Accepted Manuscript

Synthesis and evaluation of novel fused pyrimidine derivatives as GPR119 agonists

Yuanying Fang, Lijuan Xiong, Jianguo Hu, Shaokun Zhang, Saisai Xie, Liangxing Tu, Yang Wan, Yi Jin, Xiang Li, Shaojie Hu, Zunhua Yang

PII:
DOI:
Reference:

To appear in: Bioorganic Chemistry

Received Date: 9 November 2018
Revised Date: 12 January 2019
Accepted Date: 21 January 2019

Please cite this article as: Y. Fang, L. Xiong, J. Hu, S. Zhang, S. Xie, L. Tu, Y. Wan, Y. Jin, X. Li, S. Hu, Z. Yang, Synthesis and evaluation of novel fused pyrimidine derivatives as GPR119 agonists, Bioorganic Chemistry (2019), doi: https://doi.org/10.1016/j.bioorg.2019.01.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis and evaluation of novel fused pyrimidine derivatives as GPR119 agonists

Yuanying Fang ${ }^{\text {a, }, ~}$, Lijuan Xiong ${ }^{\text {b, }, ~ J i a n g u o ~} \mathrm{Hu}^{\mathrm{b}}$, Shaokun Zhang ${ }^{\text {a }}$, Saisai Xie ${ }^{\text {a }}$, Liangxing $\mathrm{Tu}^{\text {a }}$, Yang Wan ${ }^{\text {a }}$, Yi Jin ${ }^{\text {a, }}$, Xiang Li ${ }^{\text {a }}$, Shaojie $\mathrm{Hu}^{\text {b }}$, Zunhua Yang ${ }^{\text {b,* }}$
${ }^{a}$ National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
${ }^{\text {b }}$ College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China

ARTICLE INFO

Article history.

Received
Revised
Accepted
Available online

Keywords.

tetrahydroquinazoline

dihydrocyclopentapyrimidine
endo- N -boc-nortropane amine
GPR119 agonists

Abstract

A novel series of fused pyrimidine derivatives were designed, synthesized and evaluated as GPR119 agonists. Among them, cyclohexene fused compounds (tetrahydroquinazolines) showed greater GPR119 agonistic activities than did dihydrocyclopentapyrimidine and tetrahydropyridopyrimidine scaffolds. Analogues (16, 19, 26, 28, 42) bearing endo- N-Bocnortropane amine and fluoro-substituted aniline exhibited better EC_{50} values $(0.27 \mu \mathrm{M}-1.2 \mu \mathrm{M})$ though they appeared to be partial agonists.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

GPR119 is a class A type of G Protein coupled receptor, which is expressed primarily in pancreatic β-cells and the K and L cells of the gastrointestinal tract [1-3]. Activation of GPR 119 promotes secretion of incretins such as glucagon-like peptide-1 (GLP-1) in the intestinal tract and glucose dependent release of insulin in pancreatic β-cells [4-8]. The dual mechanism makes GPR119 a promising target for discovery of anti-diabetic agents with low risk of hypoglycemia.

Arena researchers disclosed the first potent and oral small molecule AR231453 as GPR119 agonist [9]. Following this discovery, numerous synthetic GPR119 agonists have been subsequently reported, some of which have advanced into clinical trials (Fig. 1) [1011].

Fig. 1. The structures of GPR119 agonists.
We have previously investigated AR231453 from among the reported agonists, choosing it as the lead compound. A series of 5nitropyrimidine derivatives bearing azabicyclic alcohols/amines were synthesized and evaluated for their GPR119 agonistic activities [12-14]. Although these 5-nitropyrimidine compounds displayed potent biological activities, nitro-compound always caused hepatotoxicity [15-16]. In our attempts to optimize the core skeleton, we have designed various fused pyridine moiety to replace 5nitropyrimidine ring, using the strategy of scaffold hopping. In addition to heterocycle fused pyrimidine, we also studied the effect of

[^0]lipophilic, cycloolefin-fused pyrimidine on the agonistic activity. We herein reported our efforts to expand the SAR study of GPR119 agonists with a series of novel fused pyrimidine derivatives, evaluating them for their human GPR119 activities. We will focus on the various core to see whether or not the pharmacophores are beneficial for bioactivity. The azabicyclic fragments and substituted anilines were retained (Fig. 2). Two conformations (endo and exo) of azabicyclic amines were explored to study the bioactivity relationship of the new core with endolexo azabicyclic ring.

Fig. 2. The design of GPR119 agonists.

2. Results and discussion

2.1 Chemistry

4-Amino-3-fluorobenzonitrile, 2-fluoro-4-(methylsulfonyl)aniline and azabicyclic intermediate 2, were generated according to the reported procedures [17-21]. The exo isomer $\mathbf{3}$ was synthesized in accordance with Scheme 1. Mesylation of endo-N-Boc-nortropine 4 with mesyl chloride (MsCl) furnished the mesylate 5 with good yield (95%), which was treated with sodium azide $\left(\mathrm{NaN}_{3}\right)$ to afford exoazido compound 6 in 92% yield [22]. Reduction of 6 using 10% palladium(II) hydroxide $\left(\mathrm{Pd}(\mathrm{OH})_{2}\right)$ on charcoal under hydrogen generated exo-azabicyclic amine $\mathbf{3}$ in 90% yield [23].

Scheme 1. Reagents and conditions: (a) $\mathrm{MsCl}, \mathrm{TEA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 5 \mathrm{~h}$; (b) $\mathrm{NaN}_{3}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}$, reflux, overnight; (c) $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, 40^{\circ} \mathrm{C}$, overnight.

The general synthetic procedures of dihydrocyclopentapyrimidine derivatives are outlined in Scheme 2. Commercially available methyl 2-oxocyclopentane-1-carboxylate was reacted with urea and sodium methoxide in ethanol to afford cyclic compound $\mathbf{7}$ in 88% yield, which was chlorinated by POCl_{3} at reflux conditions to give $\mathbf{8}$ in 82% yield. Dichloride $\mathbf{8}$ was reacted with aliphatic amines under basic conditions to afford intermediates $\mathbf{9 - 1 1}$ in $85 \%-90 \%$ yield. Buchwald-Hartwig coupling of $\mathbf{9 - 1 1}$ with substituted anilines, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, X-Phos and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ resulted in final compounds 12-20 in 52-86\%.

Scheme 2. Reagents and conditions: (a) urea, MeONa, EtOH, $60^{\circ} \mathrm{C}$, overnight; (b) POCl_{3}, reflux, 7 h ; (c) 1-3, DIPEA, r.t., overnight; (d) substituted anilines, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, X-Phos, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 1,4$-Dioxane, reflux, overnight.

The general synthetic procedures of tetrahydroquinazoline derivatives $\mathbf{2 5 - 2 8}$ are outlined in Scheme $\mathbf{3}$ following the similar synthetic methods as the cyclopentapyrimidine compounds.

Scheme 3. Reagents and conditions: (a) urea, $\mathrm{MeONa}, \mathrm{EtOH}, 60^{\circ} \mathrm{C}$, overnight; (b) POCl_{3}, reflux, 7 h ; (c) aliphatic amine $\mathbf{1}$ or 2, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 8 \mathrm{~h}$; (d) substituted anilines, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{X}$-Phos, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 1,4$-Dioxane, reflux, overnight.

The general synthetic procedures of tetrahydropyridopyrimidine derivatives $\mathbf{3 5 - 4 0}$ were generated as shown in Scheme 4, following similar synthetic methods as for the cyclopentapyrimidine compounds. After synthesizing the benzyl substituted compounds $\mathbf{3 5 - 4 0}$, we attempted debenzylation, but only derivatives 41-42, without fluoro-substituted, were obtained, even though we attempted several debenzylation conditions.

Scheme 4. Reagents and conditions: (a) methyl acrylate, MeOH , r.t., 6 h . (b) MeONa , toluene, $85^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$; (c) urea, $\mathrm{MeONa}, \mathrm{EtOH}, 60^{\circ} \mathrm{C}$, overnight; (d) $\mathrm{POCl}{ }_{3}$, reflux, 7 h ; (e) aliphatic amine 2 or 3, DIPEA, r.t., overnight; (f) substituted anilines, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{X}-\mathrm{Phos}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, 1,4$-Dioxane, reflux, overnight; (g) 10% $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}, 60^{\circ} \mathrm{C}$.

2.2 Biological activity

Target compounds 12-20, 25-28, 37-42 were evaluated for their abilities to activate the human GPR119 receptor in a cell-based cAMP assay, which were expressed in EC_{50} and \%max values. Endogenous GPR119 agonist oleoylethanolamide (OEA) was selected as the positive control. The EC_{50} values represent the concentration of the tested compounds for 50% cAMP stimulation, while the \%max values present the relative response (\%) of the tested compounds compared to the maximal effect of OEA.

As shown in Table 1, dihydrocyclopentapyrimidine analogues (14, $\mathbf{1 7}$ and $\mathbf{2 0}$) possessing exo-azabicyclic amine were identified as very weak GPR119 agonists $\left(\mathrm{EC}_{50}>10 \mu \mathrm{M}\right)$ and their agonistic activities were much less potent than reference. Replacement of exoazabicyclic amine with endo-azabicyclic amine improved the GPR119 activation activities significantly (13, $\mathbf{1 6}$ and 19). But introduction of flexible N-Boc-4-piperidine-amine group did not affect the biological activities appreciatively. We also examined the structural features of the tail part in compounds 12-20. The compounds bearing (2-fluoro-4-methylsulfonyl)phenylamino group or (2-fluoro-4-cyano)phenylamino group exhibited greater potency than compounds without a fluorine atom in aromatic fragment. Additionally, analogues ($\mathbf{1 6}$ and 19) containing the endo-bicyclic moiety and the fluoro-substituted phenylamino group showed good to moderate potency and moderate agonistic activities ($\mathrm{EC}_{50} 0.44$ and $0.77 \mu \mathrm{M}$, respectively) with rational Clog p values (4.7 and $5.1 \mu \mathrm{M}$).

Next, we turned our attention to tetrahydroquinazoline fragment as core part while keeping the endo-azabicyclic amine and fluorosubstituted aniline. As shown in Table 1, superior GPR119 agonistic activity was observed for tetrahydroquinazoline derivatives compared with cyclopentene fused analogues. Among them, compounds 26 and 28 displayed greater EC_{50} values than OEA (0.56 and $0.27 \mu \mathrm{M}$, respectively) but moderate level \%max values. These results suggest that compound with endo-conformation is good for bioactivity. However, analogues 26 and 28 each showed high lipophilicity (Clogp: 5.5 and 5.2), often causing pharmacokinetic issues.

Table 1
In vitro hGPR119 agonistic activities of 12-20 and $\mathbf{2 5 - 2 8}$ Compound \quad Structure \quad hGPR119 activity $\quad \operatorname{Clog} P^{b}$ $\mathrm{EC}_{50}(\mu \mathrm{M}) \quad \% \max ^{\mathrm{a}}$

12

35.6	4.0

$\rightarrow 10$

13

14

15

16

>10
28.7
4.5

2.7
42.9
4.2
0.44
65.8
4.7

17
\square

18

$46.3 \quad 4.6$

20

25

2.9
50.4
4.7

26

27

28

OEA
0.56
67.2 5.5
$\begin{array}{lll}2.1 & 54.8 & 5.0\end{array}$
71.5 5.2
2.2

$$
0.0
$$

$$
5.0
$$

${ }^{\text {a }} \%$ max: cAMP stimulation \% compared to maximal effect of OEA
${ }^{\mathrm{b}} C \log P$ was calculated using ACD software from Discovery Studio 4.5
To conduct the further SAR studies of the GPR119 agonistic activity, tetrahydropyridopyrimidine derivatives were also evaluated by the human GPR119 receptor activities in a cell-based cAMP assay. As shown in Table 2, the results are similar to the previous work, and this series of compounds with endo-moiety showed the moderate potency. Meanwhile, debenzylated 42 exhibited improved middlelevel agonistic activity $\left(\mathrm{EC}_{50}=1.2 \mu \mathrm{M}\right)$ and significantly low lipophilicity $(\operatorname{Clog} p: 3.2)$.

Table 2

In vitro hGPR119 agonistic activities of 37-42
Compound

We also evaluate the oral glucose tolerance test (oGTT) of 28 in C57BL/6N mice. For the acute single dose study, vehicle (0.5% carboxymethylcellulose sodium, $10 \mathrm{~mL} / \mathrm{kg}$) and $\mathbf{2 8}$ (5 and $15 \mathrm{mg} / \mathrm{kg}$) were administered to C57BL/6N mice after 16-hr starvation period, then the oral glucose tolerance test ($3 \mathrm{~g} / \mathrm{kg}$) was conducted 4 hr after of the single dose; the blood glucose level at $0,15,30,60$, 90 and 120 min were recorded by area under curve calculation $\left(\mathrm{AUC}_{0-2 \mathrm{~h}}\right)$. As outlined in Fig. 3, compound 28 demonstrates a dosedependent effect but only weakly reduces the area under curve from $0-120$ min by $2.6 \%(23.47 \pm 3.20)$ and $5.3 \%(22.82 \pm 2.36)$ at the dose of $5 \mathrm{mg} / \mathrm{kg}$ and $15 \mathrm{mg} / \mathrm{kg}$, respectively (Vehicle: 24.09 ± 2.34).

Fig. 3. Single dose of compound $\mathbf{2 8}$ on oGTT in C57BL/6N mice $(\mathrm{n}=8)$.

3. Conclusion

In summary, we designed, synthesized and evaluated a novel series of GPR119 agonists bearing dihydrocyclopentapyrimidine, tetrahydroquinazoline or tetrahydropyridopyrimidine as the core to replace the 5 -nitropyrimidine scaffold. As a result, most compounds exhibited stronger EC_{50} values than that of OEA. Compounds containing endo-azabicyclic fragment and (2-fluoro-4methylsulfonyl)phenylamino group or (2-fluoro-4-cyano)phenylamino group exhibited better EC_{50} values even though they appeared to be partial agonists. And tetrahydroquinazoline derivatives showed better GPR119 agonistic activities than did dihydrocyclopentapyrimidine and tetrahydropyridopyrimidine derivatives. But all these compounds displayed weaker potency than 5nitropyrimidine derivatives. Furthermore, tetrahydroquinazoline 28 with endo- N-Boc-nortropane amine and (2-fluoro-4methylsulfonyl)aniline displayed a good EC_{50} value $(0.27 \mu \mathrm{M})$ and moderate GPR119 agonistic activity (71.5%). Subsequently, compound 28 displayed the dose-dependent effect in oGTT of C57BL/6N mice but a weak glucose-lowering effect. Further SAR study about various fused pyrimidine compounds is ongoing, and will be reported in due course.

4. Experimental

4.1 Chemistry

All starting materials were obtained from commercial suppliers and used without further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Bruker AVANCE III HD $600(600 \mathrm{~Hz})$ spectrometer. Chemical shifts are reported in parts per million (ppm) downfield relative to tetramethylsilane as an internal standard. Peak splitting patterns are abbreviated as s (singlet), br s (broad singlet), d (doublet), t (triplet), dd (doublet of doublet), ddd (doublet of doublet of doublet) and m (multiplet). Mass spectra were recorded on a

Thermo Fisher (LCQ Fleet). HR-MS spectra were recorded on a AB SCIEX (Triple TOF 5600+). TLC was performed on silica F254 purchased from Branch of Qingdao Haiyang Chemical Co. and detected by UV light at $254,365 \mathrm{~nm}$ or by charring with sulphuric acid. Column chromatography was performed on silica gel column (200-300 mesh, Branch of Qingdao Haiyang Chemical Co.).

4.1.1 6, 7-dihydro-5H-cyclopenta[d]pyrimidine-2,4-diol (7)

To the solution of methyl 2-oxocyclopentane-1-carboxylate ($1 \mathrm{~g}, 7.04 \mathrm{mmol}$) in ethanol (15 mL) was added urea ($1.01 \mathrm{~g}, 8.45 \mathrm{mmol}$). and sodium methoxide $(0.76 \mathrm{~g}, 14.07 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under nitrogen. The reaction was stirred at $60^{\circ} \mathrm{C}$ for overnight. After the reaction completed, the solution was removed under reduced pressure. The residual yellow solid was dissolved in acetic acid (0.8 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$. Then the residue was filtered to get yellow solid ($0.52 \mathrm{~g}, 48 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{DMSO}) \delta(\mathrm{ppm}): 9.42(\mathrm{~s}, 1 \mathrm{H}), 6.75$ ($\mathrm{s}, 1 \mathrm{H}$), 3.03 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.42-2.35 (m, 2H), 1.80-1.71 (m, 2H). MS-ESI: [M-H]: 151.1.

4.1.2 2, 4-dichloro-6, 7-dihydro-5H-cyclopenta[d]pyrimidine (8)

Compounds $7(0.5 \mathrm{~g}, 3.29 \mathrm{mmol})$ was dissolved in $\mathrm{POCl}_{3}(3 \mathrm{~mL})$ at room temperature, then the reaction was heated to reflux for 7 h . The mixture was poured into ice water and adjusted to PH value to 7 with NaHCO_{3}. The mixture was filtered to obtain the yellow product. ($0.45 \mathrm{~g}, 73 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.13-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~m}, J=15.5,7.8$ Hz, 2H). MS-ESI: [M-H]:187.1.

4.1.3 General procedure of 2-chloro-6, 7-dihydro-5H-cyclopenta[d]pyrimidin-4-amine (9-11)

To the solution of compound $\mathbf{8}(0.23 \mathrm{~g}, 1.2 \mathrm{mmol})$ in THF (5 mL) was added DIPEA (1.8 mmol) and bicyclic amine or piperidin amine $(1.44 \mathrm{mmol})$. The reaction was stirred at r.t. for overnight. Then the mixture was diluted with ethyl acetate, washed with brine, dried over MgSO_{4}, and evaporated. The residue was purified by column chromatography to give the product.
4.1.4 tert-butyl 4-((2-chloro-6, 7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)piperidine-1-carboxylate (9)

Yellow solid, 87% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{pmm}): 4.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.02-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.60$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H})$. MS-ESI: [M-H]:351.2.

4.1.5 tert-butyl (endo)-3-((2-chloro-6, 7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate

 (10)Yellow solid, 85% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{pmm}): 4.91(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.17(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{MS}-\mathrm{ESI}:[\mathrm{M}-\mathrm{H}]: 377.2$.
4.1.6 tert-butyl (exo)-3-((2-chloro-6, 7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (11)

Yellow solid, 90% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{pmm}): 4.63-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.17(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-1.93(\mathrm{~m}, 6 \mathrm{H}), 1.93-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$. MS-ESI: $[\mathrm{M}-\mathrm{H}]: 377.6$.

4.1.7 6, 7-dihydro-5H-cyclopenta[d]pyrimidine-2, 4-diamine (12-20)

To the solution of chloro-6, 7-dihydro-5H-cyclopenta[d]pyrimidin-4-amine (0.22 mmol) and substituted anilines (0.22 mmol) in 1,4dioxane (2 mL) was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.05 \mathrm{mmol})$, X-Phos $(0.05 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.55 \mathrm{mmol})$. The reaction was heated to reflux under nitrogen gas for overnight. Then the mixture was diluted with ethyl acetate, washed with brine, dried over MgSO_{4}, and evaporated. The residue was purified by column chromatography to give the product.

4.1.8 tert-butyl 4-((2-((4-(methylsulfonyl)phenyl)amino)-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)piperidine-1carboxylate (12)

Light yellow solid, 60% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $7.78(\mathrm{~m}, 4 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.11$ $(\mathrm{m}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=6.9,2 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H})$. HRMS-TOF (m / z) calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}-\mathrm{H}]=$: 486.2175, found 486.1920. HPLC purity, 97.4\%.
4.1.9 tert-butyl (endo)-3-((2-((4-(methylsulfonyl)phenyl)amino)-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (13)

Light yellow solid, 74% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 4 \mathrm{H}), 4.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~m}$, $1 \mathrm{H}), 4.34-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.13$ $(\mathrm{m}, 3 \mathrm{H}), 1.91-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$. HRMS-TOF $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}-\mathrm{H}]{ }^{-}: 512.2332$, found 512.2180 . HPLC purity, 97.9\%.
4.1.10 tert-butyl (exo)-3-((2-((4-(methylsulfonyl)phenyl)amino)-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (14)

Light yellow solid, 68% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}$, $3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{HRMS}-\mathrm{TOF}(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}: 512.2332$, found 512.2176. HPLC purity, 98.3%.
4.1.11 tert-butyl 4-((2-((2-fluoro-4-(methylsulfonyl)phenyl)amino)-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)piperidine-1carboxylate (15)

Yellow solid, 60% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.84(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$, $1.37(\mathrm{~m}, 2 \mathrm{H})$. HRMS-TOF (m/z) calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{FN}_{5} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}: 504.2081$, found 504.1903. HPLC purity, 99.4%.
4.1.12 tert-butyl (endo)-3-((2-((2-fluoro-4-(methylsulfonyl)phenyl)amino)-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (16)

Light yellow solid, 81% yield. ${ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~m}, 1 \mathrm{H})$, $7.42(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.29(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 5 \mathrm{H}), 1.83(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 167.7,163.8,154.4,149.3,146.5$, 130.6, 127.1, 120.5, 114.8, 109.9, 105.4, 75.7, 64.2, 61.6, 48.9, 48.0, 40.9, 39.5, 32.0, 31.3, 30.2, 24.5 (x3), 22.2, 17.7. HRMS-TOF $(\mathrm{m} / \mathrm{z})$ calcd for $\left.\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{FN}_{5} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}-\mathrm{H}]\right]^{-}: 530.2238$, found 530.2106. HPLC purity, 99.0%.
4.1.13 tert-butyl (exo)-3-((2-((2-fluoro-4-(methylsulfonyl)phenyl)amino)-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (17)

Light yellow solid, 85% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.90(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H})$, $4.67(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.13(\mathrm{~m}$, $6 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$. HRMS-TOF $(\mathrm{m} / \mathrm{z})$ calcd for $\left.\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{FN}_{5} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}-\mathrm{H}]\right]^{-}: 530.2238$, found 530.2084. HPLC purity, 98.5%.

4.1.14 tert-butyl 4-((2-((4-cyano-2-fluorophenyl)amino)-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)piperidine-1carboxylate (18)

Light yellow solid, 52% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.83(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=$ $11.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 4 \mathrm{H})$. HRMS-TOF (m/z) calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{FN}_{6} \mathrm{O}_{2}$ $[\mathrm{M}-\mathrm{H}]^{-}: 451.2258$, found 451.2108 . HPLC purity, 95.6%.
4.1.15 tert-butyl (endo)-3-((2-((4-cyano-2-fluorophenyl)amino)-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (19)

Light yellow solid, 86% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.80(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}$, $2 \mathrm{H}), 4.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.23(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 1 \mathrm{H})$, $2.17(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.12(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 167.8,163.8,154.5$, $149.4,146.5,130.1,126.9,125.4,115.0,114.7,113.9,105.4,75.7,64.2,48.9,48.1,39.4,34.7,32.0,31.3,30.2,24.6$ (x3), 22.2, 17.7. HRMS-TOF $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{FN}_{6} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}: 477.2415$, found 477.2255. HPLC purity, 97.4%
4.1.16 tert-butyl (exo)-3-((2-((4-cyano-2-fluorophenyl)amino)-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (20)

Yellow solid, 80% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.78(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.13$ $(\mathrm{m}, 3 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$. HRMS-TOF (m/z) calcd for C26H31FN6O2 [M-H] : 477.2415, found 477.2259. HPLC purity, 94.2%.

4.1.17 5, 6, 7, 8-tetrahydroquinazoline-2,4-diol (21)

Follow the similar synthetic procedure of compounds 7 . Yellow solid, 38% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.98(\mathrm{~s}, 1 \mathrm{H})$, $7.84(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H})$. MS-ESI: [M-H] : 165.3.
4.1.18 2, 4-dichloro-5, 6, 7, 8-tetrahydroquinazoline (22)

Follow the similar synthetic procedure of compounds 7. Yellow solid, 50% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 2.78(\mathrm{~m}, 4 \mathrm{H})$, $1.9(\mathrm{~m}, 2 \mathrm{H}), 1.79$ (m, 2H). MS-ESI: [M-H] :201.4.

4.1.19 tert-butyl 4-((2-chloro-5,6,7,8-tetrahydroquinazolin-4-yl)amino)piperidine-1-carboxylate(23)

To the solution of compounds $22(0.3 \mathrm{~g}, 1.5 \mathrm{mmol})$ in DMF were added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.95 \mathrm{mmol})$ and 4-amino-1-Boc-piperidine (2.7 $\mathrm{mmol})$. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 8 h . Then the mixture was extracted with ethyl acetate, washed with brine, dried over MgSO_{4}, and evaporated. The residue was purified by column chromatography to give the product ($0.5 \mathrm{~g}, 92 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 4.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{ds}, 2 \mathrm{H}), 2.95(\mathrm{ds}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}-\mathrm{ESI}:[\mathrm{M}+\mathrm{H}]^{+}: 367.1$

4.1.20 tert-butyl 3-((2-chloro-5,6,7,8-tetrahydroquinazolin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate(24)

Follow the similar synthetic procedure of compounds 23 . Yellow solid, 70% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 4.41(\mathrm{~m}$, $1 \mathrm{H}), 4.22(\mathrm{~m}, 3 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 8 \mathrm{H}), 1.49(\mathrm{~m}, 9 \mathrm{H}) . \mathrm{MS}-\mathrm{ESI}:[\mathrm{M}+\mathrm{H}]^{+}: 393.3$. 4.1.21 tert-butyl 4-((2-((4-cyano-2-fluorophenyl)amino)-5,6,7,8-tetrahydroquinazolin-4-yl)amino)piperidine-1-carboxylate (25)

Follow the similar synthetic procedure of compounds $\mathbf{1 2 - 2 0}$. Yellow solid, 55% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.84(\mathrm{t}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=11.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 3 \mathrm{H}), 2.97$ $(\mathrm{m}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 158.8,156.3,152.1,150.8,146.5,130.3,125.3,114.9,114.8,114.0,113.8,101.6,75.9,44.4,39.0,38.6$, 28.3, 27.9, 25.7, 24.5, 18.4, 18.3, 18.0. HRMS-TOF (m/z) calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{FN}_{6} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]-: 465.2415$, found 465.2250 . HPLC purity, 97.0\%.
4.1.22 tert-butyl (endo)-3-((2-((4-cyano-2-fluorophenyl)amino)-5,6,7,8-tetrahydroquinazolin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (26)

Follow the similar synthetic procedure of compounds $\mathbf{1 2 - 2 0}$. Light yellow solid, 60% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $8.80(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 2.66(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.30(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 10 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 162.4,160.2,156.1$, $153.3,151.3,134.2,129.3,119.0,118.7,117.9,117.8,105.2,79.6,53.4,52.8,52.0,35.7,35.3,29.3,28.6$ (x3), 28.2, 28.0, 22.4, 22.2, 21.8. HRMS-TOF (m / z) calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{FN}_{6} \mathrm{O}_{2}$ [M-H]- : 491.2571, found 491.2431. HPLC purity, 95.7\%.
4.1.23 tert-butyl 4-((2-((2-fluoro-4-(methylsulfonyl)phenyl)amino)-5,6,7,8-tetrahydroquinazolin-4-yl)amino)piperidine-1-carboxylate (27)

Follow the similar synthetic procedure of compounds $\mathbf{1 2 - 2 0}$. Yellow solid, 56% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.92(\mathrm{t}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=10.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 3 \mathrm{H})$, $3.07(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 158.8,156.3,152.1,150.8,146.6,130.9,126.9,120.3,114.5,110.0,109.9,101.5,75.9,44.5$, 40.9, 39.2, 38.6, 28.4, 27.9, 25.7, 24.5, 18.4, 18.3, 18.0. HRMS-TOF (m/z) calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{FN}_{5} \mathrm{O}_{4} \mathrm{~S}$ [M-H]-: 519.2316, found 519.2162. HPLC purity, 97.4\%.
4.1.24 tert-butyl (endo)-3-((2-((2-fluoro-4-(methylsulfonyl)phenyl)amino)-5,6,7,8-tetrahydroquinazolin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (28)

Follow the similar synthetic procedure of compounds 12-20. Yellow solid, 58% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.87(\mathrm{t}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.27(\mathrm{~m}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H})$, $1.88(\mathrm{~m}, 10 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{3} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 167.1,160.8,156.2,149.3,147.7,130.9,127.9,120.5,114.7,109.8$, $101.3,75.7,49.0,47.8,40.9,39.7,33.6,32.1 ; 31.3,30.2,24.5(\mathrm{x} 3), 22.2,17.8$. HRMS-TOF (m/z) calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{FN}_{5} \mathrm{O}_{4} \mathrm{~S}$ [M-H]544.2394, found 544.2220. HPLC purity, 93.4%.

4.1.25 dimethyl 3,3'-(benzylazanediyl)dipropionate (29)

To a solution of methyl acrylate ($9.4 \mathrm{~mL}, 98.5 \mathrm{mmol}$) in methanol (20 mL) was added benzylamine ($5 \mathrm{~mL}, 45.7 \mathrm{mmol}$). The mixcure was stirred at r.t. for 6 h . After the reaction completed, the solvent was removed under reduced pressure. The residue was extracted with ethyl acetate, washed with brine, dried over MgSO_{4}, and evaporated to give the slightly yellow liquid $(10.5 \mathrm{~g}, 74 \%$ yield), which was used directly in next step without purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H})$, $2.83(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H})$. MS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}: 280.3$.

4.1.26 methyl 1-benzyl-4-oxopiperidine-3-carboxylate(30)

To a solution of sodium methoxide $(0.58 \mathrm{~g}, 10.75 \mathrm{mmol})$ in toluene (30 mL) was added compound $23(2 \mathrm{~g}, 7.17 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. The reaction was stirred at $85^{\circ} \mathrm{C}$ for 3.5 h . Then the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and acetic acid ($0.6 \mathrm{~mL}, 10.75 \mathrm{mmol}$). And the mixture was stirred at r.t. for 1 h . The reaction was extracted with ethyl acetate, dried over MgSO_{4}, evaporated to receive the product ($1.2 \mathrm{~g}, 67 \%$ yield) without purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.38-7.35(\mathrm{~m}, 5 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~m}, 3 \mathrm{H})$, $3.21(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{ddd}, J=5.9,4.3,1.6 \mathrm{~Hz}, 2 \mathrm{H})$. MS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}: 248.5$.

4.1.27 6-benzyl-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine-2,4-diol(31)

Follow the similar synthetic procedure of compounds 7. Light yellow solid, 68% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{DMSO}) \delta(\mathrm{ppm}): 10.93$ $(\mathrm{s}, 1 \mathrm{H}), 10.77(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.14(\mathrm{~m}, 5 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$.

4.1.28 6-benzyl-2,4-dichloro-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine(32)

Follow the similar synthetic procedure of compound 8. Yellow solid, 60% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.34-7.17(\mathrm{~m}$, $5 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.29 tert-butyl (exo)-3-((6-benzyl-2-chloro-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8carboxylate (33)

Follow the similar synthetic procedure of compounds $\mathbf{9 - 1 1}$. Light yellow solid, 84% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 7.39-7.28 (m, 5H), 4.63-4.58 (m, 1H), 4.34-4.25 (m, 2H), 4.11 (d, J=7.8 Hz, 1H), 3.76(s, 2H), 3.22 (s, 2H), 2.82-2.78 (m, 4H), 2.15$2.02(\mathrm{~m}, 4 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$. MS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}$: 484.6.
4.1.30 tert-butyl (endo)-3-((6-benzyl-2-chloro-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8carboxylate (34)
Follow the similar synthetic procedure of compounds $\mathbf{9 - 1 1}$. Light yellow solid, 82% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 4 \mathrm{H}), 2.37-2.23(\mathrm{~m}, 2 \mathrm{H})$, $2.07(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$. MS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}: 484.4$.
4.1.31 tert-butyl (exo)-3-((6-benzyl-2-((4-(methylsulfonyl)phenyl)amino)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (35)
Follow the similar synthetic procedure of compounds $\mathbf{1 2 - 2 0}$. Light yellow solid, 55% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $7.83(\mathrm{~s}, 4 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.54-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 2.82-2.77(\mathrm{~m}$, $4 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$. MS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}: 619.3$.
4.1.32 tert-butyl (endo)-3-((6-benzyl-2-((4-(methylsulfonyl)phenyl)amino)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (36)
Follow the similar synthetic procedure of compounds $\mathbf{1 2 - 2 0}$. Light yellow solid, 58% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $7.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~m} 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.24(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.52$ (s, 9H). MS-ESI: $[\mathrm{M}+\mathrm{H}]^{+}: 619.5$.
4.1.33 tert-butyl (exo)-3-((6-benzyl-2-((4-cyano-2-fluorophenyl)amino)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (37)

Follow the similar synthetic procedure of compounds $\mathbf{1 2 - 2 0}$. Yellow solid, 65% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.82(\mathrm{t}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.25$ $(\mathrm{s}, 2 \mathrm{H}), 2.79(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{HRMS}-\mathrm{TOF}(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{FN}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 584.3149$, found 584.3211.
4.1.34 tert-butyl (endo)-3-((6-benzyl-2-((4-cyano-2-fluorophenyl)amino)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (38)

Follow the similar synthetic procedure of compounds $\mathbf{1 2 - 2 0}$. Yellow solid, 55% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.78(\mathrm{t}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}) ., 4.64(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.37-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}$, 9H). HRMS-TOF (m / z) calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{FN}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 584.3149$, found 584.3295 .
4.1.35 tert-butyl (exo)-3-((6-benzyl-2-((2-fluoro-4-(methylsulfonyl)phenyl)amino)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (39)

Follow the similar synthetic procedure of compounds 12-20. Yellow solid, 52% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.89(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.26$ $(\mathrm{s}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$. HRMSTOF $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{FN}_{6} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 637.2972$, found 637.4132.
4.1.36 tert-butyl (endo)-3-((6-benzyl-2-((2-fluoro-4-(methylsulfonyl)phenyl)amino)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (40)

Follow the similar synthetic procedure of compounds $\mathbf{1 2 - 2 0}$. Yellow solid, 44% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.87(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=8.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=10.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, 2.36-2.24 (m, 1H), 2.11-2.01 (m, 3H), $1.82(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$. HRMS-TOF (m/z) calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{FN}_{6} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 637.2972, found 637.4206.
4.1.37 tert-butyl (exo)-3-((2-((4-(methylsulfonyl)phenyl)amino)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-yl)amino)-8-
azabicyclo[3.2.1]octane-8-carboxylate (41)

To a solution of compound $29(0.1 \mathrm{mmol})$ in $\mathrm{EtOH}(3 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(15 \mathrm{mg})$. The reaction was stirred at $60^{\circ} \mathrm{C}$ for 24 h under hydrogen balloon. Then the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and filterer with celite. The filtrate was evaporated to receive the crude product, which was purified by column chromatography to give the yellow solid product.
The yield is $24 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{MeOD}) \delta(\mathrm{ppm}): 7.99(\mathrm{~d}, J=8.7,2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.87-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H})$, $4.01(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.51(\mathrm{~s}, 9 \mathrm{H})$. HRMS-TOF (m/z) calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 529.2597$, found 529. 2717.

4.1.38 tert-butyl (endo)-3-((2-((4-(methylsulfonyl)phenyl)amino)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-yl)amino)-8-azabicyclo[3.2.1]octane-8-carboxylate (42)

Follow the similar synthetic procedure of compound 41. Yellow solid, 18% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{MeOD}) \delta(\mathrm{ppm}): 8.02(\mathrm{~d}, J=$ $8.8,2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 2.02$ $(\mathrm{m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$. HRMS-TOF $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 529.2597$, found 529. 2735.

4.2 Human GPR119 agonistic activity

CHO K1 cells stably transfected with human GPR119 were grown at $37^{\circ} \mathrm{C}, 95 \% \mathrm{O}_{2}$ and $5 \% \mathrm{CO}_{2}$ in 75 cm flasks containing DMEM/F12 (1:1) media with added 10% FBS (Gibco ${ }^{\circledR}$), Geneticin (Gibco ${ }^{\circledR}$) and grown until 90% confluent. Cells were then washed (PBS), lifted with cell dissociation solution (Invtrogen ${ }^{\circledR}$), counted and used for cAMP accumulation assays and/or passaging (1:10). Following the manufacturer's instructions for the LANCE ${ }^{\oplus}$ Ultra cAMP assay (Perkin Elmer), cell transfected with hGPR119 were centrifuged (1000 rpm , 5 min), re-suspended in cAMP assay buffer (HBSS, $0.1 \% \mathrm{BSA}, 0.5 \mathrm{mM}$ IBMX and 5 mM HEPES) and seeded at 5000 cells/well in optiplate-384 (Perkin Elmer). Cells were treated with compounds over a range of concentrations ($10 \mathrm{uM}-0.6 \mathrm{uM}$) and incubated for 1 h . Cell lysis buffers (4X Eu-cAMP tracer solution and 4X ULight ${ }^{\text {TM }}$-anti-cAMP solution) were added to each well, and the plates were incubated at room temperature for 1 h before being read on Envision (Perkin Elmer).

4.3 oGTT in C57BL/6N mice

For the acute single dose study, vehicle (0.5% carboxymethylcellulose sodium, $10 \mathrm{~mL} / \mathrm{kg}$) and compound $\mathbf{2 8}(5 \mathrm{and} 15 \mathrm{mg} / \mathrm{kg}$) were administered to C57BL/6N mice after 16-hrsstarvation, then the oral glucose tolerance test ($3 \mathrm{~g} / \mathrm{kg}$) was conducted after 4 h of the single dose, the blood glucose level at $0,15,30,60,90$ and 120 min were recorded for area under curve calculation $\left(\mathrm{AUC}_{0-2 \mathrm{~h}}\right)$.

Acknowledgments

This work was supported by National Natural Science Foundation of China (81460526), Jiangxi Provincial Department of Science and Technology (20171BAB205103, 20181BAB215043), Hongcheng Haiou Plan of Nanchang City (Zunhua Yang, 2017) and Health and Family Planning Commission of Jiangxi Province (2017A297, 20185521 and 20185523). The authors appreciate Drs. Robert Smith and Amy Dykstra for the manuscript revision.

References

[1] D.A. Wacker, Y. Wang, M. Broekema, K. Rossi, S. O’Connor, Z. Hong, G. Wu, S.E. Malmstrom, C.P. Hung, L. LaMarre, A. Chimalakonda, L. Zhang, L. Xin, H. Cai, C. Chu, S. Boehm, J. Zalaznick, R. Ponticiello, L. Sereda, S.P. Han, R. Zebo, B. Zinker, C.E. Luk, R. Wong, G. Everlof, Y.X. Li, C.K. Wu, M. Lee, S. Griffen, K.J. Miller, J. Krupinski, J.A. Robl, Discovery of 5-chloro-4-((1-(5-chloropyrimidin-2-yl)piperidin-4-yl)oxy)-1-(2-fluoro-4-(methylsulfonyl)phenyl)pyridin-2(1H)-one (BMS903452), an antidiabetic clinical candidate targeting GPR119, J. Med. Chem. 57 (2014) 7499-7508.
[2] J.S. Scott, S.S. Bowker, K.J. Brocklehurst, H.S. Brown, D.S. Clarke, A. Easter, A. Ertan, K. Goldberg, J.A. Hudson, S. Kavanagh, D. Laber, A.G. Leach, P.A. MacFaul, E.A. Martin, D. McKerrecher, P. Schofield, P.H. Svensson, J. Teague, Circumventing seizure activity in a series of G protein coupled receptor 119 (GPR119) agonists, J. Med. Chem. 57 (2014) 89848998.
[3] Y.K. Jang, K.M. Lee, K.Y. Jung, S.K. Kang, S.H. Pagire, J.M. Lee, H.S. Pagire, K.R. Kim, M.A. Bae, H. Lee, S.D. Rhee, J.H. Ahn, Design, synthesis, and biological evaluation of aryl N-methoxyamide derivatives as GPR119 agonists, Bioorg. Med. Chem. Lett. 27 (2017) 3909-3914
[4] H.A. Overton, M.C.T. Fyfe, C. Reynet, GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity, Br. J. Pharmacol. 153 (2010) S76-S81.
[5] R.M. Jones, J.N. Leonard, Chapter 7 The Emergence of GPR119 Agonists as Anti-Diabetic Agents, Annu. Rep. Med. Chem. 44 (2009) 149-170.
[6] H.S. Hansen, M.M. Rosenkilde, J.J. Holst, T.W. Schwartz, GPR119 as a fat sensor, Trends Pharmacol. Sci. 33 (2012) 374-481.
[7] K. Harada, J. Mizukami, S. Kadowaki, I. Matsuda, T. Watanabe, Y. Oe, Y. Kodama, K. Aoki, K. Suwa, S. Fukuda, S. Yata, T. Inaba, Design and synthesis of novel and potent GPR119 agonists with a spirocyclic structure, Bioorg. Med. Chem. Lett. 28 (2018) 1228-1233.
[8] C. Zhu, L.P. Wang, Y.P. Zhu, Z. Guo, P. Liu, Z.Y. Hu, J.W. Szewczyk, L. Kang, C. Chicchi, A. Ehrhardt, A. Woods, T. Seo, M. Woods, M. Heek, K.H. Dingley, J.M. Pang, G.M. Salituro, J. Powell, J.L. Terebetski, V. Hornak, L.C. Campeau, R.K. Orr, F. Ujjainwalla, M. Miller, A. Stamford, H.B. Wood, T. Kowalski, R.P. Nargund, S.D. Edmondson, Discovery of phenyl acetamides as potent and selective GPR119 agonists, Bioorg. Med. Chem. Lett. 27 (2017) 1124-1128.
[9] G. Semple, B. Fioravanti, G. Pereira, I. Calderon, J. Uy, K. Choi, Y. Xiong, A. Ren, M. Morgan, V. Dave, Discovery of the first potent and orally efficacious agonist of the orphan G-protein coupled receptor 119, J. Med. Chem. 51 (2008) 5172-5175.
[10] D. Matsuda, M. Kawamura, Y. Kobashi, F. Shiozawa, Y. Suga, K. Fusegi, S. Nishimoto, K. Kimura, M. Miyoshi, N. Takayama, H. Kakinuma, N. Ohtake, Design, synthesis and biological evaluation of novel 7-azaspiro[3.5]nonane derivatives as GPR119 agonists, Bioorg. Med. Chem. 26 (2018) 1832-1847.
[11] Y. Fang, F. Shao, R. Liu, Z. Yang, Recent progress in GPR119 agonists for type 2 diabetes, Chin. J. New Drugs. 24 (2015) 26952723.
[12] Z. Yang, Y. Fang, T.A.N. Pham, J. Lee, H. Park, Synthesis and biological evaluation of 5-nitropyrimidine analogs with azabicyclic substituents as GPR119 agonists, Bioorg. Med. Chem. Lett. 23 (2013) 1519-1521.
[13] Y. Fang, Z. Yang, S. Gundeti, J. Lee, H. Park, Novel 5-nitropyrimidine derivatives bearing endo-azabicyclic alcohols/amines as potent GPR119 agonists, Bioorg. Med. Chem. 25 (2017) 254-260.
[14] Z. Yang, Y. Fang, H. Park, Synthesis and biological evaluation of pyrimidine derivatives with diverse azabicyclic ether/amine as novel GPR119 agonist, Bioorg. Med. Chem. Lett. 27 (2017) 2515-2519.
[15] U.A. Boelsterli, H.K. Ho, S. Zhou, K.Y. Leow, Bioactivation and hepatotoxicity of nitroaromatic, drugs Curr. Drug Metab. 7 (2006) 715-727.
[16] G. Paraskevopoulos, M. Krátký, J. Mandíková, F. Trejtnar, J. Stolaříková, P. Pávek, G. Besra, J. Vinšová, Novel derivatives of nitro-substituted salicylic acids: synthesis, antimicrobial activity and cytotoxicity, Bioorg. Med. Chem. 23 (2015) 7292-7301.
[17] T.A.N. Pham, Z. Yang, Y. Fang, J. Luo, J. Lee, H. Park, Synthesis and biological evaluation of novel 2,4-disubstituted quinazoline analogues as GPR119 agonists, Bioorg. Med. Chem. 21 (2013) 1349-1356.
$[18]$ D.P. Wang, L.P. Kuang, Z.W. Li, K. Ding, L-Proline-Promoted Rosenmund-von Braun Reaction, Synlett. 2008 (2008) 69-72.
[19] W. Zhu, D. Ma, Synthesis of Aryl Sulfones via L-Proline-Promoted CuI-Catalyzed Coupling Reaction of Aryl Halides with Sulfinic Acid Salts, J. Org. Chem. 70 (2005) 2696-2700.
[20] V. Berdini, M.C. Cesta, R. Curti, L. Nicolini, A. Topai, A modified palladium catalysed reductive amination procedure, Tetrahedron. 58 (2002) 5669-5674.
[21] Y. Fang, J. Xu ,Z. Li, Z. Yang, L. Xiong, Y. Jin ,Q. Wang, S. Xie, W. Zhu, S. Chang, Design and synthesis of novel pyrimido[5,4-d]pyrimidine derivatives as GPR119 agonist for treatment of type 2 diabetes, Bioorg. Med. Chem. 26 (2018) 40804087.
[22] A.R. Bogdan, K. James, Synthesis of 5-Iodo-1,2,3-triazole-Containing Macrocycles Using Copper Flow Reactor Technology, Org. Lett. 13 (2011) 4060-4063.
[23] S. Pierau, G. Dale, PCT 2006021448, 2006.

Highlights

The authors designed novel GPR119 agonists bearing various core moiety from lipophilic cycloolefin fused pyrimidines to polar tetrahydropyridopyrimidines. By synthesis and bio-evaluation of final compounds, we found that the less polar cyclohexene fused compounds displayed the most potent activity. We extended the SAR as a guide for further optimization.

Graphical Abstract

[^0]: * Corresponding author.

 E-mail address: joshyyy@126.com (Z Yang).
 ${ }^{1}$ These authors contribute equally to this work.

