
LETTER 2705

Organocatalytic Domino Mannich Aza-Michael Reactions towards the 
Stereoselective Synthesis of Highly Substituted Pipecolic Esters
Stereoselective Synthesis of Highly Substituted Pipecolic EstersSouad Khaliel,a Mecheril Valsan Nandakumar,a Harald Krautscheid,b Christoph Schneider*a

a Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
b Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany

Fax +49(341)9736599; E-mail: schneider@chemie.uni-leipzig.de
Received 20 June 2008

SYNLETT 2008, No. 17, pp 2705–2707xx.xx.2008
Advanced online publication: 01.10.2008
DOI: 10.1055/s-0028-1083377; Art ID: G22008ST
© Georg Thieme Verlag Stuttgart · New York

Abstract: Readily available chiral 7-oxo-2-enimides have been
converted into highly substituted pipecolic esters in moderate yields
and excellent stereocontrol through a proline-catalyzed domino
Mannich aza-Michael reaction.
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In recent years we have investigated the silyloxy-Cope re-
arrangement of 1,5-hexadienes 1 embedded in a syn-aldol
structure giving rise to chiral 7-oxo-2-enimides 2 in good
yields and typically excellent diastereoselectivity
(Scheme 1).1 On the basis of their unique functional group
pattern we have successfully employed these products for
the stereoselective preparation of a broad range of diverse
structural motifs such as heterocycles, carbocycles, ter-
penes, and polyol chains.2

Scheme 1

With the advent of asymmetric organoenamine catalysis
that allows for the highly enantioselective a-functional-
ization of aldehydes we wondered whether we could em-
ploy the Cope products as substrates in organocatalytic
C–C bond-forming reactions.3 We now wish to report that
chiral 7-oxo-2-enimides 2 containing an aldehyde moiety
tethered to an a,b-unsaturated imide undergo proline-
catalyzed domino Mannich aza-Michael reactions4 with
glyoxyl imines 3 furnishing highly substituted pipecolic
esters 4 in moderate yields and typically excellent stereo-
control.

Barbas and co-workers had established that proline-
catalyzed Mannich reactions of aldehydes and glyoxyl
imines furnished a-amino esters with high degrees of dia-
stereo- as well as enantiocontrol.5 Building on this prece-
dence we treated Cope product 2a with N-PMP-imino
ethyl glyoxylate (3a) and L-proline (20 mol%) in DMF for
20 hours at –20 °C and obtained after subsequent alde-
hyde reduction 48% of pipecolic ester 4a as a single ste-
reoisomer (Scheme 2).6 This domino-type7 reaction
comprised an initial proline-catalyzed Mannich reaction
followed by a subsequent aza-Michael addition of the in
situ formed amine onto the a,b-unsaturated imide moiety.
Small amounts (<5%) of the corresponding uncyclized
Mannich product were also isolated.

Scheme 2

For the unambiguous assignment of product configuration
4a was converted into the corresponding acetate 5a which
gave crystals suitable for crystallographic analysis8 prov-
ing the 2,3-trans and 2,6-cis configuration within the
piperidine ring (Figure 1). This analysis corresponds to
the expected highly syn-selective Mannich reaction5 and
an aza-Michael reaction onto a preaxially oriented conju-
gate double bond as had been found in other aza-Michael
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Figure 1 X-ray crystal structure of acetate 5a (50% ellipsoids)
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additions with these substrates previously.2d Interestingly,
the piperidine ring accommodates the 2- and 6-substitu-
ents in pseudoaxial positions which are bent away from
each other in order to avoid significant 1,3-diaxial interac-
tions.

In order to determine the scope and limitations of this new
domino process we subsequently reacted various 7-oxo-2-
enimides 2a–d with glyoxyl imines 3a–c according to this
protocol and obtained the desired highly substituted pipe-
colic esters 4a–f (Scheme 3) in generally moderate yields
and mostly as single stereoisomers (Table 1). In select
cases small amounts (<5%) of the corresponding 6-epimers
were additionally formed but could be readily removed by
chromatography. Less reactive imines failed to furnish the
piperidines according to this scheme because the initial
Mannich reaction did not proceed.

Scheme 3

When the reaction of 2a and 3a was repeated with D-pro-
line as organocatalyst a 2:1-mixture of diastereomers with
respect to the 6-position was obtained. Both of the diaste-
reomers shared the opposite configuration at the 2- and 3-
position within the piperidine ring (relative to the L-pro-
line-catalyzed reaction) indicating that the initial Mannich
reaction is a catalyst-controlled event whereas the subse-
quent aza-Michael addition apparently proceeds under
substrate control.

The chiral auxiliary may be readily cleaved off with mag-
nesium methoxide as was demonstrated for pipecolic ester
4e giving rise to methyl ester 6 in good yield (Scheme 4).
Likewise the PMP group in 4f was exchanged for a Boc
group through an oxidative cleavage with CAN followed
by an in situ Boc protection to yield pipecolic ester 7
(Scheme 4).

Scheme 4 Reagents and conditions: (i) MeMgCl, MeOH, CH2Cl2,
0 °C; (ii) (a) CAN, H2O–MeCN, 0 °C to r.t.; (b) Boc2O, DMAP.

In conclusion, we have established a novel organocatalyt-
ic domino process for the rapid synthesis of highly substi-
tuted pipecolic esters in just one step. Two new s bonds
and three new stereogenic centers are formed with excel-
lent stereocontrol. Further work along these lines will be
reported in due course.
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Table 1 L-Proline-Catalyzed Domino Mannich Aza-Michael 
Reactions towards Pipecolic Esters 4a–fa

Entry Product Yield (%)b

1

4a

48

2

4b

56

3

4c

54

4

4d

49

5

4e

51

6

4f

46

a Reagents and conditions: 7-oxo-2-enimide 2 (1 equiv), imine 3 (1.5 
equiv), 0.3 M in DMF, –20 °C, 20 h; then NaBH(OAc)3 (3.0 equiv) in 
EtOAc, 0 °C, 15 min.
b Isolated yield of purified product.
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