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Abstract—A simple and practical synthesis of (R)-(�)-muscone was achieved by optical resolution of dl-muscone using tartaric acid
derivatives. The acetalization of dl-muscone with N,N 0-dibenzyl-LL-tartaramide in the presence of Sc(OTf)3 and methyl orthoformate
furnished a diastereomeric mixture of acetals, which were readily separated by simple recrystallization. Diastereomerically pure
acetal was hydrolyzed to give optically pure muscone and recovered N,N 0-dibenzyl-LL-tartaramide.
� 2005 Elsevier Ltd. All rights reserved.
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Scheme 1. Optical resolution of dl-muscone (1).
(R)-(�)-Muscone ((R)-1) is the most important classical
source of musk odors for perfumes. Muscone is ex-
tracted from musk pods, which are the secretion from
a gland of the endangered musk deer. Following
Ruzicka�s structural elucidation of natural muscone as
(R)-3-methylcyclopentadecanone in 1926,1 muscone has
been synthesized by various synthetic approaches in
racemic form2 as well as enantiomerically pure form.3

Although synthetic muscone 1 is commercially available
in its racemic form, the enantiomerically pure synthesis
of muscone is not practical. Therefore, a practical and
simple process for the isolation of optically pure (R)-
muscone is needed. This study focuses on the optical reso-
lution of racemic muscone (rac-1), as the enantiomers
are extremely difficult to separate by chiral chromato-
graphy due to the lack of steric and electrical difference
between S and R isomers.4 To the best of our knowl-
edge, the optical resolution of racemic muscone 1 using
chiral auxiliaries has not been reported.5 As detailed
in this letter, we investigated the optical resolution of
racemic muscone 1 using tartaric acid derivatives 2 as
a chiral auxiliaries to afford optically pure muscone
(R)-1 (Scheme 1).

One of the most useful chiral auxiliaries used to func-
tionalize a carbonyl group is the cyclic acetal. The cyclic
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acetal is easily introduced by treating the carbonyl com-
pound with 1,2-diol in the presence of a catalytic
amount of acid. Conversely, acetals are easily removed
by hydrolysis. We chose tartaric acid derivatives 2 as a
chiral auxiliaries because both enantiomers are commer-
cially available, and they are inexpensive, safe, and
stable compounds. First we examined acetalization
of racemic muscone 1 with dialkyl LL-tartrate 4 in
the presence of scandium trifluoromethanesulfonate
(Sc(OTf)3).

6 The results are shown in Table 1. Dimethyl
LL-tartrate (4a) and diethyl LL-tartrate (4b) afforded the
corresponding cyclic acetals 5a, 5b in good yield, but
these acetals did not crystallize (entries 1 and 2). Crystal-
linity was remarkably changed by using dibenzyl LL-tar-
trate (4c) (entry 3). Acetal 5c was obtained in 47%
yield with 23% de, which formed a colorless solid after
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Table 1. Acetalization of racemic muscone (rac-1) with chiral dialkyl LL-tartrate 4a
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Entry Diol R Catalyst Additive Solvent Temp

(�C)
Time

(h)

Yieldb

(%)

dec

(%)

Product Crystallinity

1 4a Me Sc(OTf)3 HC(OMe)3 MeCN rt 7 75 7 5a X

2 4b Et Sc(OTf)3 HC(OMe)3 MeCN rt 21 82 8 5b X

3 4c PhCH2– Sc(OTf)3 HC(OMe)3 MeCN 0 26 47 23 5c O

4 4c PhCH2– Sc(OTf)3 HC(OMe)3 MeCN 0 48 64 11 5c O

5 4c PhCH2– Sc(OTf)3 HC(OMe)3 MeCN rt 26 92 2 5c D
6 4c PhCH2– McSc(OTf)3

d HC(OMe)3 MeCN rt 26 64 32 5c O

7 4c PhCH2– Yb(OTf)3 HC(OMe)3 MeCN 0 26 30 26 5c O

8 4c PhCH2– p-TsOH — Benzene Reflux 37 24 39 5c O

9 4c PhCH2– CSAe — Benzene Reflux 61 23 32 5c O

10 4d 4-PriC6H4CH2– Sc(OTf)3 HC(OMe)3 MeCN 0 26 57 14 5d X

11 4e 4-ButC6H4CH2– Sc(OTf)3 HC(OMe)3 MeCN 0 26 34 21 5e X

12 4f 2-MeOC6H4CH2– Sc(OTf)3 HC(OMe)3 MeCN rt 2 29 — 5f X

13 4g 4-NO2C6H4CH2– Sc(OTf)3 HC(OMe)3 MeCN rt 4 16 — 5g X

aReactions were carried out using dialkyl LL-tartrate (2 equiv), acid catalyst (5 mol %) and additive (2 equiv).
b Isolated yield.
c Determined by chiral HPLC analysis using CHIRALCEL OD.
dmcSc(OTf)3 = microencapsulated scandium trifluoromethanesulfonate.
e CSA = (1S)-(+)-10-camphorsulfonic acid.
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usual workup. We found that acetal 5c with over 10% de
was readily recrystallized to separate the diastereomers
(entries 3–5, vide infra). Microencapsulated Sc(OTf)3
and ytterbium trifluoromethanesulfonate (Yb(OTf)3)
also catalyzed the acetalization (entries 6 and 7). On
the other hand, a Brønsted acid catalyst such as p-tolu-
enesulfonic acid (p-TsOH) and (1S)-(+)-10-camphor-
sulfonic acid (CSA) gave the acetal 5c in low yield
along with dibenzyl ether (6), because hydrolysis of di-
benzyl LL-tartrate (4c) occurred during the actalyzation
(entries 8 and 9). Substituents on the benzene ring, such
as 4-isopropyl, 4-tert-butyl, 2-methoxy, and 4-nitro
groups, did not show good results; oily products 5d–g
were obtained (entries 10–13).

Several recrystallizations of the acetal 5c (11% de) from
hexane afforded diastereomerically pure acetal (R)-5c in
7% yield based on the racemic muscone rac-1 (Scheme
2). Deacetalization of (R)-5c was performed under stan-
(R)-1 (>95%)
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Scheme 2. Reagents and conditions: (a) 3 times recrystallization from

hexane; (b) p-TsOH, 1,4-dioxane/H2O = 4/1, 80 �C, 4 h.
dard conditions to give the enantiomerically pure natu-
ral muscone (R)-1 in quantitative yield. Unfortunately,
hydrolysis of dibenzyl LL-tartrate (4c) also occurred,
resulting in contamination with a small amount of
inseparable dibenzyl ether (6).

A stable chiral auxiliary was needed that could be recov-
ered intact and afford muscone in high optical purity.
Therefore, we examined acetalization of rac-1 using
N,N 0-dibenzyl-LL-tartaramide 7 (Table 2).7 Acetalization
in the presence of Sc(OTf)3 proceeded smoothly to give
the acetal 8 in excellent yield after 2 h stirring under
reflux (entry 1).8,9 The acetal 8 with even 3% de was
easily recrystallized. Microencapsulated Sc(OTf)3 and
Yb(OTf)3 catalyzed the reaction in good yield (entries
2 and 3). p-TsOH acid and CSA also gave the acetal 8
in good yield without hydrolysis of N,N 0-dibenzyl-LL-tar-
taramide 7 (entries 4 and 5).

The first recrystallization of the acetal 8 (3% de) from
methanol furnished diastereomerically pure acetal (R)-
8 in 15% yield, and the second recrystallization also gave
(R)-8 in 10% yield. The total yield of product based on
the racemic muscone (rac-1) was 25% (Scheme 3). Purity
of (R)-1 as well as recovery of the chiral auxiliary was
dramatically changed in the case of N,N 0-dibenzyl-LL-tar-
taramide (7) compared to that of dibenzyl LL-tartrate (4c)
(Scheme 2 vs 3). Deacetalization of (R)-8 gave the enan-
tiomerically pure natural muscone (R)-1 in 93% yield
without loss of optical purity.10 No formation of dibenz-
yl ether (6) was observed with N,N 0-dibenzyl-LL-tartar-
amide (7) being recovered in 83% yield. The isolation



Table 2. Acetalization of racemic muscone (rac-1) with chiral N,N 0-dibenzyl-LL-tartaramide 7a
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Entry Catalyst Time (h) Yieldb (%) Dec (%) Crystallinity

1 Sc(OTf)3 2 94 3 O

2 mcSc(OTf)3
d 24 71 4 O

3 Yb(OTf)3 17 50 0.4 O

4 p-TsOH 5 49 3 O

5 CSAe 8 70 13 O

aReactions were carried out using N,N0-dibenzyl-LL-tartaramide (0.9 equiv), acid catalyst (5 mol %) and HC(OMe)3 (1 equiv).
b Isolated yield.
c Determined by chiral HPLC analysis using CHIRALPAK AD.
dmcSc(OTf)3 = microencapsulated scandium trifluoromethanesulfonate.
e CSA = (1S)-(+)-10-camphorsulfonic acid.
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Scheme 3. Reagents and conditions: (a) recrystallized twice from

MeOH; (b) p-TsOH, 1,4-dioxane/H2O = 8/1, 80 �C, 3 h.
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of (S)-(+)-muscone was achieved in 19% yield based on
racemic muscone by the same procedure as above using
N,N 0-dibenzyl-DD-tartaramide.

In summary, tartaric acid derivatives, especially the
N,N 0-dibenzyl-LL-tartaramide derivative, have proven to
be good chiral auxiliaries for optical resolution of a
racemic muscone. This method provides a practical
access to optically pure (R)-muscone, which is one of
the most important fragrance compounds.
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