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ABSTRACT: Sulfoxides and sulfones are commonly found in 
nature as a result of thioether oxidation, whereas only a very few 
enzymes have been found to metabolize these compounds. 
Utilizing the strong reduction potential of the [4Fe-4S] cluster of 
radical S-adenosyl-L-methionine (SAM) enzymes, we herein 
report the first enzyme-catalyzed reductive cleavage of sulfoxide 
and sulfone. We show two radical SAM enzymes, tryptophan 
lyase NosL and the class C radical SAM methyltransferase NosN, 
are able to act on a sulfoxide SAHO and a sulfone SAHO2, both 
of which are structurally similar to SAM. NosL cleaves all the 
three bonds (i.e. S-C(5′), S-C(γ), and S-O) connecting the sulfur 
center of SAHO, with a preference for S-C(5′) bond cleavage. 
Similar S-C cleavage activity was also found for SHAO2, but no 
S-O cleavage was observed. In contrast to NosL, NosN almost 
exclusively cleaves the S-C(5′) bonds of SAHO and SAHO2 with 
much higher efficiencies. Our study provides valuable insights 
into the [4Fe-4S] cluster-mediated reduction reactions and 
highlights the remarkable catalytic promiscuity of radical SAM 
enzymes.

Sulfoxides are an important class of compounds that are 
commonly used in organic synthesis. These compounds are also 
found in nature. For example, dimethylsulfoxide (DMSO) is 
naturally produced by oxidation of dimethylsulfide (DMS), and 
this process plays an important role in the biogeochemical cycle 
of sulfur;1 L-methionine (L-Met) sulfoxide (L-MetSO), produced 
from L-Met oxidation, is involved in many biological processes 
such as aging,2 oxidative stress protection and bacterial 
infection.3, 4 Reduction of DMSO to DMS is catalyzed by DMSO 
reductases, a diverse class of enzymes containing a molybdenum 
center.5 This reaction starts with DMSO binding to the Mo(IV) 
center, and the S-O bond is reductively cleaved with the O atom 
transferred to the Mo center (Figure 1A). Reduction of L-MetSO 
to L-Met by L-MetSO reductases proceeds via a very different 
mechanism, in which the O atom is transferred from L-MetSO to 
a catalytic Cys residue to produce a sulfenic acid intermediate, 
which is subsequently reduced by external electron donors such as 
thioredoxin (Figure 1B).6, 7 Besides S-O bond cleavage, the 
sulfoxide S-C bonds can also be enzymatically cleaved (Figure 
1C), as exemplified by Egt2 and EgtE involved in ergothioneine 
biosynthesis.8, 9 

A prominent family of S-C lyases is the radical S-adenosyl-L-
methionine (SAM) enzyme superfamily, which consists of more 
than 200,000 members found in all three domains of life.10-12 
These enzymes utilize a [4Fe-4S] cluster to reductively cleave the 
S-C(5′) bond of SAM, generating a highly reactive 5ˊ-
deoxyadenosyl (dAdo) radical. This radical then abstracts a 
hydrogen atom from the substrate to yield 5ˊ-deoxyadenosine 

(dAdoH) and a radical intermediate, and the latter leads to highly 
diverse reactions.11-13
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Figure 1. The reactions catalyzed by sulfoxide-metabolizing 
enzymes. (A) DMSO reductase utilizes a molybdenum cofactor. 
(B) L-Met sulfoxide reductase utilizes one or more active Cys 
residues to mediate L-MetSO reduction. The dotted arrow 
indicates different reaction routes for different L-MetSO 
reductases. (C) The sulfoxide S-C lyases Egt2/EgtE are PLP-
dependent enzymes that cleave the S-C bond via an ionic 
pathway.

The S-C lyase activity of radical SAM enzymes has been tested 
with various SAM analogues. Magnusson and Frey showed that 
lysine 2,3-aminomutase (LAM) is able to cleave S-3′,4′-
anhydroadenosyl-L-methionine (anSAM), and the resulting allylic 
radical can be well-characterized by electron paramagnetic 
resonance spectroscopy.14 We showed that NosL and a class C 
radical SAM methyltransferase NosN are able to cleave two SAM 
analogues containing different nucleoside functionalities (i.e. S-
guanosyl-L-methionine and S-cytidinylmethionine), and the 
resulting dAdo-like radicals can be captured to produce various 
nucleotide-linked products.15-17 More recently, we showed that 
NosN is able to cleave allyl-SAM, a SAM analogue in which the 
methyl group is replaced by an allyl group.18 Lin, Hoffman and 
coworkers showed that several SAM analogues in which the 3-
amino-3-carboxylpropyl group of SAM was modified, can be 
cleaved by Dph2,19-21 an unconventional radical SAM enzyme 
involved in diphthamide biosynthesis.22 However, to date the 
tested SAM analogues are all confined to sulfonium salts, and it 
remains unclear whether the substrate scope of radical SAM 
enzymes can be expanded beyond sulfoniums.

Although sulfoxides are neutral molecules distinct from the 
positively charged sulfonium ions, the sulfur center of sulfoxide is 
isoelectronic and isosteric to that of sulfonium. We hence 
reasoned that radical SAM enzymes may also be able to catalyze 
the reductive cleavage of sulfoxides. To test this hypothesis, we 
synthesized SAHO, a sulfoxide derived from S-adenosyl-L-
homocysteine (SAH) (Scheme 1). L-Trp lyase NosL, a radical 
SAM enzyme that exhibits high tolerance toward various 
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substrate analogues,23-31 was used as a model enzyme in our 
assay.

Scheme 1. SAM and SAM structural analogues used in this 
study.
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NosL reaction was performed by incubating the reconstituted 
NosL with SAHO, L-Trp and sodium dithionite. Liquid 
chromatography coupled with high resolution mass spectrometry 
(LC-HRMS) analysis of the reaction mixture clearly showed 
production of dAdoH, which is absent in the control assay with 
the supernatant of boiled enzyme (Figure 2). We also observed the 
production of a compound that exhibited a protonated molecular 
ion at m/z = 300.0760 (1.6 ppm error for a molecular formula of 
C10H13N5O4S). This compound matches well with 1, the sulfenic 
acid of 5ˊ-thioadenosine (tAdoH) (Figure 3B and Figure S1). 
Notably, we also observed the production of SAH in the reaction, 
which is clearly absent in the control assay (Figure 2). The yields 
of dAdoH, 1, and SAH are roughly 10: 3: 1 according to MS 
intensities (Figure 2 and Table S1). We also observed the 
production of homocysteine sulfenic acid and α-aminobutyric acid 
in the reaction mixture (Figure S2), further supporting the S-C(5′) 
and S-C(γ) cleavage of SAHO. 

Figure 2. LC-HR-MS analysis of the NosL reaction with SAHO 
and SAHO2. The multiple selected ion monitoring (SIM) mode 
includes [M + H]+ = 252.1 (corresponding to dAdoH), 300.1 
(corresponding to tAdoH sulfenic acid, 1), 316.1 (corresponding 
to tAdoH sulfinic acid, 2), and 385.1 (corresponding to SAH). 
Reactions were performed by incubation of 40 μM NosL, 5 mM 
sodium dithionite, 500 μM L-Trp with 1 mM SAHO or SAHO2. 
See Figure S1 and S4 for the HR-MS/MS spectra of 1 and 2. 
Conversion of L-Trp to 3-methyl-2-indolic acid (the natural 
activity of NosL) was not observed in the two reactions.

For most radical SAM enzymes, SAM binds to the [4Fe-4S] 
cluster in a conformation in which the unique Fe is close to the 
sulfur atom of SAM, allowing for one electron transfer via the 
sulfur atom to cleave the S-C(5′) bond.32 Broderick, Hoffman, and 
coworkers have recently shown that dAdo radical forms an 
organometallic intermediate Ω with the [4Fe-4S] cluster, which is 
central in radical SAM chemistry.33, 34 In contrast to most radical 
SAM enzymes, the unique Fe of the Dph2 [4Fe-4S] cluster is 
close to the C(γ) atom of SAM, thereby facilitating a Fe-based 
nucleophilic substitution onto the SAM C(γ) to heterolytically 
cleave the S-C(γ) bond.35 We proposed that cleavages of the two 
S-C bonds of SAHO observed in this study may proceed similarly 
to those of SAM discussed above (Figure 3A and 3B).
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Figure 3. Working hypothesis for the reductive cleavage of 
SAHO by NosL. (A) NosL-catalyzed S-C(5′) bond cleavage likely 
starts from a conformation that the unique Fe is close to the sulfur 
atom (I-1). The Fe-C organometallic bond of Ω is highlighted in 
green. (B) NosL-catalyzed S-C(γ) bond cleavage likely starts from 
a conformation that the unique Fe is close to the C(γ) of SAHO (I-
3) and proceeds via a nucleophilic attack reaction. (C) NosL-
catalyzed SAHO reduction may proceed with oxygen transfer to 
the unique Fe in a way similar to DMSO reductase. (D) NosL 
cleaves the S-C(5′) and S-C(γ) bonds of SAHO2, but not the S-O 
bond. A DFT model of the hexacoordinate complex I-5 is shown 
in Figure S3.

Reduction of sulfoxide to thioether is a brand new reaction for 
the radical SAM superfamily enzymes. We proposed that this 
reaction may start with binding of the sulfoxide oxygen to the 
unique Fe to form I-5, a hexacoordinate complex on the unique 
Fe, and the reaction may possibly proceed via an S-O transfer 
mechanism analogous to that of DMSO reductase (Figure 3C). 
DFT optimization of a model of I-5 revealed the lengths of the 
two Fe-O coordination bonds are equal (Figure S3), indicating the 
interaction between the sulfoxide oxygen and the unique Fe could 
be strong. 

We next synthesized SAH sulfone (SAHO2), which contains a 
tetrahedral and achiral sulfur, in contrast to the pyramidal sulfur 
of SAHO (Scheme 1). Assays were then performed by incubation 
of NosL, L-Trp, and dithionite with SAHO2. HR-LCMS analysis 
of the reaction mixture showed that dAdoH was produced with a 
yield similar to that from SAHO, demonstrating that both 
sulfoxide and sulfone can be cleaved by NosL with similar 
efficiencies (Figure 2 and Table S1). We also found a compound 
exhibiting protonated molecular ion at m/z = 316.0702 (4.4 ppm 
error for a molecular formula of C10H13N5O5S). This compound is 
consistent with 2, the sulfinic acid of tAdoH (Figure 3D and 
Figure S4). Notably, neither SAH nor SAHO was found in the 
SAHO2 reaction (Figure 3D), suggesting that unlike SAHO, NosL 
does not catalyze the S-O cleavage of SAHO2. 

To expand our sulfoxide/sulfone biochemistry to other radical 
SAM enzymes, we tested the SAHO reaction with NosN, a class 
C radical SAM methyltransferase.36, 37 LC-HRMS analysis of the 
reaction mixture containing the reconstituted NosN, SAHO and 
dithionite showed that dAdoH was produced, which is about 8-
fold higher than that produced by NosL in a similar assay 
condition (Figure 4). Although 1 and SAH were also found in the 
reaction mixture, the yields of these two compounds are less than 
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1% compared to dAdoH (Table S1). NosN also efficiently cleaved 
SAHO2, converting it predominantly to dAdoH (Figure 4). 

Figure 4. LC-HR-MS analysis of the NosN reaction with SAHO 
and SAHO2. The multiple selected ion monitoring (SIM) mode 
was set exactly the same to that of Figure 3 ([M + H]+ = 252.1 
(corresponding to dAdoH), 300.1 (corresponding to 1), 
316.1(corresponding to 2), and 385.1 (corresponding to SAH). 
Reactions were performed by incubation of 40 μM NosN, 5 mM 
sodium dithionite, and 1 mM SAHO or SAHO2. Only trace 
amounts of 1 and SAH (from SAHO), and 2 (from SAHO2) were 
produced in the corresponding reactions. 

In summary, we have demonstrated herein, to the best of our 
knowledge, the first enzyme-catalyzed reductive cleavage of 
sulfoxide and sulfone. We showed that NosL cleaves all the three 
bonds connecting the sulfur center of SAHO to produce three 
different sets of products, whereas NosN almost exclusively 
cleaves the S-C(5′) bond of SAHO and SAHO2. We would like to 
point out that, compared to the canonical activity of SAM 
cleavage, the reactions for SAHO and SAHO2 are much less 
efficient (Table S1). Nevertheless, the novel activities reported 
here expands the catalytic repertoire of Fe-S proteins and opens 
the way to explore these enzymes for novel bioengineering 
applications.
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