CH₃-OH (15 mL) at 25 °C overnight. After evaporation of CH₃OH, EtOAc was added to the mixture. The organic phase was washed with 1 M NaOH aqueous solution, brine, and water and dried over anhydrous K₂CO₃. Removal of solvent in vacuo gave essentially pure 17a and 17'a, which were purified by recrystallization for analytical purposes. Attempt to purify 17b,c (both obtained as sticky oil) by column chromatography (silica gel) failed, thus they were used directly for the subsequent reaction as crude products.

Data for (2*R*,5*S***)-1-(1***H***-1**,2,3-benzotriazol-1-ylmethyl)-5-benzyl-3-(4-methylphenyl)-2-phenyltetrahydro-4*H*-imidazol-4-one (17a): white needles (from EtOH); yield 89%; mp 153–154 °C; $[\alpha]^{25}_{D}$ –20.4 (*c* 1.80, CHCl₃); ¹H NMR δ 2.19 (s, 3H), 3.30–3.43 (m, 2H), 4.46 (br s, 1H), 5.34, 5.65 (AB, *J* = 13.8 Hz, 2H), 5.45 (d, *J* = 2.1 Hz, 1H, NC*H*N), 6.84–6.97 (m, 5H), 7.08–7.32 (m, 12H), 7.98–8.01 (m, 1H); ¹³C NMR δ 20.8, 36.3, 60.2, 63.2, 80.1, 109.7, 119.7, 123.6, 123.9, 126.8, 127.2, 128.0, 128.5, 128.8, 129.4, 129.6, 129.8, 132.3, 132.9, 135.9, 136.0, 136.7, 145.9, 170.6. Anal. Calcd for C₃₀H₂₇N₅O: C, 76.09; H, 5.75; N, 14.79. Found: C, 75.74; H, 6.01; N, 14.69.

Data for (2.5,5.5)-1-(benzotriazolylmethyl)-5-benzyl-3-(4-methylphenyl)-2-phenyltetrahydro-4*H*-imidazol-4one (17'a): obtained as a mixture of Bt¹ and Bt² isomers in 17:1 ratio, and NMR data are reported for the major Bt¹ isomer; white prism (from EtOH); yield 85%; mp 197–198 °C; $[\alpha]^{25}_{D}$ –185 (*c* 1.56, CHCl₃); ¹H NMR δ 2.16 (s, 3H), 3.38 (AB dd, J = 14.0, 4.4 Hz, 1H), 3.47 (AB dd, J = 14.0, 4.4 Hz, 1H), 4.08 (br s, 1H), 5.34, 5.46 (AB, J = 14.8 Hz, 2H), 5.82 (s, 1H, NC*H*N), 6.84 (d, J = 8.2 Hz, 2H), 6.88–6.96 (m, 4H), 7.13– 7.36 (m, 4H), 7.40–7.50 (m, 7H), 8.11 (d, J = 8.1 Hz, 1H); ¹³C NMR δ 20.9, 36.9, 58.9, 61.6, 77.8, 108.8, 120.2, 124.2, 124.5, 126.8, 128.0, 128.4, 128.5, 128.9, 129.3, 129.4, 130.5, 132.5, 134.0, 136.3, 136.7, 137.1, 145.6, 169.5. Anal. Calcd for C₃₀H₂₇N₅O: C, 76.09; H, 5.75; N, 14.79. Found: C, 75.84; H, 5.96; N, 14.54.

(2*R*,5*S*)-1-(Benzotriazolylmethyl)-5-benzyl-3-cyclohexyl-2-phenyltetrahydro-4*H*-imidazol-4-one (17b): obtained as a mixture of Bt¹ and Bt² isomers in 10:1 ratio, and NMR data are reported for the major Bt¹ isomer; yellowish oil; yield 94%; ¹H NMR δ 0.85–1.07 (m, 2H), 1.12–1.26 (m, 2H), 1.40–1.72 (m, 6H), 3.20–3.30 (m, 2H), 3.40–3.60 (m, 1H), 4.40 (s, 1H), 5.15 (s, 1H), 5.24, 5.41 (AB, J = 13.6 Hz, 2H), 7.09–7.45 (m, 12H), 7.55 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H).

Data for (2*R*,5*S***)-1-(benzotriazolylmethyl)-5-benzyl-3benzyl-2-phenyltetrahydro-4***H***-imidazol-4-one (17c): obtained as a mixture of Bt¹ and Bt² isomers in 7:1 ratio, and NMR data are reported for the major Bt¹ isomer; yellowish oil; yield 95%; ¹H NMR \delta 3.21–3.35 (m, 2H), 4.60 (d, J = 3.3 Hz, 1H), 5.01–5.07 (m, 2H), 5.05 (d, J = 2.1 Hz, 1H), 5.30, 5.55 (AB, J = 14.2 Hz, 2H), 6.58 (d, J = 7.0 Hz, 2H), 6.90– 7.38 (m, 16H), 7.95 (d, J = 8.1 Hz, 1H).**

General Procedure for the Lewis Acid-Promoted Cyclization of 17a–c and 17'a. Using the same procedure as for the preparation of **1a–c**, treatment of **17a–c** and **17'a** with 3 equiv of AlCl₃ afforded **18a–c** and **18'a**. After workup, all of the products were obtained as essentially NMR pure solids which were recrystallized from EtOH for analytical purposes.

Data for (3*R*,10a*S*)-2-(4-methylphenyl)-3-phenyl-2,3,-10,10a-tetrahydroimidazo[1,5-*b*]isoquinolin-1(5*H*)-one (18a): colorless needles (from EtOH); yield 91%; mp 189–190 °C; $[\alpha]^{25}_{D}$ -79.2 (*c* 1.83, CHCl₃); ¹H NMR δ 2.22 (s, 3H), 3.14 (d, *J* = 6.9 Hz, 2H), 3.62, 3.81 (AB, *J* = 14.7 Hz, 2H), 4.02 (td, *J* = 7.0, 1.4 Hz, 1H), 5.68 (d, *J* = 1.4 Hz, 1H, NC*H*N), 7.00-7.08 (m, 3H), 7.15-7.28 (m, 5H), 7.32-7.39 (m, 5H); ¹³C NMR δ 20.8, 30.0, 49.6, 58.3, 81.9, 122.4, 124.2, 126.3, 126.6, 127.0, 127.3, 128.8, 129.1, 129.4, 133.9, 134.0, 134.5, 135.3, 136.7, 172.3. Anal. Calcd for C₂₄H₂₂N₂O: C, 81.32; H, 6.26; N, 7.90. Found: C, 81.07; H, 6.53; N, 7.97.

Data for (3*S*,10a*S*)-2-(4-methylphenyl)-3-phenyl-2,3,-10,10a-tetrahydroimidazo[1,5-*b*]isoquinolin-1(5*H*)-one (18'a): colorless needles (from EtOH); yield 91%; mp 212.5– 213 °C; $[\alpha]^{25}_{D}$ -83.9 (*c* 1.59, CHCl₃); ¹H NMR δ 2.22 (s, 3H), 3.22–3.35 (m, 2H), 3.44 (ddd, *J* = 10.8, 4.2, 2.2 Hz, 1H), 3.79 (s, 2H), 5.32 (d, *J* = 2.1 Hz, 1H, NC*H*N), 6.97–7.11 (m, 5H), 7.11–7.33 (m, 6H), 7.40–7.43 (m, 2H); ¹³C NMR δ 20.9, 30.8, 50.6, 60.8, 82.7, 124.2, 126.1, 126.6, 126.8, 128.4, 128.9, 129.3, 129.4, 129.8, 133.3, 133.4, 133.7, 135.6, 136.1, 171.4. Anal. Calcd for C₂₄H₂₂N₂O: C, 81.32; H, 6.26; N, 7.90. Found: C, 81.07; H, 6.61; N, 8.04.

Data for (3*R***,10a***S***)-2-cyclohexyl-3-phenyl-2,3,10,10atetrahydroimidazo[1,5-***b***]isoquinolin-1(5***H***)-one (18b): white microcrystals (from EtOH); yield 78%; mp 150–151 °C; [\alpha]^{25}_{D} -66.6 (***c* **1.79, CHCl₃); ¹H NMR \delta 0.84–1.00 (m, 2H), 1.11–1.26 (m, 2H), 1.40–1.72 (m, 6H), 2.80–3.12 (m, 2H), 3.47, 3.64 (AB,** *J* **= 14.5 Hz, 2H), 3.60–3.70 (m, 1H), 3.86–3.91 (m, 1H), 5.19 (s, 1H, NC***H***N), 7.02 (d,** *J* **= 6.4 Hz, 1H), 7.12–7.41 (m, 8H); ¹³C NMR \delta 25.1, 25.6, 25.7, 30.1, 30.3, 31.1, 49.6, 52.4,** 58.1, 79.4, 126.1, 126.5, 126.9, 127.4, 128.7, 129.0, 131.7, 134.1, 134.7, 138.8, 172.7; HRMS m/z calcd for $C_{23}H_{26}N_2O$ 346.2045 (M), found 346.2042. Anal. Calcd for $C_{23}H_{26}N_2O$: N, 8.09. Found: N, 8.05.

Data for (3*R***,10a.***S***)-2-benzyl-3-phenyl-2,3,10,10a-tetrahydroimidazo[1,5-***b***]isoquinolin-1(5***H***)-one (18c): white needles; yield 78%; mp 108–109 °C; [\alpha]^{25}_{D} +65.1 (***c* **1.23, CHCl₃); ¹H NMR \delta 3.05 (dd, J = 15.2, 6.7 Hz, 1H), 3.22 (dd, J = 15.2, 4.8 Hz, 1H), 3.29, 4.99 (AB, J = 15.2 Hz, 2H), 3.58, 3.81 (AB, J = 15.2 Hz, 2H), 4.24 (br t, J = 4.7 Hz, 1H), 4.66 (d, J = 2.3 Hz, 1H, NC***H***N), 6.53 (d, J = 7.0 Hz, 2H), 7.02– 7.39 (m, 12H); ¹³C NMR \delta 29.9, 43.4, 50.1, 59.2, 80.5, 126.5, 127.1, 127.2, 127.3, 127.5, 128.4, 128.5, 128.6, 128.8, 129.2, 134.6, 134.9, 135.6, 138.1, 172.9. Anal. Calcd for C₂₄H₂₂N₂O: C, 81.32; H, 6.26; N, 7.90. Found: C, 80.76; H, 6.38; N, 7.87.**

Procedure for the Preparation of Bt Intermediate 22. A mixture of 2,5-dimethoxytetrahydrofuran (0.66 g, 5.1 mmol) and HCl aqueous solution (0.1 M, 20 mL) was heated to 100 °C for 45 min, then cooled to room temperature. CH_2Cl_2 (40 mL), benzotriazole (0.61 g, 5.1 mmol), and diamine **11a** (1.20 g, 5 mmol) were successively added and stirred at room temperature for 24 h. The reaction mixture was washed with 1 M NaOH and the aqueous phase was extracted with CH_2 . The combined organic phase was washed with brine and dried over anhydrous Na_2SO_4 . After removal of the solvent in vacuo, the residue was purified by column chromatography with hexanes/EtOAc (3:1) as an eluent to give **22**. However, subsequent treatment of **22** with 2 equiv of $AlCl_3$ or $ZnBr_2$ did not afford the desired tetracyclic compound **23**.

Data for (3S,5R,7aS)-5-benzotriazolyl-3-benzyl-1-(4methylphenyl)hexahydro-1*H*-pyrrolo[1,2-*a*]imidazole (22): obtained as a mixture of Bt¹ and Bt² isomers in 4.5:1 ratio, and NMR data are reported for the major Bt¹ isomer; colorless needles (from CHCl₃/Et₂O); mp 145-146 °C; [a]²⁵_D -4.2 (c 1.37, CHCl₃); ¹H NMR δ 2.06-2.17 (m, 1H), 2.29 (s, 3H), 2.45–2.64 (m, 5H), 3.18 (dd, J = 9.2, 4.0 Hz, 1H), 3.70– 3.80 [m, 1H, H(3)], 3.85 (dd, J = 9.2, 6.5 Hz, 1H), 5.10 (dd, J = 5.3, 4.0 Hz, 1H, NC*H*N), 6.02 (t, J = 7.0 Hz, 1H, BtC*H*N), 6.58 (d, J = 8.3 Hz, 2H), 6.79–6.82 (m, 2H), 6.92–6.98 (m, 3H), 7.10 (d, J = 8.1 Hz, 2H), 7.32-7.36 (m, 2H), 7.61-7.64 (m, 1H), 8.00–8.03 (m, 1H); 13 C NMR δ 20.2, 30.6, 30.9, 41.0, 52.8, 63.7, 79.2, 81.6, 111.5, 113.5, 119.6, 123.6, 125.9, 126.7, 126.8, 127.8, 128.4, 129.7, 131.2, 137.8, 143.9, 146.6. Anal. Calcd for C₂₆H₂₇N₅: C, 76.25; H, 6.65; N, 17.10. Found: C, 76.05; H, 6.88; N, 17.03.

JO0203241