Synthesis of Bifunctional Hydroxamic Acids as Novel Ligands for the Hydrophilic Stabilization of Iron Oxide Nanoparticles

Andreas Hofmann,*^a Christina Graf,*^a Shih-Hao Kung,^a Myeongseob Kim,^b Xiaogang Peng,^b Randa El-Aama,^a Eckart Rühl^a

^b Department of Chemistry and Biochemistry, University of Arkansas, Dickson Street, Fayetteville, AR 72701, USA

Received 12 August 2009; revised 16 December 2009

Abstract: A general method for synthesizing bifunctional hydroxamic acids containing carboxylic acid or amino functionalities is reported. Various products from simple alkyl to complex dendrimerlike structures are described. Such molecules have recently been used in ligand-exchange reactions for the hydrophilic stabilization of originally oleic acid protected iron oxide nanoparticles.

Key words: protecting groups, hydroxamic acids, hydrogenation, ethers, alkylations

Hydroxamic acid derivatives possess a wide spectrum of biological activity¹ and are well known as chelating ligands for metal ions.² Extensive studies have shown that the bond strength between Fe(II)/Fe(III) ions and hydroxamic acids greatly exceeds that between carboxylic acids and iron ions because of the possibility of forming a fivemembered chelating ring, instead of the four-membered rings or monodendate species formed in case of the carboxylic acid ligands.^{3,4} This enhanced bond strength could also be observed with other isolated metal ions, such as Co(II), Ni(II), Cu(II), and Zn(II) as well as on metal surfaces and self-assembled monolayers.^{2,3,5} As a consequence, hydroxamic acid derivatives are particularly suitable for functionalizing metal-containing complexes as well as metal-containing nanoparticles.⁶ Moreover, the use of hydroxamic acid ligands with additional functional groups allows the introduction of new functional groups into the ligand sphere of nanoparticles and permits alteration of the solubility of nanoparticles in a controlled way. This is especially interesting for the transfer of iron oxide nanoparticles from nonpolar solvents into polar solvents.⁷ Most applications of iron oxide nanoparticles, such as magnetic resonance tomography or hyperthermia treatment, require water-dispersible systems.⁸⁻¹¹ Such functionalization involves the necessity of synthesizing hydroxamic acid derivatives containing additional polar functional groups, such as carboxylic acids or amines. In spite of the potential applications of these compounds and the well-known synthesis routes for normal hydroxamic acids without additional functionalities,^{1,12-14} the synthesis of bifunctional hydroxamic acids is often tedious because of the polarity and reactivity of the hydroxamic acid

SYNTHESIS 2010, No. 7, pp 1150–1158 Advanced online publication: 29.01.2010 DOI: 10.1055/s-0029-1218654; Art ID: T15909SS © Georg Thieme Verlag Stuttgart · New York group. The size of the ligands is an important parameter for steric stabilization of nanoparticles, because bulky ligands often exhibit a considerably higher stability of the nanoparticle–ligand system.^{15,16} Therefore, it is necessary to synthesize polar groups containing bulky hydroxamic acid ligands for the stabilization of nanoparticles as well as model compounds of smaller size.⁶

We describe in this work a general synthetic route for the preparation of alkanehydroxamic and arenecarbohydroxamic acids containing carboxylic **1**, **2**, and **3** or amino **4** end groups (Figure 1).

Figure 1 Bifunctional hydroxamic acid compounds as novel ligands for iron oxide nanoparticles

The preparation of key intermediate compounds **6**, **8**, and **10** is shown in Scheme 1. Thus, 11-aminoundecanoic acid (**5**) was reduced by lithium aluminum hydride and the resulting primary alcohol was converted into the desired alkyl bromide using concentrated hydrobromic acid, as described by Niwa et al.¹⁷ After the introduction of the Boc group, **6** was obtained in 5% overall yield. The benzyl-protected carboxylic acid **8** was prepared from 11-bromoundecanoic acid (**7**) in one step in 84% overall yield.¹⁸

Compound 10 was prepared from benzylamine (9) in three steps and in 49% overall yield. First, tosylated diethylene glycol monomethyl ether¹⁹ was added to

^a Physikalische Chemie, Institut f
ür Chemie und Biochemie, Freie Universit
ät Berlin, Takustr. 3, 14195 Berlin, Germany Fax +49(30)83852717; E-mail: ah79@chemie.fu-berlin.de; E-mail: cmgraf@chemie.fu-berlin.de

benzylamine in a nucleophilic substitution reaction. Subsequently, the benzyl group was removed by palladiumcatalyzed hydrogenolysis reaction at 1 bar.¹⁹ Finally, reaction of the resulting free amine and bromoacetyl bromide afforded **10**, containing two amine-bound 2-(2-methoxyethoxy)ethyl (MEE) groups.⁶

Scheme 1 Synthesis of the key intermediate compounds 6, 8, and 10

The long-chain carboxylic acid and amine containing benzenecarbohydroxamic acids **2** and **4** were prepared as shown in Scheme 2. Protection of 4-hydroxybenzoic acid (**11**) using *O*-(4-methoxybenzyl)hydroxylamine hydrochloride²⁰ gave **12** in 58% yield. This product can be further functionalized in different ways. For the preparation of amine **4**, an ether linkage between compound **12** and **6** was formed under highly basic conditions at pH >12.²¹ After deprotecting of the amino group by hydrochloric acid at room temperature, the 4-methoxybenzyl group was removed by hydrogenation to give **4** in 22% overall yield starting from **11**. It should be pointed out that the 4-methoxybenzyl group was stable under acidic conditions and no cleavage was observed. In the same way, an ether linkage between **12** and **8** afforded product **15** in 47% yield. Both protecting groups in compound **15**, namely the benzyl group and the 4-methoxybenzyl group, could be removed in one step by hydrogenolysis at 1.5 bar in tetrahydrofuran. Thus, the desired hydroxamic acid **2** was obtained in 22% overall yield starting from **11**.

The preparation of the more complex dendron-like structures **1** and **24** is shown in Scheme 3.

3,5-Dihydroxybenzoic acid (16) was esterified²² and alkylation with 18^{23} yielded monomer 19 (73%),^{6,24,25} from which the methyl ester group was cleaved using sodium hydroxide in methanol to give acid 20 (94%). The hydroxamic acid protecting benzyl group was introduced with Obenzylhydroxylamine hydrochloride by using N-[3-(dimethylamino)propyl]-N'-ethylcarbodiimide hydrochloride (EDCI) and 1-hydroxybenzotriazole (HOBt) as carboxylic acid activating agents. Optimization of this process led to an improved procedure affording 21 in 86% yield by using dichloromethane as solvent and N,N-diisopropylethylamine instead of triethylamine. The diamine hydrochloride salt 22 was obtained from Boc cleavage. Both compounds 23 (14%) and 25 (27%) could be obtained in one step by using 3.2 equivalents of 10. However, this method required a tedious purification process. In contrast, 23 could be synthesized from 22 in 56% yield, without formation of 25, using excess 10 (5 equiv) and N,Ndiisopropylethylamine instead of triethylamine. After subsequent hydrogenolysis of 23 the final product 24 was obtained in 91% yield. In order to obtain hydroxamic acid 1, compound 25 was treated with 26 in acetone under refluxing conditions with sodium carbonate followed by palladium-catalyzed hydrogenolysis, which gave 1 in 67% yield. During the synthesis of 23 and 25, also a product with two N,N-bis[2-(2-methoxyethoxy)ethyl]ethylamide groups could be isolated. This compound can also be used to prepare hydroxamic acid dendrons with two

Scheme 2 Synthesis of the carboxylic acid and amino containing arenecarbohydroxamic acids 2 and 4

Synthesis 2010, No. 7, 1150–1158 $\hfill {\ensuremath{\mathbb C}}$ Thieme Stuttgart \cdot New York

Scheme 3 Synthesis of the dendritic hydroxamic acids 1 and 24

carboxylic acid groups. In principle, dendritic hydroxamic acids with up to four carboxylic acid groups are conceivable starting from **22**.

Alternatively, the preparation of the hydroxamic acids **1** and **24** without using a benzyl-protected hydroxamic acid derivative was also attempted. In this case, after the introduction of **10**, we simply tried to convert the aryl methyl ester (in **19**) into the acid and subsequently to the hydroxamic acid group.⁶ However, even under relatively mild basic ester cleavage conditions using dilute sodium or lithium hydroxide, the ester cleavage could only be performed in 25% yield. Moreover, after deprotection of the aryl ester, **24** could be synthesized only with 21% yield by using hydroxylamine directly. In addition, the poor solubility of the product and the presence of inseparable impurities impeded its purification. In the case of **1**, we were not able to prepare the final product without using the benzyl-protected hydroxamic acid.

Scheme 4 Synthesis of the alkyl chain hydroxamic acid compound 3

For comparing arenecarbohydroxamic and alkanehydroxamic acids and investigating the general accessibility of the described synthetic method for preparing carboxylic acid containing hydroxamic acids, **3** was prepared from dodecanedioic acid (**28**) in five steps (Scheme 4).

Compound **28** was first converted into the corresponding dimethyl ester under acidic conditions followed by partial cleavage of the resulted dimethyl ester under basic conditions. The free carboxylic acid group was activated by EDCI and coupled with O-(4-methoxybenzyl)hydroxyl-amine hydrochloride for the introduction of the protected hydroxamic acid group. Subsequently, the remaining ester group was hydrolyzed under basic conditions at 60 °C in 90% yield. During deprotection of the hydroxylamine group in the last step by a palladium-catalyzed hydrogenolysis reaction, a methyl ester group was generated, which could be cleaved by lithium hydroxide to give compound **3** in 40% yield. The formation of an ester can be avoided by performing the hydrogenolysis in tetrahydrofuran or dioxane.

In summary, we conclude that the two protecting groups *O*-benzylhydroxylamine and *O*-(4-methoxybenzyl)hydroxylamine can be used as suitable and easily removable groups for the protection of hydroxamic acids during the integration of new reactive functionalities into hydroxamic acid containing molecules. In conclusion, various bifunctionalized arenecarbohydroxamic and alkanehydroxamic acids with free carboxylic acids and amino groups were prepared. These molecules are highly suitable to be used as ligands for the polar functionalization of iron oxide nanoparticles, since they are able to replace even strong binding long chain carboxylic acid ligands. This ligand exchange approach has already been used by Kim et al. for methylated triethylene glycol capped hydroxamic acid based dendron ligands.⁶ However, the ligands used in ref. 6 do not contain reactive groups besides the hydroxamic acid group. Hence, their use for the electrostatic stabilization of nanoparticles is restricted. In contrast, the novel dendron ligands exhibit, in principle, an adjustable number of up to four carboxylic acid functionalities. In this way, even more polar ligands become available. In addition, the adjustable size of the different types of ligands presented in this work permits controlled steric stabilization of nanoparticles and clusters. We selected molecules from simple systems up to dendrimer-like structures to establish a universal approach of surface stabilization of nanoparticles as well as metal complexes. The graded electrostatic stabilization of iron oxide nanocrystals with these novel type of ligands and the characterization and properties of the obtained highly water-dispersible and biocompatible particles will be described in detail elsewhere.¹¹

The chemicals were purchased from Sigma-Aldrich, Alfa Aesar, and ABCR and were used without purification. All solvents were purified by distillation before use and dried according to standard procedures where necessary. All reactions were carried out in a dry argon atmosphere unless otherwise mentioned. Melting points are determined by a Büchi 510 apparatus. NMR spectra were recorded on a Jeol ECX 400 (100.62 MHz for ¹³C, 400.13 MHz for ¹H) spectrometer. Chemical shifts are referenced to the residual proton or carbon resonance of the deuterated solvent [CHCl₃ δ = 7.26 (¹H) or $\delta = 77.00$ (proton decoupled ¹³C)]. The samples were characterized by ESI-TOF using an Agilent 6210 ESI-TOF, Agilent Technologies. The solvent flow rate was adjusted to 4 µL/min and the spray voltage was set to 4 kV. The drying gas flow rate was set to 15 psi (≈1 bar). All other parameters were adjusted for a maximum abundance of $[M + H]^+$, where M is the parent cation. Flash chromatography was carried out using silica gel (43-60 mesh) purchased from Fluka.

tert-Butyl *N*-(2-bromoacetyl)carbamate (**18**),²³ 2-(2-methoxyethoxy)ethyl 4-methylbenzenesulfonate TsO-MEE,¹⁹ and *O*-(4methoxybenzyl)hydroxylamine²⁰ were prepared according to known literature procedures.

tert-Butyl N-(11-Bromoundecyl)carbamate (6)

11-Aminoundecanoic acid (5, 3.74 g, 18.6 mmol) was added in small portions to a stirred suspension of LiAlH₄ (1.06 g, 27.9 mmol) in anhyd THF (50 mL). The mixture was refluxed for 20 h, CHCl₃ was added, and the mixture was washed with sat. NaHCO₃. The organic phase was dried (Na₂SO₄), the solvent was removed, and the product was purified by column chromatography (silica gel, CHCl₃–MeOH, 1:0 to 15:1) to afford 11-aminoundecan-1-ol (0.95 g, 27%) as a slightly yellowish solid. 11-Aminoundecan-1-ol (0.95 g, 5.0 mmol) was refluxed with concd HBr (48%, 15 mL) for 24 h. The mixture was cooled to 0 °C and the precipitate was filtered and purified by recrystallization (acetone) to give 11-bromoundecan-1-amine hydrobromide (0.33 g, 20%) as a brown solid.¹⁷ A mixture of Boc₂O (0.44 g, 2.0 mmol) in THF (2.5 mL) was added dropwise to

a soln of 11-bromoundecan-1-amine hydrobromide (0.33 g, 1.0 mmol) and Et₃N (0.5 mL) in THF–H₂O (1:2, 7.5 mL) at 0 °C. The mixture was stirred at r.t. for 20 h, Et₂O (50 mL) was added, and the product was washed with 0.5 M HCl (2×25 mL), H₂O (25 mL), and brine (25 mL). The solvent was dried and evaporated and the product was purified by column chromatography (silica gel, hexane–EtOAc, 1:0.05 to 1:0.11) to afford **6** (0.3 g, 88%) as a colorless solid; mp 59–60 °C.

¹H NMR (400 MHz, CDCl₃): δ = 4.50 (br, 1 H), 3.39 (t, *J* = 6.8 Hz, 2 H), 3.31–3.04 (m, 2 H), 1.87–1.80 (m, 2 H), 1.45–1.36 (m, 13 H), 1.29–1.20 (m, 12 H).

¹³C NMR (100 MHz, CDCl₃): δ = 155.9 (s), 78.9 (s), 40.6 (t), 34.0 (t), 32.8 (t), 30.0 (t), 29.5 (t), 29.4 (t), 29.3 (t), 29.2 (t), 28.7 (t), 28.4 (q, 3 C), 28.1 (t), 26.8 (t).

Benzyl 11-Bromoundecanoate (8)18

11-Bromoundecanoic acid (7, 5.0 g, 19 mmol) was mixed with anhyd CH_2Cl_2 (50 mL) under an argon atmosphere. Subsequently, BnOH (2.03 g, 1.74 mL, 19 mmol) and DMAP (0.59 g, 4.8 mmol) were added under stirring. To the stirred mixture a soln of DCC (4.65 g, 23 mmol) in a small amount of CH_2Cl_2 was added slowly. The reaction was left overnight and the product was filtered to remove the urea. The solvent was removed under reduced pressure and the product was purified by column chromatography (CH_2Cl_2) to afford **8** (5.63 g, 84%) as a colorless oil.¹⁸

¹H NMR (400 MHz, CDCl₃): δ = 7.38–7.29 (m, 5 H), 5.11 (s, 2 H), 3.39 (t, *J* = 6.8 Hz, 2 H), 2.34 (t, *J* = 7.5 Hz, 2 H), 1.87–1.80 (m, 2 H), 1.67–1.60 (m, 2 H), 1.45–1.36 (m, 2 H), 1.34–1.23 (m, 10 H).

¹³C NMR (100 MHz, CDCl₃): δ = 173.5 (s), 136.1 (s), 128.5 (d, 2 C), 128.1 (d, 3 C), 65.9 (t), 34.2 (t), 33.9 (t), 32.7 (t), 29.3 (t), 29.2 (t), 29.1 (t), 29.0 (t), 28.7 (t), 28.1 (t), 24.9 (t).

2-Bromo-N,N-bis[2-(2-methoxyethoxy)ethyl]acetamide (10)

BnNH₂ (**9**, 9.00 g, 89.0 mmol) and K₂CO₃ (35 g, 254 mmol) were dispersed in MeCN (85 mL). To this suspension was added dropwise a soln of TsO-MEE (50.7 g, 185 mmol) in MeCN (165 mL) at r.t. When the addition was complete, the mixture was refluxed at 90 °C for 48 h. The suspension was filtered and the residue was washed with CHCl₃. The solvent was evaporated, the crude product was dissolved in 5% HCl (100 mL), and the side products were extracted with Et₂O (3 × 100 mL). Sat. NaHCO₃ soln was added to the acidic phase to change the pH value to 7–8. The product was extracted with Et₂O (5 × 75 mL). The solvent was dried and removed at reduced pressure to yield *N,N*-bis[2-(2-methoxyethoxy)ethyl]benzyl-amine (26.7 g, 98%) as a yellowish oil.¹⁹

¹H NMR (250 MHz, CDCl₃): δ = 7.32–7.20 (m, 5 H), 3.69 (s, 2 H), 3.58–3.46 (m, 12 H), 3.35 (s, 6 H), 2.75 (t, *J* = 6.4 Hz, 4 H).

A mixture of *N*,*N*-bis[2-(2-methoxyethoxy)ethyl]benzylamine (39.8 g, 128 mmol), Pd/C (10%) (2.00 g), and MeOH (50 mL) was hydrogenated at r.t. at 1.5 bar H₂ pressure for 24 h. Subsequently, the mixture was centrifuged and filtered and the solvent was removed. The mixture was dissolved in sat. NaHCO₃ soln and extracted with CHCl₃ (5 ×). The combined organic fractions were dried and the solvent was removed. The product was purified by distillation to afford bis[2-(2-methoxyethoxy)ethyl]amine (22.5 g, 80%) as a colorless oil.¹⁹

¹H NMR (250 MHz, CDCl₃): δ = 3.55–3.40 (m, 12 H), 3.28 (s, 6 H), 2.72 (t, *J* = 5.4 Hz, 4 H), 1.68 (br s, 1 H).

Bromoacetyl bromide (41.4 g, 205 mmol) was added dropwise to a cooled soln (0 °C) of bis[2-(2-methoxyethoxy)ethyl]amine (22.4 g, 101 mmol) and Et₃N (10.2 g, 101 mmol) in EtOAc (300 mL) over 90 min. When the addition was complete, the mixture was stirred at 0 °C for an additional 3 h and then at r.t. for 24 h. The reaction was quenched by the addition of sat. NaHCO₃ soln and the product was

washed with $H_2O(3 \times 50 \text{ mL})$ and brine. The crude product was purified by column chromatography (silica gel, EtOAc–CHCl₃ to CHCl₃–EtOH, 5:0.2 to CHCl₃–EtOH, 5:0.6) to give **10** (21.6, 62%) as a yellowish oil; bp 138–140 °C/0.1 mbar.

¹H NMR (400 MHz, CDCl₃): δ = 4.00 (s, 2 H), 3.63–3.58 (m, 6 H), 3.56–3.52 (m, 6 H), 3.48–3.44 (m, 4 H), 3.33 (s, 3 H), 3.22 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 167.7 (s), 71.7 (t), 71.6 (t), 70.6 (t), 70.3 (t), 68.9 (t), 68.7 (t), 58.9 (q), 58.8 (q), 49.9 (t), 46.7 (t), 27.1 (t).

HRMS (+ESI): m/z [M + Na]⁺ calcd for C₁₂H₂₄⁷⁹BrNNaO₅: 364.0736; found: 364.0744; m/z [M + Na]⁺ calcd for C₁₂H₂₄⁸¹BrNNaO₅: 366.0715; found: 366.0723.

Anal. Calcd for $C_{12}H_{24}BrNO_5$: C, 42.11; N, 4.09; H, 7.07. Found: C, 38.99; N, 3.78; H, 7.15.

4-Hydroxy-N-(4-methoxybenzyloxy)benzamide (12)

4-Hydroxybenzoic acid (**11**, 0.6 g, 4.34 mmol) was dissolved in anhyd DMF (10 mL) and the mixture was cooled to -10 °C. HOBt (0.76 g, 5.64 mmol), EDCI (1.08 g, 5.64 mmol), *O*-(4-methoxybenzyl)hydroxylamine hydrochloride (0.99 g, 5.21 mmol), *i*-Pr₂NEt (3.75 mL, 21.7 mmol), and DMAP (0.01 g, 0.0868 mmol) were added at -10 °C with vigorous stirring and the mixture was stirred at r.t. for 20 h. When the reaction was complete, the mixture was neutralized with 1 M HCl, extracted with CH₂Cl₂, washed with brine, and dried (Na₂SO₄). The crude product was purified by column chromatography (CH₂Cl₂–MeOH, 50:1) to afford **12** (0.69 g, 58%) as a white powder; mp 129–132 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD): δ = 7.49 (d, *J* = 8.8 Hz, 2 H), 7.29 (d, *J* = 8.6 Hz, 2 H), 6.82 (d, *J* = 8.6 Hz, 2 H), 6.73 (d, *J* = 8.8 Hz, 2 H), 4.83 (s, 2 H), 3.73 (s, 3 H), 3.50 (br, 1 H).

¹³C NMR (100 MHz, CDCl₃–CD₃OD): δ = 166.7 (s), 160.5 (s), 159.8 (s), 130.9 (d, 2 C), 128.9 (d, 2 C), 127.5 (s), 122.6 (s), 115.2 (d, 2 C), 113.7 (d, 2 C), 77.7 (t), 55.1 (q).

HRMS (+ESI): m/z [M + Na]⁺ calcd for C₁₅H₁₅NNaO₄: 296.0899; found: 296.0891.

Anal. Calcd for $C_{15}H_{15}NO_4$: C, 65.92; N, 5.13; H, 5.53. Found: C, 64.95; N, 6.07; H, 5.33.

tert-Butyl *N*-(11-{4-[(4-Methoxybenzyloxy)carbamoyl]phenoxy}undecyl)carbamate (13)

To a soln of KOH (0.23 g, 4.1 mmol) in DMSO (4 mL) was added benzamide **12** (0.200 g, 0.732 mmol) and carbamate **6** (0.282 g, 0.805 mmol). The mixture was stirred for 2 h and quenched by addition of H₂O (15 mL). The product was extracted with CH₂Cl₂ (3×25 mL) and EtOAc (2×25 mL). The combined organic fractions were washed with brine (2×25 mL) and dried and the solvents were removed at reduced pressure. Recrystallization (EtOAc) gave **13** (0.20 g, 50%) as a colorless solid; mp 107–108 °C.

¹H NMR (400 MHz, CDCl₃): δ = 9.12 (br s, 1 H), 7.65 (d, *J* = 8.8 Hz, 2 H), 7.32 (d, *J* = 8.6 Hz, 2 H), 6.85 (d, *J* = 6.7 Hz, 2 H), 6.83 (d, *J* = 6.9 Hz, 2 H), 4.91 (s, 2 H), 4.57 (br, 1 H), 3.93 (t, *J* = 6.5 Hz, 2 H), 3.77 (s, 3 H), 3.09–3.22 (m, 2 H), 1.78–1.71 (m, 2 H), 1.41 (s, 9 H), 1.48–1.20 (m, 16 H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 166.0$ (s), 162.0 (s), 159.8 (s), 156.0 (s), 130.9 (d, 2 C), 128.9 (d, 2 C), 127.5 (s), 123.9 (s), 114.2 (d, 2 C), 113.8 (d, 2 C), 78.9 (s), 77.7 (t), 68.1 (t), 55.2 (q), 40.5 (t), 30.0 (t), 29.4 (t, 2 C), 29.3 (t), 29.2 (t, 2 C), 29.0 (t), 28.3 (t, 3 C), 26.7 (t), 25.8 (t).

HRMS (+ESI): m/z [M + Na]⁺ calcd for C₃₁H₄₆N₂NaO₆: 565.3254; found: 565.3234.

Anal. Calcd for $C_{31}H_{46}N_2O_6;\,C,\,68.61;\,N,\,5.16;\,H,\,8.54.$ Found: C, $68.55;\,N,\,5.16;\,H,\,8.71.$

4-(11-Aminoundecyloxy)-*N*-(4-methoxybenzyloxy)benzamide Hydrochloride (14)

Concd HCl (37%, 0.4 mL) was added with stirring to a soln of carbamate **13** (65 mg, 0.12 mmol) in $Et_2O-CH_2Cl_2$ (1:1, 4 mL). The mixture was stirred at r.t. for a further 3 h. The solvent was removed at reduced pressure and the resulting solid was suspended in Et_2O and filtered to afford **14** (49 mg, 85%) as a colorless solid; mp 166 °C (dec).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.67 (br s, 1 H), 8.07 (br s, 3 H), 7.76 (d, J = 8.8 Hz, 2 H), 7.40 (d, J = 8.6 Hz, 2 H), 7.01 (d, J = 8.8 Hz, 2 H), 6.98 (d, J = 8.6 Hz, 2 H), 4.86 (s, 2 H), 4.03 (t, J = 6.4 Hz, 2 H), 3.80 (s, 3 H), 2.81–2.70 (m, 2 H), 1.79–1.67 (m, 2 H), 1.63–1.53 (m, 2 H), 1.48–1.38 (m, 2 H), 1.38–1.23 (m, 12 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 164.5 (s), 161.8 (s), 159.8 (s), 131.2 (d, 2 C), 129.4 (d, 2 C), 128.5 (s), 124.8 (s), 114.6 (d, 2 C), 114.2 (d, 2 C), 77.1 (t), 68.2 (t), 55.6 (q), 39.2 (t), 29.5 (t), 29.4 (t), 29.36 (t), 29.28 (t), 29.1 (t, 2 C), 27.5 (t), 26.4 (t), 26.0 (t).

HRMS (+ESI): m/z [M - HCl + H]⁺ calcd for C₂₆H₃₉N₂O₄: 443.2910; found: 443.2911.

HRMS (–ESI): $m/z [M - H]^-$ calcd for $C_{26}H_{38}^{35}ClN_2O_4$: 477.2520; found: 477.2516.

Anal. Calcd for $C_{26}H_{39}CIN_2O_4$: C, 65.19; N, 5.85; H, 8.21. Found: C, 64.26; N, 6.03; H, 8.29.

4-(11-Aminoundecyloxy)benzenecarbohydroxamic Acid Hydrochloride (4)

A mixture of benzamide hydrochloride **14** (40 mg, 83 μ mol), MeOH (6 mL), CHCl₃ (3 mL), and Pd/C (20 mg) was hydrogenated for 3 h. When the reaction was complete, the catalyst was removed by centrifugation and the organic phases were combined and evaporated to dryness. The solid was washed with CH₂Cl₂ to give **4** (27 mg, 91%) as a white solid.

IR (KBr): 3294 (m), 2921 (m), 2841 (m), 2730 (w), 1647 (s), 1608 (s), 1566 (m), 1506 (s), 1392 (m), 1306 (s), 1254 (s), 1165 (s), 1018 (s), 900 (m), 847 (s), 754 (m), 652 (m), 544 cm⁻¹ (w).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 11.11 (br s, 1 H), 8.93 (br, 1 H), 7.76–7–94 (br, 3 H), 7.75 (d, *J* = 8.8 Hz, 2 H), 7.00 (d, *J* = 8.9 Hz, 2 H), 4.04 (t, *J* = 4.3 Hz, 2 H), 2.81–2.73 (m, 2 H), 1.76–1.71 (m, 2 H), 1.58–1.53 (m, 2 H), 1.45–1.25 (m, 14 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 164.9 (s), 161.8 (s), 129.5 (d, 2 C), 125.7 (d), 114.9 (d, 2 C), 68.5 (t), 39.7 (t), 29.9 (t), 29.8 (t), 29.73 (t), 29.66 (t), 29.47 (t), 29.44 (t), 27.9 (t), 26.7 (t), 26.4 (t).

HRMS (+ESI): m/z [M – HCl + H]⁺ calcd for C₁₈H₃₁N₂O₃: 323.2335; found: 323.2352.

Benzyl 11-{4-[(4-Methoxybenzyloxy)carbamoyl]phenoxy}undecanoate (15)

Benzamide **12** (0.150 g, 0.549 mmol) and K_2CO_3 (0.390 mg, 2.86 mmol) were added to anhyd DMF (50 mL) and the mixture was heated to 80 °C under stirring for 1 h. Undecanoate **8** (0.298 g, 0.803 mmol) in anhyd DMF (5 mL) was added slowly and the mixture was stirred at 80 °C for 24 h. The precipitate was removed by hot filtration, H_2O was added to the filtrate, and the product was extracted with EtOAc. Purification by column chromatography (hexane–EtOAc, 7:3 to 0:1) gave **15** (0.14 g, 47%) as a colorless solid; mp 106–107 °C.

¹H NMR (400 MHz, CDCl₃): δ = 8.79 (s, 1 H), 7.64 (d, *J* = 8.8 Hz, 2 H), 7.39–7.27 (m, 7 H), 6.90–6.82 (m, 4 H), 5.09 (s, 2 H), 4.92 (s, 2 H), 3.94 (t, *J* = 6.5 Hz, 2 H), 3.16 (s, 3 H), 2.33 (t, *J* = 7.5 Hz, 2 H), 1.80–1.71 (m, 2 H), 1.68–1.56 (m, 2 H), 1.50–1.37 (m, 2 H), 1.36–1.18 (m, 10 H).

¹³C NMR (100 MHz, CDCl₃): δ = 173.7 (s), 166.2 (s), 162.1 (s), 159.9 (s), 136.0 (s), 131.0 (d, 2 C), 128.8 (d, 2 C), 128.5 (d, 2 C),

128.1 (d, 3 C), 127.4 (s), 123.8 (s), 114.3 (d, 2 C), 113.8 (d, 2 C), 77.8 (t), 68.1 (t), 66.0 (t), 55.2 (q), 34.2 (t), 29.3 (t), 29.24 (t), 29.20 (t), 29.1 (t), 29.0 (t, 2 C), 25.9 (t), 24.8 (t).

HRMS (+ESI): m/z [M + Na]⁺ calcd for C₃₃H₄₁NNaO₆: 570.2832; found: 570.2835.

Anal. Calcd for $C_{33}H_{41}NO_6;\,C,\,72.37;\,N,\,2.56;\,H,\,7.55.$ Found: C, 71.93; N, 2.62; H, 7.05.

11-[4-(Hydroxycarbamoyl)phenoxy]undecanoic Acid (2)

Pd/C (10%, 0.06 g) was added to a stirred soln of undecanoate **15** (70 mg, 0.13 mmol) in THF (5 mL) and the system was flushed with H₂. The mixture was stirred in a H₂ atmosphere for 72 h at 1.5 bar. The Pd/C was removed by centrifugation and the product was dissolved in THF and filtered through a syringe filter (PTFE, 0.2 μ m). Removal of the solvent under reduced pressure gave **2** (35 mg, 81%) as a colorless solid; mp 135–137 °C.

IR (KBr): 3087 (m), 2923 (s), 2852 (s), 2770 (w), 1770 (w), 1693 (s), 1606 (s), 1577 (w), 1511 (w), 1427 (m), 1280 (m), 1253 (s), 1172 (m), 1014 (m), 946 (w), 854 (w), 777 (m), 642 cm⁻¹ (m).

¹H NMR (500 MHz, DMSO- d_6): δ = 12.25 (br, 1 H), 8.90 (br, 1 H), 7.74 (d, *J* = 8.7 Hz, 2 H), 6.99 (d, *J* = 8.4 Hz, 2 H), 4.06 (t, *J* = 6.5 Hz, 2 H), 3.50 (br, 1 H), 2.22 (t, *J* = 7.3 Hz, 2 H), 1.78–1.71 (m, 2 H), 1.55–1.48 (m, 2 H), 1.47–1.41 (m, 2 H), 1.38–1.20 (m, 10 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 175.4 (s), 165.0 (s), 161.9 (s), 129.5 (d, 2 C), 125.7 (s), 115.0 (d, 2 C), 68.6 (t), 34.6 (t), 29.9 (t), 29.8 (t), 29.6 (t, 2 C), 29.5 (t, 2 C), 26.4 (t), 25.4 (t).

HRMS (+ESI): m/z [M + Na]⁺ calcd for C₁₈H₂₇NNaO₅: 360.1787; found: 360.1747.

HRMS (–ESI): m/z [M – H][–] calcd for C₁₈H₂₆NO₅: 336.1811; found: 336.1823; m/z [2 M – H][–] calcd for C₃₆H₅₃N₂O₁₀: 673.3700; found: 673.3712.

Anal. Calcd for $C_{18}H_{27}NO_5{:}$ C, 64.07; N, 4.15; H, 8.07. Found: C, 64.39; N, 4.08; H, 7.60.

Methyl 3,5-Dihydroxybenzoate (17)²²

A soln of 3,5-dihydroxybenzoic acid (16, 30.0 g, 0.195 mol) and concd H_2SO_4 (1.5 mL) in MeOH (150 mL) was refluxed at 68 °C for 72 h. The solvent was removed under reduced pressure and the crude product was dissolved in EtOAc (150 mL) and washed with sat. NaHCO₃ (2 × 50 mL), H_2O (50 mL), and brine (3 × 50 mL). The organic phase was dried (Na₂SO₄) and filtered. Removal of the solvent at reduced pressure gave 17 (30.0 g, 92%) as a slightly yellowish solid.

¹H NMR (400 MHz, CDCl₃): δ = 6.91 (d, J = 2.3 Hz, 2 H), 6.46 (t, J = 2.3 Hz, 1 H), 3.85 (s, 3 H).

Methyl 3,5-Bis [2-(tert-butoxycarbonylamino)ethoxy]
benzoate $(19)^{25}$

A suspension of methyl 3,5-dihydroxybenzoate (**17**, 9.0 g, 54 mmol), *tert*-butyl *N*-(2-bromoacetyl)carbamate (**18**, 32.0 g, 143 mmol), and K₂CO₃ (40 g, 290 mmol) in anhyd DMF (100 mL) was stirred at r.t. for 48 h. The precipitate was removed by filtration through a glass filter frit and washed with EtOAc (3×80 mL). The combined organic fractions were carefully washed with H₂O (5×75 mL) and brine (50 mL) and dried and the solvent was removed under reduced pressure. Purification by column chromatography (CHCl₃–EtOAc, 5:0.3 to 5:1.5 to CHCl₃–MeOH, 5:2) gave **19** (17.8 g, 73%) as a colorless solid.²⁵

¹H NMR (400 MHz, CDCl₃): δ = 7.17 (d, *J* = 2.3 Hz, 2 H), 6.61 (t, *J* = 2.2 Hz, 1 H), 5.04 (br s, 2 H), 4.01 (t, *J* = 5.1 Hz, 4 H), 3.87 (s, 3 H), 3.54–3.48 (m, 4 H), 1.43 (s, 18 H).

3,5-Bis[2-(*tert*-butoxycarbonylamino)ethoxy]benzoic Acid (20) A 1.0 M NaOH soln (18 mL) was added to a soln of benzoate **19** (3.00 g, 6.60 mmol) in MeOH (22 mL) and the resulting mixture was stirred at r.t. for 24 h and at 70 °C for 3 h. The solvent was removed and the product dissolved in H₂O (10 mL) and washed with Et₂O. After acidification with concd HCl (37%) to pH 2, the product was extracted with EtOAc (3×50 mL), and the combined organic fractions were washed with brine. The organic phase was dried (Na₂SO₄) and the solvent was removed to give **20** (2.7 g, 94%) as a colorless solid; mp 125–127 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD): δ = 7.08 (d, *J* = 2.3 Hz, 2 H), 6.54 (t, *J* = 2.1 Hz, 1 H), 3.93 (t, *J* = 5.1 Hz, 4 H), 3.41 (t, *J* = 6.4 Hz, 4 H), 1.35 (s, 18 H).

¹³C NMR (100 MHz, CDCl₃–CD₃OD): δ = 168.8 (s), 159.3 (s, 2 C), 156.2 (s, 2 C), 133.0 (s), 108.0 (d, 2 C), 106.1 (d), 19.6 (s, 2 C), 67.1 (t, 2 C), 39.6 (t, 2 C), 18.1 (q, 6 C).

HRMS (+ESI): m/z [M + Na]⁺ calcd for C₂₁H₃₂N₂NaO₈: 463.2056; found: 463.2062; m/z [2 M + Na]⁺ calcd for C₄₂H₆₄N₄NaO₁₆: 903.4215; found: 903.4222.

Anal. Calcd for $C_{21}H_{32}N_2O_8{:}$ C, 57.26; N, 6.36; H, 7.32. Found: C, 56.46; N, 6.28; H, 7.31.

N-(Benzyloxy)-3,5-bis[2-(*tert*-butoxycarbonylamino)ethoxy]benzamide (21)

Benzoic acid **20** (3.00 g, 6.81 mmol) was dissolved in anhyd CH₂Cl₂ (50 mL) and cooled to 0 °C. HOBt (1.12 g, 8.44 mmol), EDCI (1.58 g, 8.15 mmol), *O*-benzylhydroxylamine hydrochloride (1.11 g, 6.95 mmol), and *i*-Pr₂NEt (4 mL) were added to this soln and the mixture was stirred at r.t. for 24 h. CH₂Cl₂ (50 mL) was added and the mixture was washed with 1 M HCl and brine, and dried (Na₂SO₄). The crude product was purified by column chromatography (CHCl₃–MeOH, 5:0.5) to afford **21** (3.20 g, 86%) as a colorless foam.

¹H NMR (400 MHz, CDCl₃): δ = 9.64 (br s, 1 H), 7.43–7.40 (m, 2 H), 7.36–7.31 (m, 3 H), 6.84–6.81 (m, 2 H), 6.47–6.44 (m, 1 H), 5.12 (br s, 2 H), 5.00 (s, 2 H), 3.91 (t, *J* = 5.1 Hz, 4 H), 3.45–3.41 (m, 4 H), 1.42 (s, 18 H).

¹³C NMR (100 MHz, CDCl₃): δ = 159.6 (s, 2 C), 155.9 (s, 2 C), 135.3 (s), 134.0 (s), 129.1 (d, 2 C), 128.6 (d), 128.5 (d, 2 C), 105.8 (d, 2 C), 104.9 (d), 79.6 (t), 78.2 (s, 2 C), 67.1 (t, 2 C), 39.7 (t, 2 C), 28.3 (q, 6 C). (The C=O from the hydroxamic acid group could not be observed.)

HRMS (+ESI): m/z [M + Na]⁺ calcd for C₂₈H₃₉N₃NaO₈: 568.2635; found: 568.2653.

3,5-Bis(2-aminoethoxy)-N-(benzyloxy)benzamide Dihydrochloride (22)

Concd HCl (37%, 4.5 mL) was added to a soln of carbamate **21** (3.20 g, 5.87 mmol) in Et₂O–CH₂Cl₂ (1:1, 60 mL) and the mixture was stirred at r.t. for 3 h. The solvent was removed at reduced pressure and the product was washed with Et₂O to give **22** (2.11 g, 86%) as a colorless solid; mp 210 °C (dec).

¹H NMR (400 MHz, D₂O): δ = 7.42–7.38 (m, 2 H), 7.37 (s, 1 H), 7.35–7.31 (m, 3 H), 4.89 (s, 2 H), 4.15 (t, *J* = 5.0 Hz, 4 H), 3.31 (t, *J* = 4.8 Hz, 4 H).

¹³C NMR (100 MHz, D₂O): δ = 166.9 (s), 159.0 (s, 2 C), 134.6 (s), 133.1 (s), 130.1 (d, 2 C), 129.3 (d), 128.8 (d, 2 C), 106.5 (d, 2 C), 105.5 (d), 78.4 (d), 64.3 (t, 2 C), 38.9 (t, 2 C).

HRMS (+ESI): m/z [M – 2 HCl + H]⁺ calcd for $C_{18}H_{24}N_3O_4$: 346.1767; found: 346.1773.

Anal. Calcd for $C_{18}H_{25}Cl_2N_3O_4{:}\,C,\,51.68;\,N,\,10.05;\,H,\,6.02.$ Found: C, 53.39; N, 9.24; H, 6.01.

N-(Benzyloxy)-3,5-bis{2-[bis(2-{bis[2-(2-methoxyethoxy)ethyl]amino}-2-oxoethyl)amino]ethoxy}benzamide (23) and *N*-(Benzyloxy)-3-{2-[bis(2-{bis[2-(2-methoxyethoxy)ethyl]amino}-2-oxoethyl)amino]ethoxy}-5-{2-[(2-{bis[2-(2-methoxy-

ethoxy)ethyl]amino}-2-oxoethyl)amino]ethoxy}benzamide (25) Et₃N (6.4 mL, 46 mmol) and acetamide **10** (5.09 g, 14.85 mmol, 3.2 equiv) were added slowly to a suspension of benzamide dihydrochloride 22 (1.94 g, 4.64 mmol, 1 equiv) in THF-H₂O (40 mL:7 mL), and the resulting mixture was stirred at r.t. for 24 h. The solvent was removed and the aqueous phase was extracted with CHCl₃ $(3 \times 50 \text{ mL})$. The combined organic fractions were washed with brine and dried (Na₂SO₄) and the solvent was removed at reduced pressure. The crude product was separated by column chromatography (silica gel, CHCl₃-MeOH, 5:0.1 to 5:2) to afford the tetrasubstituted product 23 (0.91 g, 14%), the trisubstituted product 25 (1.40 g, 27%), the disubstituted product (0.32 g, 8%) and mixtures of different di-, tri- and tetrasubstituted products (2.18 g, 42%). The mixtures of the different substituted and the disubstituted products were treated with excess acetamide 10 (4.5 equiv) using the same experimental procedure described above. The crude product (2.5 g) was purified by HPLC (CH₂Cl₂-MeOH, 91:9) to afford **23** (1.92 g, 37%) as a colorless oil.

Tetrasubstituted product 23

¹H NMR (400 MHz, CDCl₃): δ = 10.72 (br s, 1 H), 7.45–7.41 (m, 2 H), 7.34–7.27 (m, 3 H), 7.05 (d, *J* = 2.2 Hz, 2 H), 6.49 (t, *J* = 2.1 Hz, 1 H), 5.00 (s, 2 H), 4.11 (t, *J* = 5.8 Hz, 4 H), 3.68 (s, 8 H), 3.59–3.49 (m, 48 H), 3.45–3.42 (m, 16 H), 3.31 (s, 12 H), 3.28 (s, 12 H), 3.06 (t, *J* = 5.6 Hz, 4 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 171.0 (s, 4 C), 165.0 (s), 159.7 (s, 2 C), 135.7 (s), 133.7 (s), 129.2 (d, 2 C), 128.3 (d), 128.2 (d, 2 C), 105.8 (d), 105.4 (d, 2 C), 77.9 (t), 71.8 (t, 4 C), 71.7 (t, 4 C), 70.4 (t, 4 C), 70.1 (t, 4 C), 69.2 (t, 4 C), 69.1 (t, 4 C), 66.8 (t, 2 C), 58.8 (q, 8 C), 56.3 (t, 4 C), 52.9 (t, 2 C), 48.0 (t, 4 C), 46.1 (t, 4 C).

HRMS (+ESI): m/z [M + 2 H]²⁺ calcd for C₆₆H₁₁₇N₇O₂₄: 695.9075; found: 695.9078; m/z [M + H + Na]²⁺ calcd for C₆₆H₁₁₆N₇NaO₂₄: 706.8985; found: 706.8987.

Anal. Calcd for C₆₆H₁₁₅N₇O₂₄: C, 57.00; N, 7.05; H, 8.34. Found: C, 55.88; N, 6.94; H, 8.40.

Trisubstituted product 25

¹H NMR (400 MHz, CDCl₃): δ = 10.41 (br s, 1 H), 7.44–7.42 (m, 2 H), 7.36–7.30 (m, 3 H), 7.06–7.03 (m, 1 H), 6.99–6.97 (m, 1 H), 6.54 (t, *J* = 2.2 Hz, 1 H), 5.01 (s, 2 H), 4.12 (t, *J* = 5.9 Hz, 2 H), 4.05 (t, *J* = 5.2 Hz, 2 H), 3.68 (s, 4 H), 3.60–3.42 (m, 50 H), 3.35 (s, 3 H), 3.34 (s, 3 H), 3.32 (s, 6 H), 3.29 (s, 6 H), 3.05 (t, *J* = 5.9 Hz, 2 H), 2.95 (t, *J* = 5.2 Hz, 2 H), 2.38 (br s, 1 H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 171.3$ (s), 171.2 (s), 171.0 (s), 165.2 (s), 160.0 (s), 159.8 (s), 135.8 (s), 133.8 (s), 129.4 (d, 2 C), 128.6 (d), 128.5 (d, 2 C), 106.3 (d), 106.2 (d), 105.3 (d), 78.0 (t), 71.8 (t, 3 C), 71.7 (t, 3 C), 70.5 (t), 70.4 (t, 2 C), 70.2 (t), 70.1 (t, 2 C), 69.2 (t, 2 C), 68.9 (t), 66.8 (t, 2 C), 58.9 (q, 6 C), 56.4 (t, 3 C), 56.3 (t), 55.5 (t, 2 C), 53.0 (t), 52.8 (t), 48.4 (t), 48.0 (t, 2 C), 46.3 (t), 46.1 (t, 2 C).

HRMS (+ESI): $m/z [M + H]^+$ calcd for $C_{54}H_{93}N_6O_{19}$: 1129.6495; found: 1129.6545.

Anal. Calcd for $C_{54}H_{92}N_6O_{19}$: C, 57.43; N, 7.44; H, 8.21. Found: C, 56.35; N, 6.78; H, 8.14.

3,5-Bis{2-[bis(2-{bis[2-(2-methoxyethoxy)ethyl]amino}-2-oxoethyl)amino]ethoxy}benzenecarbohydroxamic Acid (24)

Pd/C (10%, 0.1 g) was added to a stirred soln of benzamide **23** (0.70 g, 0.50 mmol) in MeOH (20 mL) and the system was flushed with H_2 . The mixture was stirred in a H_2 atmosphere for 48 h at 1.5 bar. The Pd/C was removed by centrifugation and the product was dis-

Synthesis 2010, No. 7, 1150–1158 $\hfill {\ensuremath{\mathbb C}}$ Thieme Stuttgart \cdot New York

solved in CHCl₃ (20 mL) and washed with NaHCO₃ (1×10 mL) and brine (1×10 mL). The solvent was removed to give **24** (0.59 g, 91%) as a slightly yellowish oil.

IR (film): 3246 (w), 2877 (s), 2821 (m), 2727 (w), 1651 (s), 1597 (m), 1456 (m), 1356 (m), 1304 (w), 1200 (m), 1115 (s), 1026 (m), 850 cm⁻¹ (m).

¹H NMR (400 MHz, CDCl₃): δ = 11.42 (br s, 1 H), 7.14 (d, *J* = 2.1 Hz, 2 H), 6.48 (t, *J* = 2.1 Hz, 1 H), 4.13 (t, *J* = 6.0 Hz, 4 H), 3.69 (s, 8 H), 3.60–3.50 (m, 48 H), 3.48–3.43 (m, 16 H), 3.31 (s, 12 H), 3.30 (s, 12 H), 3.06 (t, *J* = 6.0 Hz, 4 H).

¹³C NMR (100 MHz, CDCl₃): δ = 171.1 (s, 4 C), 164.0 (s), 159.8 (s, 2 C), 132.6 (s), 106.2 (d), 105.1 (d, 2 C), 71.8 (t, 4 C), 71.7 (t, 4 C), 70.5 (t, 4 C), 70.1 (t, 4 C), 69.3 (t, 4 C), 69.2 (t, 4 C), 66.9 (t, 2 C), 58.9 (q, 8 C), 56.3 (t, 4 C), 52.7 (t, 2 C), 48.1 (t, 4 C), 46.2 (t, 4 C).

Anal. Calcd for $C_{59}H_{109}N_7O_{24}$: C, 54.49; N, 7.54; H, 8.45. Found: C, 53.77; N, 7.20; H, 8.59.

11-({2-[3-(Benzyloxycarbamoyl)-5-{2-[bis(2-{bis[2-(2-methoxyethoxy)ethyl]amino}-2-oxo-ethyl)amino]ethoxy}phenoxy]ethyl}(2-{bis[2-(2-methoxyethoxy)ethyl]amino}-2oxoethyl)amino)undecanoic Acid (27)

11-Bromoundecanoic acid (**26**, 0.56 g, 2.14 mmol), NaI (79.6 mg, 531 μ mol), and Na₂CO₃ (225 mg, 2.14 mmol) were added to a soln of benzamide **25** (0.600 g, 531 μ mol) in acetone (10 mL) and the resulting mixture was refluxed for 48 h. The solvent was removed and the precipitate was dissolved in CHCl₃ and washed with 1 M HCl and brine. The solvent was removed and the product was purified by column chromatography (CHCl₃–MeOH, 5:0.3 to 5:2.5) to afford **27** (185 mg, 27%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ = 10.69 (br, 1 H), 7.45–7.39 (m, 2 H), 7.36–7.24 (m, 3 H), 7.06 (m, 2 H), 6.48 (s, 1 H), 5.00 (s, 2 H), 4.11–3.99 (m, 4 H), 3.67 (s, 6 H), 3.57–3.40 (m, 48 H), 3.29 (s, 9 H), 3.26 (s, 9 H), 3.05–2.87 (m, 4 H), 2.59 (m, 2 H), 2.24 (t, *J* = 7.4 Hz, 2 H), 1.60–1.50 (m, 2 H), 1.48–1.39 (m, 2 H), 1.28–1.18 (m, 12 H).

¹³C NMR (100 MHz, CDCl₃): δ = 173.9 (s), 171.1 (s, 3 C), 165.1 (s), 159.7 (s, 2 C), 135.7 (s), 133.6 (s), 129.2 (d, 2 C), 128.4 (d), 128.3 (d, 2 C), 105.9 (d), 105.3 (d, 2 C), 77.9 (t), 71.8 (t, 3 C), 71.7 (t, 3 C), 70.4 (t, 3 C), 70.1 (t, 3 C), 69.2 (t, 6 C), 66.8 (t), 66.1 (t), 64.2 (t), 58.8 (q, 6 C), 56.3 (t, 3 C), 52.9 (t), 52.5 (t), 48.0 (t, 3 C), 46.1 (t, 3 C), 34.3 (t), 29.5 (t), 29.3 (t), 29.2 (t), 29.0 (t), 28.5 (t), 27.3 (t), 25.7 (t), 24.8 (t).

HRMS (+ESI): $m/z [M + 2 H]^{2+}$ calcd for $C_{65}H_{114}N_6O_{21}$: 657.4018; found: 657.4016.

3-{2-[Bis(2-{bis[2-(2-methoxyethoxy)ethyl]amino}-2-oxoethyl)amino]ethoxy}-5-{2-[(2-{bis[2-(2-methoxyethoxy)ethyl]amino}-2-oxoethyl)(11-hydroxy-11-oxo-undecyl)amino]ethoxy}benzenecarbohydroxamic Acid (1)

Undecanoic acid **27** (178 mg, 135 μ mol) and Pd/C (25 mg) were dispersed in MeOH (6 mL) and hydrogenated for 72 h at 1.5 bar. The solvent was removed by centrifugation to give **1** (110 mg, 67%) **1** as a slightly yellowish oil.

IR (film): 3400 (w), 2931 (s), 2862 (m), 2725 (w), 1736 (w), 1654 (m), 1595 (m), 1456 (m), 1359 (w), 1105 (s), 849 cm⁻¹ (w).

¹H NMR (400 MHz, CDCl₃): δ = 11.56 (br s, 1 H), 9.13 (br s, 1 H), 7.19 (s, 2 H), 6.64 (s, 1 H), 5.04–4.63 (m, 4 H), 4.48 (s, 6 H), 3.92–3.48 (m, 36 H), 3.48–3.40 (m, 14 H), 3.30 (s, 9 H), 3.27 (s, 3 H),

3.26 (s, 6 H), 3.22–3.01 (m, 4 H), 2.25 (t, *J* = 7.4 Hz, 2 H), 1.87–1.71 (m, 2 H), 1.60–1.47 (m, 2 H), 1.36–1.11 (m, 12 H).

¹³C NMR (100 MHz, CDCl₃): δ = 176.3 (s), 173.9 (s), 165.3 (s, 3 C), 158.4 (s, 2 C), 133.3 (s), 106.1 (d), 106.6 (d, 2 C), 71.7 (t, 6 C), 70.2 + 70.0 (t, 6 C), 68.9 + 68.4 (t, 6 C), 64.2 (t), 63.5 (t), 58.9 + 58.8 + 58.6 (q, 6 C), 56.9 (t, 3 C), 55.7 (t), 55.1 (t), 53.1 (t), 48.6 + 48.4 + 46.5 + 46.2 (t, 6 C), 34.0 (t), 29.6 (t), 29.3 (t), 29.2 (t), 29.0 (t), 28.6 (t), 28.5 (t), 25.9 (t), 24.5 (t).

HRMS (+ESI): m/z [M + H]⁺ calcd for C₅₈H₁₀₇N₆O₂₁: 1223.7489; found: 1223.7508; m/z [M + Na]⁺ calcd for C₅₈H₁₀₆N₆NaO₂₁: 1245.7309; found: 1245.7324.

11-(Hydroxycarbamoyl)undecanoic Acid (3)

Dodecanedioic acid (**28**, 25.00 g, 108.55 mmol), MeOH (85 mL), and H_2SO_4 (2 mL) were refluxed for 24 h. The mixture was cooled to r.t. and the solvent was removed to give a colorless solid that was dissolved in Et₂O and poured into ice H_2O for extraction. The aqueous phase was washed with Et₂O (3 ×). The organic phases were combined and washed with 10% NaHCO₃ soln and brine and dried (Na₂SO₄). Evaporation at reduced pressure gave dimethyl dodecanedioate (27.63 g, 100%) as a colorless powder.²⁶

¹H NMR (400 MHz, CDCl₃): δ = 3.63 (s, 6 H), 2.26 (t, *J* = 7.5 Hz, 4 H), 1.62–1.51 (m, 4 H), 1.35–1.20 (m, 12 H).

KOH (6 g, 106.92 mmol) and MeOH (130 mL) were combined in a bottom flask. When the soln became fully clear, dimethyl dodecanedioate (27.63 g, 106.96 mmol) was added and the mixture was stirred for 4 h. Subsequently, the solvent was removed at reduced pressure at 40 °C. The resulting solid was dissolved in Et₂O and the product was extracted with H₂O. The aqueous phase was acidified with concd HCl. Then the aqueous phase was extracted with Et₂O (4×75 mL) and the combined organic phases were washed with brine and dried (Na₂SO₄). The solvent was removed under reduced pressure to give a solid that was washed extensively with hexane. The washings were combined and evaporated to give dodecanedioic acid monomethyl ester (4.01 g, 15%) as a colorless powder.²⁶

¹H NMR (400 MHz, CDCl₃): δ = 10.64 (br, 1 H), 3.65 (s, 3 H), 2.32 (t, *J* = 7.5 Hz, 2 H), 2.28 (t, *J* = 7.5 Hz, 2 H), 1.64–1.54 (m, 4 H), 1.34–1.21 (m, 12 H).

Dodecanedioic acid monomethyl ester (0.20 g, 0.82 mmol) was dissolved in anhyd CH₂Cl₂ (6 mL) and cooled to -10 °C. HOBt (0.13 g, 0.98 mmol), EDCI (0.19 g, 0.98 mmol), *O*-(4-methoxybenzyl)hydroxylamine hydrochloride (0.19 g, 0.98 mmol), and *i*-Pr₂NEt (0.47 mL) were added to this soln. The mixture was stirred at r.t. for 6 h and then it was extracted with H₂O, acidified with HCl to pH 2, washed with brine and dried (Na₂SO₄). The crude product was purified by column chromatography (CH₂Cl₂) to afford methyl 11-[(4-methoxybenzyloxy)carbamoyl]undecanoate (0.26 g, 84%) as a colorless powder; mp 70–72 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD): δ = 7.25 (d, *J* = 7.4 Hz, 2 H), 6.82 (d, *J* = 8.4 Hz, 2 H), 4.74 (s, 2 H), 3.74 (s, 3 H), 3.59 (s, 3 H), 2.97 (br, 1 H), 2.23 (t, *J* = 7.5 Hz, 2 H), 1.96 (t, *J* = 7.2 Hz, 2 H), 1.55–1.50 (m, 4 H), 1.31–1.19 (m, 12 H).

¹³C NMR (100 MHz, $CDCl_3$ – CD_3OD): $\delta = 174.6$ (s), 171.1 (s), 159.8 (s), 130.8 (d, 2 C), 127.5 (s), 113.7 (d, 2 C), 77.4 (t), 55.1 (q), 51.3 (q), 33.9 (t), 33.0 (t), 29.2 (t, 2 C), 29.03 (t), 28.99 (t, 2 C), 28.89 (t), 25.3 (t), 24.7 (t, C).

Methyl 11-[(4-methoxybenzyloxy)carbamoyl]undecanoate (1.69 g, 4.45 mmol), KOH (0.76 g, 13.57 mmol), and MeOH (47 mL) were stirred at 55 °C for 20 h. The solvents was evaporated and the mixture was extracted with EtOAc and washed with HCl soln and brine and dried (Na₂SO₄). The crude product was purified by column chromatography (CH₂Cl₂–MeOH, 20:1) to give 11-[(4-methoxybenzyloxy)carbamoyl]undecanoic acid (1.62 g, 90%); mp 99–102 °C.

¹H NMR (400 MHz, CDCl₃–CD₃OD): δ = 7.25 (d, *J* = 8.4 Hz, 2 H), 6.81 (d, *J* = 8.4 Hz, 2 H), 4.72 (s, 2 H), 3.74 (s, 3 H), 2.90 (br, 1 H), 2.21 (t, *J* = 7.4 Hz, 2 H), 1.95 (t, *J* = 7.2 Hz, 2 H), 1.54–1.50 (m, 4 H), 1.26–1.19 (m, 12 H).

¹³C NMR (100 MHz, CDCl₃–CD₃OD): δ = 176.8 (s), 171.5 (s), 159.9 (s), 131.0 (d, 2 C), 127.6 (s), 113.8 (d, 2 C), 77.6 (t), 55.3 (q), 34.1 (t), 33.1 (t), 29.3 (t, 2 C), 29.1 (t, 3 C), 29.0 (t), 25.4 (t), 24.9 (t).

11-[(4-Methoxybenzyloxy)carbamoyl]undecanoic acid (0.51 g, 1.40 mmol), anhyd MeOH (6 mL), CHCl₃ (3 mL), and Pd/C (50 mg) were hydrogenated for 1 h. When the reaction was complete, the catalyst was removed by centrifugation and the organic phases were combined and evaporated to dryness to give a white solid (0.34 g, 96%). The solid (0.25 g, 1.02 mmol) was dissolved in *i*-PrOH–H₂O (2:1, 44 mL) and LiOH (0.3 g, 4.1 mmol, 56%) was added. The mixture was stirred for 20 h and then acidified with HCl soln to pH 3, extracted with EtOAc and dried (Na₂SO₄). The resulting solid was recrystallized (CHCl₃–MeOH) to afford **3** (90 mg, 38%) as a colorless solid; mp 102–105 °C.

IR (KBr): 3265 (w), 3070 (w), 2914 (s), 2848 (s), 2737 (w), 1700 (s), 1662 (s), 1620 (m), 1470 (s), 1425 (m), 1294 (m), 1215 (m), 1117 (m), 1078 (m), 1047 (m), 970 (m), 899 (m), 720 (m), 647 (m), 555 (m), 474 cm⁻¹ (m).

¹H NMR (400 MHz, DMSO- d_6): δ = 11.22 (br, 1 H), 8.67 (br, 1 H), 3.39 (br, 1 H), 2.20 (t, *J* = 7.4 Hz, 2 H), 1.94 (t, *J* = 7.3 Hz, 2 H), 1.53–1.44 (m, 4 H), 1.30–1.20 (m, 12 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 175.5 (s), 170.1 (s), 34.6 (t), 33.2 (t), 29.8 (t, 2 C), 29.7 (t, 2 C), 29.52 (t), 29.50 (t), 26.1 (t), 25.4 (t).

HRMS (+ESI): m/z [M + Na]⁺ calcd for C₁₂H₂₃NNaO₄: 268.1525; found: 268.1522.

Anal. Calcd for $C_{14}H_{27}NO_4$ ·HCl: C, 54.27; N, 4.52; H, 9.11. Found: C, 54.55; N, 5.11; H, 8.89.

Acknowledgment

We acknowledge Dr. R. Zimmer (Freie Universität Berlin) for helpful discussions and critical reading of the manuscript and W. Münch (Freie Universität Berlin) for HPLC purifications. A.H. acknowledges financial support by Stipendienfons of Fonds der Chemischen Industrie and DAAD. This work was supported by Deutsche Forschungsgemeinschaft (SFB 765, projects A4 and C5) and Freie Universität Berlin (Priority Area 'Nanoscale Functional Materials').

References

- (1) Reddy, A. S.; Kumar, M. S.; Reddy, G. R. *Tetrahedron Lett.* **2000**, *41*, 6285.
- (2) Kurzak, B.; Kozlowski, H.; Farkas, E. Coord. Chem. Rev. 1992, 114, 169.
- (3) Folkers, J. P.; Gorman, C. B.; Laibinis, P. E.; Buchholz, S.; Whitesides, G. M. *Langmuir* 1995, 11, 813.
- (4) As an example the complex formation constant for acetohydroxamate with Fe(III) in aqueous solution is 2.6 × 10¹¹ mol⁻¹. The corresponding value for acetate is only 2.4 × 10³ mol⁻¹: Woo, K.; Lee, H. J.; Ahn, J. P.; Park, Y. S. *Adv. Mater.* **2003**, *15*, 1761.
- (5) Emery, T. *Iron and Your Health: Facts and Fallacies*; CRC: Boca Raton / FL, **1991**, 15–17.
- (6) Kim, M.; Chen, Y.; Liu, Y.; Peng, X. Adv. Mater. 2005, 17, 1429.
- (7) Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. *Nature Mater.* 2004, *3*, 891.

- (8) Jordan, A.; Maier-Hauff, K.; Wust, P.; Johannsen, M. In Nanomaterials for Cancer Therapy; Challa, K., Ed.; Wiley-VCH: Weinheim, 2006, 242–258.
- (9) Högemann, D.; Basilion, J. P.; Weissleder, R. *Radiologe* 2001, 41, 16.
- Jain, T. K.; Richey, J.; Strand, M.; Leslie-Pelecky, D. L.; Flask, C. A.; Labhasetwar, V. *Biomaterials* 2008, 29, 4012.
- (11) Hofmann, A.; Graf, C.; Semisch, A.; Hartwig, A.; Rühl, E. manuscript in preparation.
- (12) Liénard, B. M. R.; Horsfall, L. E.; Galleni, M.; Frère, J.-M.; Schofield, C. J. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 964.
- (13) Bauer, L.; Exner, O. Angew. Chem. 1974, 86, 419.
- (14) Nagaoka, Y.; Maeda, T.; Kawai, Y.; Nakashima, D.; Oikawa, T.; Shimoke, K.; Ikeuchi, T.; Kuwajima, H.; Uesato, S. *Eur. J. Med. Chem.* **2006**, *41*, 697.
- (15) Guo, W.; Li, J.; Wang, Y. A.; Peng, X. J. Am. Chem. Soc. 2003, 125, 3901.
- (16) Wang, Y. A.; Li, J. J.; Chen, H.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2293.

- (17) Niwa, M.; Morikawa, M.; Nabeta, T.; Higashi, N. *Macromolecules* **2002**, *35*, 2769.
- (18) McKenna, M. D.; Barberá, J.; Marcos, M.; Serrano, J. L. J. Am. Chem. Soc. 2005, 127, 619.
- (19) Selve, C.; Ravey, J.-C.; Stebe, M.-J.; El Moudjahid, C.; Moumni, E. M.; Delpuech, J.-J. *Tetrahedron* **1991**, *47*, 411.
- (20) Ramsay, S. L.; Freeman, C.; Grace, P. B.; Redmond, J. W.; MacLeod, J. K. *Carbohydrate Res.* **2001**, *333*, 59.
- (21) McKenna, M.; Barbera, J.; Marcos, M.; Serrano, J. L. J. Am. Chem. Soc. 2005, 127, 619.
- (22) Zhu, J.; Beugelmans, R.; Bourdet, S.; Chastanet, J.; Roussi, G. J. Org. Chem. 1995, 60, 6389.
- (23) Koushik, M.; Joyeeta, S.; Arabinda, C. FEBS Lett. 2005, 579, 1291.
- (24) Brouwer, A. J.; Liskamp, R. M. J. Eur. J. Org. Chem. 2005, 487.
- (25) Brouwer, A. J.; Mulders, S. J. E.; Liskamp, R. M. J. *Eur. J. Org. Chem.* **2001**, 1903.
- (26) Freitas, J. M.; Abrantes, L. M.; Darbre, T. *Helv. Chim. Acta* 2005, 88, 2470.