Accepted Manuscript

Hydrogen sulfide donating *ent*-kaurane and spirolactone-type 6,7-*seco-ent*-kaurane derivatives: Design, synthesis and antiproliferative properties

Haonan Li, Xiang Gao, Xiaofang Huang, Xianhua Wang, Shengtao Xu, Takahiro Uchita, Ming Gao, Jinyi Xu, Huiming Hua, Dahong Li

PII: S0223-5234(19)30535-5

DOI: https://doi.org/10.1016/j.ejmech.2019.06.016

Reference: EJMECH 11419

To appear in: European Journal of Medicinal Chemistry

Received Date: 18 January 2019

Revised Date: 3 June 2019

Accepted Date: 4 June 2019

Please cite this article as: H. Li, X. Gao, X. Huang, X. Wang, S. Xu, T. Uchita, M. Gao, J. Xu, H. Hua, D. Li, Hydrogen sulfide donating *ent*-kaurane and spirolactone-type 6,7-*seco-ent*-kaurane derivatives: Design, synthesis and antiproliferative properties, *European Journal of Medicinal Chemistry* (2019), doi: https://doi.org/10.1016/j.ejmech.2019.06.016.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Hydrogen sulfide donating ent-kaurane and spirolactone-type									
2	6,7-seco-ent-kaurane derivatives: Design, synthesis and antiproliferative									
3	properties									
4	Haonan Li ^{a,1} , Xiang Gao ^{a,1} , Xiaofang Huang ^a , Xianhua Wang ^b , Shengtao Xu ^c , Takahiro Uchita ^d ,									
5	Ming Gao ^d , Jinyi Xu ^c , Huiming Hua ^a , Dahong Li ^{a,*}									
6	^a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional									
7	Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China									
8	^b School of Public Health, Qingdao University, 38 Dengzhou Road, Qingdao 266021, P. R. China									
9	^c State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing									
10	210009, P. R. China									
11	^d School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien, Nishinomiya 663-8179,									
12	Japan									
13 14										
15										
16										
17										
18										
19										
20										
21	Y									
22										

^{*}Corresponding author. E-mail address: lidahong0203@163.com.

¹These authors contributed equally to this work.

1

2 Abstract:

3	Motivated by our interest in hydrogen sulfide bio-chemistry and ent-kaurane diterpenoid
4	chemistry, 14 hydrogen sulfide donating derivatives (9, 11a-c, 12a-c, 13, 14, 16a-c and 17a-b) of
5	ent-kaurane and spirolactone-type 6,7-seco-ent-kaurane were designed and synthesized. Four
6	human cancer cell lines (K562, Bel-7402, SGC-7901 and A549) and two normal cell lines (L-02
7	and PBMC) were selected for antiproliferative assay. Most derivatives showed more potent
8	activities than the lead ent-kaurane oridonin. Among them, compound 12b exhibited the most
9	potent antiproliferative activities, with IC ₅₀ values of 1.01, 0.88, 4.36 and 5.21 μ M against above
10	human cancer cell lines, respectively. Further apoptosis-related mechanism study indicated that
11	12b could arrest Bel-7402 cell cycle at G1 phase and induce apoptosis through mitochondria
12	related pathway. Through western blot assay, 12b was shown to influence the intrinsic pathway by
13	increasing the expression of Bax, cleaved caspase-3, cytochrome c and cleaved PARP, meanwhile
14	suppressing procaspase-3, Bcl-2, Bcl-xL and PARP.
15	
16	
17	
18	
19	\mathcal{R}
20	Key words: diterpenoid, hydrogen sulfide, antiproliferative activity, apoptosis
21	
22	
23	
24	
- 1	
25	

1

2 1. Introduction

3 Nature has long been an invaluable source, providing molecular skeletons for drug 4 discovery [1]. During the 1940s to the end of 2014, almost 50% of approved anticancer small 5 molecules were nature derived molecules [2]. The Rabdosia, an important and cosmopolitan genus 6 of the Labiatae family, has aroused considerable interests due to the aboundance of ent-kaurane 7 diterpenoids [3-10]. Oridonin (1, Fig. 1), the main active component of Rabdosia rubescens, has 8 been the most extensively studied natural product of this genus [11-20]. Its structure and absolute 9 configuration were determined in 1970 [21]. It exhibited anticancer effects on leukemia [22], 10 pancreatic cancer [23], osteosarcoma [24], colorectal cancer [25], renal cell carcinoma [26] and 11 diffuse large B cell lymphoma [27]. One sub-type of 6,7-seco-ent-kauranes, spirolactone-type 12 (7,20-lactone) diterpenoids, contains multiple stereogenic centers and complex ring systems, such 13 as trichorabdal A, maoecrystal Z, longikaurin E, sculponeatin N, maoecrystal V, sculponeatin C, 14 laxiflorolide C and laxiflorin B (Fig. 1) [28-34]. In particular, some of them exhibited promising 15 antiproliferative effects [35-37] with IC₅₀ values of 0.21, 0.29, 0.60 and 0.80 against K562, 16 HepG2, SW-480 and HL-60 human cancer cell lines, respectively.

17 Although spirolactone-type diterpenoids demonstrated sub-micromolar level 18 antiproliferative activities, their low isolation yields from Isodon plants can not meet the need for 19 further studies, which hindered their wide application as potential candidates in drug development. 20 Moreover, the complex stereogenic centers make it quite challenging to achieve via total synthesis 21 [38,39]. In general, through the analysis of active products [40-42], structural modification [43,44], 22 biological evaluation [45,46] and mechanism study [47-49], the deigned derivatives would show 23 better properties than the original forms and some of them would serve as drug candidates. In our 24 previous work, a convenient method for the conversion from oridonin to spirolactone-type 25 skeleton in quantitative yield was achieved by oxidation with lead tetraacetate, which could 26 provide enough starting materials for the medicinal study of spirolactone-type derivatives [50-53].

1 Small molecule donors have been widely used in drug discovery [54,55]. Hydrogen 2 sulfide (H₂S), like nitric oxide (NO) and carbon monoxide (CO), has been recognized as a 3 gasotransmitter related to health and disease [56,57]. The generation of endogenous H₂S is caused 4 by three important enzymes, cystathionine- γ -lyase (CSE), cystathionine- β -synthase (CBS) and 5 3-mercaptopyruvate sulfurtransferase (MST), with cysteine, homocysteine and cystathionine as 6 substrate [58,59]. Besides bioactivities in vascular tone, blood pressure, ischemia-reperfusion 7 injury, atherosclerosis, angiogenesis and neuroinflammation [60-65], recent studies elucidated that 8 H₂S showed moderate anticancer activity by inducing cell apoptosis via EGFR/ERK/MMP-2, 9 PI3K/Akt/mTOR and p38 MAPK/ERK1/2-COX-2 pathways [66-70]. Although H₂S plays 10 important roles in physiology and pathology, it can not be directly used in clinical treatment due to 11 uncontrollable dose and high toxicity. While the H₂S donors (including ADT-OH, thiobenzamide, 12 α -thioctic acid, GYY4137, persulfides etc. Fig. 2A) could partially solve the problems which 13 release H₂S at relative slow rates [71-74]. H₂S-releasing compounds also showed promising 14 properties and were instrumental for the exploration of drug candidates [75-79, Fig.2B].

15 Based on the above, we used two *ent*-kaurane derivatives (2, 6) linked with two kinds of 16 H_2S donors (α -thioctic acid and ADT-OH) by ether bond and then converted them into 17 corresponding spirolactone-type derivatives. The antiproliferative effects of target compounds 18 were evaluated against chronic myelogenous leukemia K562, liver cancer Bel-7402, gastric cancer 19 SGC-7901, lung cancer A549, human normal liver L-02 and normal peripheral blood mononuclear 20 PBMC cell lines. Furthermore, apoptosis related mechanism of the most potent compound 12b 21 was also explored, including cell cycle progression, apoptotic induction, mitochondria membrane 22 potentials decline and the expression of apoptosis-related proteins.

1 Oridonin

2 Fig. 1. The structures of oridonin and natural spirolactone-type 6,7-seco-ent-kaurane diterpenoids.

1

Fig. 2. The structures of selected H₂S donating molecules (A) and H₂S releasing drug candidates
(B).

1 2. Result and discussion

2 2.1. Chemistry

3 The whole synthetic route of H₂S-releasing derivatives is outlined in Scheme 1 and Scheme 2. 4 Intermediate 2 was obtained through addition of Jones reagent to selectively oxidize the 1-OH of 1. 5 Treatment of 1 with 2,2-dimethoxypropane and TsOH in anhydrous acetone afforded derivative 4, 6 then reaction with Ac_2O/Et_3N in DCM acquired derivative 5. And intermediate 6 was afforded via 7 deprotection in the presence of 10% HCl. The derivatives 3 and 7 were prepared by lead 8 tetraacetate and sodium carbonate (Na₂CO₃) in THF. The generated 2 and 5 were reacted with 9 corresponding anhydride under the condition of 4-dimethylaminopyridine (DMAP) and 10 triethylamine (TEA) in DCM at room temperature, which gave derivatives 10a-c and 15a-c in 11 quantitative yields. Then H_2S -releasing derivatives 8, 11a-c, 13 and 16a-c were obtained via 12 reaction of corresponding diterpenoid derivatives with ADT-OH or α-thioctic acid in the presence 13 of DMAP and carbodiimide hydrochloride (EDCI). Finally, spirolactone-type derivatives 9, 12a-c, 14 14 and 17a-b were achieved by oxidation using lead tetraacetate and Na₂CO₃ in THF.

Scheme 1. The synthetic route of intermediates. Reagents and conditions: (a) Jones reagent,
acetone, 0 °C, 0.5 h; (b) Pb(OAc)₄, Na₂CO₃, THF, rt, 2 h; (c) 2,2-dimethoxypropane, acetone,
TsOH, 56 °C, 1.5 h; (d) Ac₂O, TEA, DMAP, DCM, rt, 5 h; (e) 10% HCl, THF, rt, 4 h.

Scheme 2. Synthesis of H₂S-releasing derivatives 9, 11a-c, 12a-c, 13, 14, 16a-c and 17a-b.
Reagents and conditions: (a) α-thioctic acid, EDCI, DMAP, DCM, rt, 12 h; (b) Pb(OAc)₄, Na₂CO₃,
THF, rt, 2 h; (c) corresponding anhydride, TEA, DMAP, DCM, rt, 5 h; (d) ADT-OH, EDCI,
DMAP, DCM, rt, 8-12 h.

6 2.2. Biological evaluation

1

7 2.2.1 Antiproliferative activities and preliminary SAR

8 The antiproliferative activities of 14 target derivatives (9, 11a-c, 12a-c, 13, 14, 16a-c and
9 17a-b), lead compound oridonin (1), parental diterpenoids (2, 3, 6 and 7) and H₂S donors
10 (ADT-OH and α-thioctic acid) were tested by MTT assay (5-Fu was used as positive control).
11 Four human cancer and two normal cell lines were selected to test their cytotoxicity. As shown in
12 Table 1, all derivatives displayed inhibitory activities against selected human cancer cell lines.

1 Most derivatives exhibited more potent antiproliferative activities than oridonin (IC₅₀ = 4.79-18.862 μ M), and even than positive control (IC₅₀ = 2.33-17.59 μ M). Besides promising antiproliferative 3 activities, low cytotoxicity to normal cells was also observed, which is a key character in 4 anticancer drug exploration. When the substitution R were alkyl groups (11a-b, 12a-b and 16a-b), 5 their antiproliferative activities were more potent than corresponding ones with aromatic groups 6 (11c, 12c and 16c) and improved IC_{50} values were observed with the extension of R group in 7 Bel-7402 cells. It demonstrated that linear linker rather than benzene ring was advantageous for 8 potency, and longer carbon bridge might contribute to superior inhibitory effects. Compounds 9, 9 13 and 14 whose 14-OH directly incorporated with α -thioctic acid showed similarly 10 antiproliferative activities to corresponding derivatives (11a-b, 12a-b, 16a-b and 17a-b) which 11 coupled with ADT-OH through a carbon bridge. Comparing 1-oxo ent-kaurane derivatives (11a-c) 12 with corresponding spirolactone-type derivatives (12a-c), stronger antiproliferative activities were 13 observed. But this phenomenon did not work in 1-acetylated derivatives (16a-c and 17a-b). 14 Furthermore, among spirolactone-type derivatives, 1-oxo derivatives (12a-c) showed more potent 15 activities than 1-acetylated derivatives (17a-b). Among them, compound 12b showed the 16 strongest antiproliferative activities, with IC₅₀ values of 1.01, 0.88, 4.36 and 5.21 μ M against 17 K562, Bel-7402, SGC-7901 and A549 human cancer cell lines, respectively. Furthermore, 18 compound **12b** exhibited almost 24-fold less potent antiproliferative activities against L-02 ($IC_{50} =$ 19 20.82 μ M) and PBMC (IC₅₀ = 19.85 μ M) normal cell lines, demonstrating selectivity between 20 cancer and normal cell lines. Hence, compound 12b was selected for further mechanism study.

21 Table 1

22 Antiproliferative activities ($IC_{50}^{a} \mu M$) of 14 target derivatives, parental diterpenoids and H₂S 23 donors against four human cancer and two normal cell lines.

Compound	K562	Bel-7402	SGC-7901	A549	L-02	PBMC
1	4.79±0.12	8.31±0.29	7.87±0.36	17.80±0.75	18.68±1.28	>50
2	4.02±0.18	3.88±0.18	16.54±0.30	9.86±0.45	23.41±1.39	>50
3	3.26±0.16	4.67±0.25	19.48±0.94	5.31±0.40	29.70±1.07	>50

6	4.92±0.24	3.59±0.18	6.45±0.37	13.47±0.53	22.36±1.25	>50
7	8.96±0.49	>50	49.84±2.51	27.44±1.52	>50	>50
9	2.59±0.22	2.56±0.19	6.43±0.37	7.92±0.77	19.85±1.37	>50
11a	3.66±0.30	3.52±0.31	12.50±0.44	9.78±0.75	>50	29.62±1.31
11b	3.84±0.28	3.04±0.23	6.59±0.26	4.38±0.17	21.02±1.36	17.23±1.05
11c	4.80±0.10	5.34±0.27	14.87±0.53	7.69±0.40	42.64±2.63	>50
12a	1.82±0.07	1.38±0.12	4.24±0.25	5.54±0.42	18.19±1.44	16.58±1.26
12b	1.01 ± 0.07	0.88 ± 0.05	4.36±0.20	5.21±0.25	20.82±1.28	19.85±1.37
12c	4.25±0.23	3.26±0.14	5.93±0.33	7.45±0.38	26.21±1.55	31.45±1.61
13	2.84±0.17	2.25±0.16	6.02±0.20	8.65±0.36	41.10±2.94	28.83±1.45
14	6.75±0.31	4.58±0.24	10.04±0.39	19.89±0.81	36.47±1.32	>50
16a	2.54±0.18	2.87 ± 0.08	5.49±0.14	6.34±0.41	23.24±1.54	44.15±2.26
16b	2.02±0.06	1.94±0.12	5.36±0.28	9.76±0.48	14.70±1.14	>50
16c	11.43±0.74	7.68±0.35	12.37±0.85	16.66±0.70	>50	39.53±1.69
17a	15.26±1.08	9.73±0.52	17.95±0.76	27.53±1.21	>50	25.86±1.35
17b	3.27±0.21	4.59±0.37	7.66±0.37	14.82±1.14	>50	30.65±1.41
ADT-OH	>50	>50	>50	>50	>50	>50
α -thioctic acid	>50	>50	>50	>50	>50	>50
5-Fu	4.02±0.22	17.59±0.86	6.38±0.32	2.33±0.12	>50	>50

^aIC₅₀: Half inhibitory concentrations measured by the MTT assay, the cells were incubated
 for 72 h. The values are expressed as averages ± standard deviations of three independent
 experiments.

4 2.2.2. H_2S release ability

5 H_2S -releasing capability of all derivatives was tested by the methylene blue (MB⁺) method. 6 As shown in Fig. 3, all derivatives could produce H_2S with a peak time around 15-20 min. It was 7 obvious that those derivatives with α -thioctic acid (9, 13 and 14) showed the highest H_2S 8 generating ability, while releasing characteristics of the derivatives with ADT moisties were not 9 varied significantly from each other, except for 17a and 17b. Interestingly, 1-oxo derivatives 10 usually produced more H_2S (0.2-1 μ M) than 1-acetylated derivatives. Two spirolactone-type

derivatives with acetyl group at C-1 (17a-b) were found to release the lowest H₂S, which were
consistent with their tempered antiproliferative activities. Among other derivatives with ADT-OH,
spirolactone-type derivatives 12a-c showed moderate H₂S releasing ability while exhibiting
superior antiproliferative activities. Furthermore, in contrast to the low antiproliferative effects,
those with phthalic anhydride linker (11c, 12c and 16c) generated more H₂S. Moreover, with the
increased length of R groups, stronger antiproliferative effects could be found but with a small
reduction in H₂S generation.

8

9 Fig. 3. H₂S-releasing ability of target compounds. The values are expressed as averages of three
10 independent experiments.

11 2.2.3. Cell cycle analysis

12 Cell cycle is the basic process of cell life activities. An interruption of certain phase of cell 13 cycle leads to the inhibition of cell division and suppresses tumor growth. In order to demonstrate 14 the antiproliferative mechanism, the influence on cell cycle of 12b was tested and DNA content of 15 cell nuclei was measured via flow cytometry. In this assay, Bel-7402 cells were treated with 16 different concentrations of 12b (0, 0.45, 0.90 and 1.80 µM) for 48 h. Then stained with propidium 17 iodide (PI) for subsequent cytometry analysis. Cells treated with DMSO were used as control. As 18 shown in Fig. 4, after treatment with 0, 0.45, 0.90 and 1.80 µM 12b, the percentage of Bel-7402 19 cells at G1 phase achieved a substantial increase from 30.95% to 37.37%, 42.30% and 49.56%,

- 1 respectively. According to the results, **12b** led to a dose-dependent accumulation of Bel-7402 cells
- 2 at G1 phase.

3

Fig. 4. Influence on Bel-7402 cell cycle of 12b. After incubated with 12b (0.45, 0.90 and 1.80 μM)
or DMSO (control) for 48 h, Bel-7402 cells were stained with PI and then cell cycle distribution
was analyzed by a flow cytometer.

7 2.2.4. The morphological analysis by Hoechst 33258 staining

8 The deviant morphological changes in chromatin, including cell shrinkage, chromatin 9 condensation, the rupture of cell membrane and the nuclear fragmentation, indicate the occurrence 10 of apoptosis. Hoechst 33258 staining assay was used to indicate apoptosis by fluorescence 11 microscope [80]. As shown in Fig. 5, contrast to vehicle control, Bel-7402 cells presented bright 12 blue chromatin shrink and nuclear fragmentation after treatment with **12b** (0.45, 0.90 and 1.80

- 1 µM). While control cells remained homogeneous nuclei with deep blue color. The Hoechst 33258
- 2 staining assay revealed that **12b** could induce apoptosis in Bel-7402 cells.

3

Fig. 5. Hoechst staining of 12b treated Bel-7402 cells. After treatment with 12b (0.45, 0.90 and
1.80 μM) or vehicle for 48 h, Bel-7402 cells were stained in blue color and probed by a
fluorescent microscope.

7 2.2.5. Cell apoptosis assay

8 Apoptosis is an important biological process of programmed cell death, which maintain 9 regular functions and activities of cells. But cancer cells could grow incessantly by suppressing 10 apoptosis. Thus, utilizing chemical agents induced apoptosis in cancer cells is a potent therapeutic 11 method. In order to further confirm 12b induced apoptosis in Bel-7402 cells, an annexin 12 V-FITC/PI binding assay was performed. Bel-7402 cells were treated with 12b at indicated 13 concentrations (0, 0.45, 0.90 and 1.80 μ M), then the percentage of apoptotic cells was measured 14 by a flow cytometry. As shown in Fig. 6, after incubation with 12b for 48 h, apoptotic ratios 15 substantially rose from 2.77% of vehicle control to 17.65%, 27.47% and 55.32% for different 16 concentrations applied, respectively, in a dose-dependent manner. The results indicated that 12b 17 possessed the ability to induce apoptosis in Bel-7402 cells.

1

Fig. 6. Apoptosis effects of 12b on Bel-7402 cells. Bel-7402 cells were treated with 12b for 48 h
and analyzed via an annexin V-FITC/PI binding assay.

4 2.2.6. Mitochondria membrane potential analysis

5 The maintenance of mitochondrial membrane potentials plays an important role in 6 mitochondrial integrity and biological function. Mitochondrial changes, especially losing 7 mitochondrial membrane potentials, were significant events taking place during drug-induced 8 apoptosis. Additionally, endogenous H₂S was recognized to induce apoptosis by activating the 9 intrinsic mitochondrion-mediated pathways according to recent literatures [81]. The changes of 10 mitochondrial membrane potentials were measured via flow cytometry, in order to demonstrate 11 the influence of 12b on mitochondria. Bel-7402 cells were incubated for 48 h with different 12 concentrations of 12b (0.45, 0.90 and 1.80 μ M) and vehicle control DMSO. Then cells were 13 lipophilic treated with the cationic fluorescent probe 14 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazol-carbocyanine iodide (JC-1). As shown in Fig.

- 1 7, the percentage of cells with depolarized mitochondria ranged from 1.28% of control to 18.48%,
- 2 30.96% and 58.59% in a dose-dependent manner. This indicated that **12b** induced Bel-7402 cells
- 3 apoptosis via mitochondria related pathway.

4

Fig. 7. Influence on mitochondrial membrane potentials of 12b. Bel-7402 cells were treated with
12b for 48 h and then stained with JC-1. The changes of mitochondrial membrane potentials were
analyzed by a flow cytometry.

8 2.2.7. Effects on apoptosis-related proteins

9 In general, apoptosis can be divided into two main pathways, intrinsic (the mitochondrial) 10 pathway and extrinsic (the death receptor) pathway. Apoptosis through intrinsic pathway is 11 usually mediated by a group of apoptosis related proteins. Bcl-2 family, an important protein 12 family including Bcl-2, Bcl-xL and Bax, adjusts the mitochondrial membrane permeabization and 13 eventually leads to apoptosis. Bcl-2 protein is an antiapoptotic protein and exerts inhibitory effects

1 on proapoptotic proteins through mediating permeability transition pore. Bcl-xL protein exhibits 2 antiapoptotic effect by blocking the destruction of mitochondrial outer membrane caused by Bax. 3 In addition, it also plays an important role in cell necrosis. While Bax protein (proapoptotic 4 protein) can insert itself into mitochondrial outer membrane, uplift the permeabilization and 5 induce the mitochondria to release cytochrome c. Caspase activation is also a key event in the 6 initiation and execution of apoptosis in cells. With the releasing of cytochrome c, downstream 7 apoptotic protein caspase-9 is activated. Upon activation, caspase-9 cleaves procaspase-3 and 8 generates activated caspase-3 (cleaved caspase-3) directly, and then cleaves poly(ADP-ribose) 9 polymerase (PARP), eventually causing the execution of apoptosis. In order to find out the 10 mediative mechanism of aforementioned apoptosis related proteins behind 12b induced apoptosis 11 in Bel-7402 cells, corresponding Western blot analysis was conducted. As shown in Fig. 8, 12 treatment with 12b caused the increased expression of proapoptotic Bax, cleaved caspase-3, 13 cytochrome c and cleaved PARP and suppressed procaspase-3, PARP, Bcl-2 and Bcl-xL. The 14 results revealed that 12b induced Bel-7402 cells apoptosis via mitochondria mechanism mediated 15 by apoptotic related proteins.

17 Fig. 8. Effects of 12b on apoptosis-related proteins in Bel-7402 cells.

18 **3.** Conclusion

16

In this study, we designed and synthesized 14 H₂S-releasing derivatives. The antiproliferative
 activities of all derivatives were evaluated against four tumor and two normal cell lines. Most

1 derivatives displayed more potent antiproliferative activities than oridonin. Among them, 2 compound **12b** showed the strongest antiproliferative effects, with IC_{50} values of 1.01, 0.88, 4.36 3 and 5.21 µM against K562, Bel-7402, SGC-7901 and A549 human cancer cell lines, respectively. 4 Additionally, 12b exhibited almost 24-fold less cytotoxicity against L-02 and PBMC cell lines, 5 indicating good selectivity between cancer and normal cells. Hence, compound 12b was selected 6 for further mechanism study. The results demonstrated that the strong apoptotic effects of 12b 7 were attributed to G1 phase cell cycle arrest, collapse of mitochondrial membrane potential and 8 mediation between proapoptotic and antiapoptotic proteins through mitochondrial pathway. In 9 conclusion, 12b merits further investigation as a potential candidate for anticancer therapeutics 10 due to high efficiency and selectivity.

11 4. Experimental

12 4.1. Chemistry

13 Chemicals and solvents were commercially available. If required, further purification was 14 abided by standard methods. Oridonin was purchased from Nanjing Zelang Biology Technology 15 Co., Ltd with HPLC purity>98%. ¹H NMR and ¹³C NMR spectra were measured on a Bruker 400 16 or 600 MHz spectrometer in the indicated solvents (TMS as internal standard): the values of the 17 chemical shifts were expressed in δ (ppm) and the coupling constants (*J*) in Hz. Mass spectra were 18 recorded on an Agilent 1100 LC-MSD-Trap-SL. High resolution mass spectra (HR-MS) were 19 analyzed on Agilent Q-TOF B.05.01 (B5125.2).

20 4.1.1 General procedures to synthesize target derivatives

21 The preparation of ADT-OH was according to previous literature [82]. Oridonin (1 g, 2.76) 22 mmol) was added in 20 mL of acetone and cooled to 0 °C. Jones reagent (3.2 mL, 8.28 mmol) was 23 added dropwise and stirred at 0 °C for 0.5 h. The mixture was quenched by dropwise addition of 24 isopropyl alcohol (1 mL) and extracted with DCM (3×30 mL). The combined organic layer was 25 washed with brine, dried over anhydrous Na2SO4 and evaporated under reduced pressure to 26 produce the crude compound 2. Oridonin (182 mg, 0.50 mmol) was added into 10 mL acetone, 27 then mixed with TsOH (43.1 mg, 0.25mmol), DMAP (30.5 mg, 0.25 mmol) and 28 2,2-dimethoxypropane (1.5 mL). The mixture was refluxed for 1.5 h and then concentrated in

vacuo to get compound 4. 4 was dissolved in 5 mL DCM and mixed with 0.5 mL TEA, DMAP
(catalytic amount) and 0.75 mL Ac₂O. After stirring at room temperature for 6h, extracted with
DCM (3×30 mL), washed with brine, dried over anhydrous Na₂SO₄, and evaporated to give
compound 5. 5 was added to 10 mL of 10% HCl/THF (1:1) and the solution was stirred at room
temperature for 4 h. Through post-processed as described above, compound 6 was got.

2 (108.6 mg, 0.3 mmol) was added in 5 mL anhydrous DCM, then reacted with α-thioctic
acid (92.8 mg, 0.45 mmol) in the presence of EDCI (172.5 mg, 0.9mmol) and DMAP (7.4 mg,
0.06 mmol). The mixture was stirred at room temperature for 6 h and then extracted with DCM
(3×30 mL), washed with brine, dried over anhydrous Na₂SO₄ and evaporated in vacuo. Compound
8 was obtained by purification with flash column chromatography (MeOH/DCM 1:200, v/v).
Following the procedures described for 8, compound 13 was prepared from 5.

12 Different ent-kaurane diterpenoid derivatives (1.5 mmol) were dissolved in 5 mL anhydrous 13 DCM and reacted with the corresponding anhydride (3.0 mmol), under the condition of TEA (1.04 14 mL, 7.5 mmol) and DMAP (91.6 mg, 0.75 mmol) for 5 h at room temperature. Then extracted 15 with DCM (3×30 mL), washed with brine, dried over anhydrous Na₂SO₄ and evaporated in vacuo 16 to get intermediates 10a-c and 15a-c without further purification. Intermediates 10a-c and 15a-c 17 (0.6 mmol) were dissolved in 5 mL anhydrous DCM, reacted with ADT-OH (135.6 mg, 0.6 mmol) 18 in the presence of EDCI (345.1 mg, 1.8 mmol) and DMAP (36.6 mg, 0.3 mmol). The mixture was 19 stirred at room temperature for 6 h and then extracted with DCM (3×30 mL), washed with brine, 20 dried over anhydrous Na₂SO₄, and evaporated in vacuo. Compounds 11a-c and 16a-c were 21 acquired by purification with flash column chromatography (MeOH/DCM 1:300, v/v).

H₂S-releasing *ent*-kaurane diterpenoid derivatives 8, 11a-c, 13 and 16a-b (0.2 mmol) were
dissolved in 5 mL anhydrous THF, reacted with Pb(OAc)₄ (0.7 mmol) and Na₂CO₃ (1.6 mmol) at
room temperature for 3 h. The mixture was extracted with DCM (3×30 mL), washed with brine,
dried over anhydrous Na₂SO₄, and evaporated in vacuo to give corresponding crude products.
Spirolactone-type 6,7-*seco-ent*-kaurane derivatives 9, 12a-c, 14 and 16a-b were attained by
purification with flash column chromatography (MeOH/DCM 1:400, v/v).

28 4.1.1.1. Compound **9**. Pale yellow solid, yield: 42.1%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 9.84

(1H, d, J = 3.4 Hz, -CHO), 6.23 (1H, s, 17-CH₂), 5.95 (1H, s, 14-CH), 5.58 (1H, s, 17-CH₂), 4.82,
 4.44 (each 1H, d, J_A = J_B = 12.5 Hz, 20-CH₂), 3.14 (1H, s, 13-CH), 2.56 (2H, m, 8'-CH₂), 2.44
 (2H, m, 2-CH₂), 2.26 (2H, m, 2'-CH₂), 1.82 (1H, m, -CH₂), 1.72-1.52 (7H, m, -CH₂), 1.48-1.36
 (4H, m, -CH₂), 1.22 (3H, s, 18-CH₃), 1.20 (3H, s, 19-CH₃); ¹³C NMR (CDCl₃, 100 MHz), δ(ppm):
 209.10, 201.91, 197.82, 172.87, 166.49, 146.64, 120.85, 73.71, 67.80, 61.50, 59.57, 52.43, 44.79,
 41.63, 37.16, 36.02, 34.11, 33.54, 30.48, 29.68, 29.47, 29.30, 28.60, 27.73, 26.37, 25.81, 23.99,
 18.83; C₂₈H₃₈O₇S₂ MS (ESI) *m/z* calcd for [M+K]⁺ 587.2, found 587.3.

8 4.1.1.2. Compound **11a**. Orange red solid, yield: 26.2%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 9 7.67, 7.24 (each 2H, d, $J_A = J_B = 8.7$ Hz, Ar-H), 7.41 (1H, s, 8"-CH), 6.24 (1H, s, 17-CH₂), 6.00 10 (1H, s, 17-CH₂), 5.61 (1H, s, 7-OH), 5.42 (1H, d, *J* = 11.8 Hz, 6-OH), 4.31, 4.02 (each 1H, d, *J* = 11 10.7 Hz, 20-CH₂), 3.76 (1H, dd, J = 11.7, 8.9 Hz, 6-CH), 3.10 (1H, d, J = 9.2 Hz, 13-CH), 2.88 12 (2H, m, 2'-CH₂), 2.69 (2H, m, 3'-CH₂), 2.59-2.42 (2H, m, -CH₂), 2.38-2.29 (1H, m, -CH₂), 2.21 13 (1H, dd, J = 13.7, 4.7 Hz, -CH), 1.94 (2H, m, -CH₂), 1.77-1.58 (2H, m, -CH₂), 1.31 (1H, m, -CH₂), 1.19 (3H, s, 18-CH₃), 0.99 (3H, s, 19-CH₃); ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 215.46, 14 15 211.51, 204.87, 170.71, 170.37, 153.49, 149.44, 136.01, 129.21, 128.18 (×2), 122.88 (×2), 122.20, 16 96.85, 74.25, 73.46, 64.93, 61.38, 59.61, 50.69, 48.51, 41.50, 38.31, 35.71, 33.37, 32.84, 30.50, 17 30.06, 29.37, 29.07, 23.16, 19.19; HRMS (ESI) m/z calcd for $C_{33}H_{34}O_9S_3$ [M+Na]⁺ 693.1257, 18 found 693.1289.

19 4.1.1.3. Compound 11b. Orange red solid, yield: 29.5%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 20 7.68, 7.22 (each 2H, d, $J_A = J_B = 8.68$ Hz, Ar-H), 7.41 (1H, s, 8"-H), 6.26 (1H, s, 17-CH₂), 5.97 21 (1H, s, 17-CH₂), 5.64 (1H, s, 7-OH), 5.41 (1H, d, J = 11.76 Hz, 6-OH), 4.31, 4.03 (each 1H, d, J = 22 10.64 Hz, 20-CH₂), 3.77 (1H, dd, J = 11.5, 8.8 Hz, 6-CH), 3.10 (1H, d, J = 9.3 Hz, 13-CH), 2.65 23 (2H, td, J = 3.56, 7.4 Hz, 3'-CH₂), 2.43 (2H, t, J = 7.16 Hz, 4'-CH₂), 2.22 (1H, dd, J = 13.5, 4.4 Hz, 24 -CH), 2.03 (2H, t, J = 6.84 Hz, 2'-CH₂), 1.94 (2H, m, -CH₂), 1.78-1.60 (2H, m, -CH₂), 1.32 (1H, m, -CH₂), 1.19 (3H, s, 18-CH₃), 1.00 (3H, s, 19-CH₃); ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 215.47, 25 26 211.54, 204.85, 171.33, 170.89, 153.49, 149.48, 136.01, 129.17, 128.20 (×2), 122.92 (×2), 122.14, 27 96.90, 74.15, 73.38, 64.95, 61.35, 59.68, 53.47, 50.68, 48.53, 41.55, 38.34, 35.73, 33.28, 33.14,

32.85, 30.50, 30.05, 23.18, 19.55, 19.18; HRMS (ESI) *m*/*z* calcd for C₃₄H₃₆O₉S₃ [M+Na]⁺
 707.1414, found 707.1451.

4.1.1.4. Compound 11c. Orange red solid, yield: 31.6%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 3 4 7.98 (1H, dd, J = 7.4, 1.7 Hz, 6'-H), 7.79 (1H, dd, J = 7.4, 1.7 Hz, 3'-H), 7.75 (2H, d, J = 8.7 Hz, 5 Ar-H), 7.58 (2H, m, 4', 5'-H), 7.45 (2H, d, J = 8.7 Hz, Ar-H), 7.44 (1H, s, 8"-H), 6.08 (1H, s, 6 17-CH₂), 6.08 (1H, s, 14-CH), 5.42 (1H, s, 17-CH₂), 4.70 (1H, d, J = 10.8 Hz, 6-OH), 4.63 (1H, s, 7 14-CH), 3.85, 3.27 (each 1H, d, J = 9.6 Hz, 20-CH₂), 2.62 (1H, m, -CH₂), 2.50 (1H, m, -CH₂), 8 2.28 (1H, m, -CH₂), 1.95-1.59 (5H, m, -CH₂), 1.51 (3H, s, 18-CH₃), 1.28 (3H, s, 19-CH₃); ¹³C 9 NMR (CDCl₃, 100 MHz), δ (ppm): 215.51, 208.20, 202.90, 200.66, 171.77, 165.44, 153.90, 10 148.55, 136.06, 131.76, 131.72, 131.68, 131.01, 130.45, 129.74, 129.40, 128.62, 128.28 (×2), 11 123.05 (×2), 120.08, 93.20, 74.23, 67.62, 60.97, 58.46, 49.52, 41.04, 40.86, 36.22, 33.85, 33.40, 12 29.64, 22.70, 18.19; HRMS (ESI) m/z calcd for C₃₇H₃₄O₉S₃ [M+H]⁺ 717.1286, found 717.1288.

13 4.1.1.5. Compound 12a. Orange red solid, yield: 21.8%. ¹H NMR (CDCl₃, 600 MHz), δ (ppm): 14 9.85 (1H, d, J = 3.4 Hz, -CHO), 7.66, 7.23 (each 2H, d, $J_A = J_B = 8.6$ Hz, Ar-H), 7.40 (1H, s, 15 8"-CH), 6.24 (1H, s, 17-CH₂), 6.04 (1H, s, 14-CH), 5.59 (1H, s, 17-CH₂), 4.82, 4.48 (each 1H, d, 16 $J_{\rm A} = J_{\rm B} = 12.4$ Hz, 20-CH₂), 3.16 (1H, d, J = 7.6 Hz, 13-CH), 2.94 (1H, m, 2'-CH₂), 2.81 (1H, m, 17 2'-CH₂), 2.72 (2H, m, 3'-CH₂), 2.60 (2H, m, 2-CH₂), 2.48-2.35 (4H, m, -CH₂), 1.86 (2H, m, -CH₂), 18 1.73-1.62 (4H, m, -CH₂), 1.42 (2H, m, -CH₂), 1.25 (3H, s, 18-CH₃), 1.22 (3H, s, 19-CH₃); ¹³C 19 NMR (CDCl₃, 150 MHz), δ (ppm): 215.53, 208.90, 201.89, 197.81, 171.81, 171.63, 170.41, 20 166.62, 153.55, 146.63, 136.03, 129.19, 128.86, 128.18 (×2), 122.95 (×2), 121.31, 74.13, 67.86, 21 61.26, 59.59, 52.52, 44.88, 41.53, 37.05, 36.25, 34.18, 30.63, 29.71, 29.53, 29.04, 28.99, 25.78, 22 18.81; HRMS (ESI) m/z calcd for C₃₃H₃₂O₉S₃ [M+H]⁺ 669.1286, found 669.1299.

4.1.1.6. Compound 12b. Orange red solid, yield: 24.6%. ¹H NMR (CDCl₃, 600 MHz), δ (ppm):
9.86 (1H, d, J = 3.4 Hz, -CHO), 7.67, 7.23 (each 2H, d, J_A = J_B = 8.6 Hz, Ar-H), 7.41 (1H, s,
8"-CH), 6.25 (1H, s, 17-CH₂), 6.03 (1H, s, 14-CH), 5.59 (1H, s, 17-CH₂), 4.86, 4.48 (each 1H, d,
J_A = J_B = 12.4 Hz, 20-CH₂), 3.16 (1H, d, J = 7.3 Hz, 13-CH), 2.65 (2H, m, 3'-CH₂), 2.60 (1H, m,
2'-CH₂), 2.45 (2H, m, 4'-CH₂), 2.38 (1H, m, 2'-CH₂), 2.01 (2H, m, -CH₂), 1.85 (1H, m, -CH₂),

1.69 (4H, m, -CH₂), 1.43 (1H, m, -CH₂), 1.25 (3H, s, 18-CH₃), 1.22 (3H, s, 19-CH₃); ¹³C NMR
 (CDCl₃, 150 MHz), δ (ppm): 215.51, 209.17, 201.95, 197.81, 172.48, 171.91, 171.07, 166.64,
 153.62, 146.60, 136.00, 129.09, 128.86, 128.20 (×2), 123.03 (×2), 121.07, 73.93, 67.85, 61.46,
 59.65, 52.46, 44.85, 41.61, 37.15, 36.13, 34.14, 32.98, 32.73, 30.55, 29.49, 19.40, 18.83; HRMS
 (ESI) *m/z* calcd for C₃₄H₃₄O₉S₃ [M+H]⁺ 683.1443, found 683.1436.

6 4.1.1.7. Compound 12c. Orange red solid, yield: 14.8%. ¹H NMR (CDCl₃, 600 MHz), δ (ppm): 7 9.86 (1H, d, J = 3.4 Hz, -CHO), 7.67, 7.23 (each 2H, d, $J_A = J_B = 8.6$ Hz, Ar-H), 7.41 (1H, s, 8 8"-CH), 6.25 (1H, s, 17-CH₂), 6.03 (1H, s, 14-CH), 5.59 (1H, s, 17-CH₂), 4.86, 4.48 (each 1H, d, 9 *J*_A = *J*_B = 12.4 Hz, 20-CH₂), 3.16 (1H, d, *J* = 7.3 Hz, 13-CH), 2.65 (2H, m, 3'-CH₂), 2.60 (1H, m, 10 2'-CH₂), 2.45 (2H, m, 4'-CH₂), 2.38 (1H, m, 2'-CH₂), 1.86 (2H, m, -CH₂), 1.80-1.60 (5H, m, -CH₂), 1.44 (1H, m, -CH₂), 1.25 (3H, s, 18-CH₃), 1.22 (3H, s, 19-CH₃); ¹³C NMR (CDCl₃, 150 MHz), δ 11 12 (ppm): 215.54, 208.89, 201.81, 197.76, 171.74, 166.42, 166.16, 153.81, 146.70, 136.09, 132.37, 13 131.80, 131.49, 130.28, 129.97, 129.74, 129.43, 129.16, 128.28 (×2), 123.02 (×2), 121.37, 74.87, 14 67.86, 61.24, 59.64, 52.69, 45.16, 41.50, 37.02, 36.36, 34.18, 30.69, 29.61, 25.73, 18.80; HRMS 15 (ESI) m/z calcd for C₃₇H₃₂O₉S₃ [M+Na]⁺ 739.1106, found 739.1110.

16 4.1.1.8. Compound 13. Pale yellow solid, yield: 19.8%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 17 6.15 (1H, s, 17-CH₂), 5.80 (1H, s, 14-CH), 5.51 (1H, s, 17-CH₂), 4.63 (1H, q, *J* = 10.6 Hz, 1-CH), 18 4.26, 4.18 (each 1H, d, J = 10.6 Hz, 20-CH₂), 3.78 (1H, brs, -OH), 3.17 (1H, d, J = 9.7 Hz, 19 13-CH), 2.53 (1H, dq, J = 6.4, 12.6 Hz, 8'-CH), 2.44 (1H, dt, J = 6.4, 12.6 Hz, 8'-CH), 2.30 (3H, t, 20 J = 7.5 Hz, 2', 7'-CH, -CH₂), 1.99 (3H, s, -CH₃), 1.93-1.23 (20H, m, -CH₂), 1.12 (6H, s, 18, 21 19-CH₃); ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 206.21, 171.81, 169.87, 149.37, 120.47, 96.10, 22 76.40, 75.37, 73.77, 63.53, 61.48, 60.24, 56.21, 53.68, 41.33, 41.04, 40.21, 39.75, 38.47, 38.13, 23 34.45, 34.35, 33.58, 32.36, 30.20, 28.54, 25.17, 24.39, 21.54, 17.96; HRMS (ESI) m/z calcd for 24 $C_{30}H_{42}O_8S_2$ [M+Na]⁺ 617.2219, found 617.2204.

4.1.1.9. Compound 14. Pale yellow solid, yield: 39.1%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm):
9.79 (1H, d, J = 4.7 Hz, -CHO), 6.23 (1H, s, 17-CH₂), 5.79 (1H, s, 14-CH), 5.59 (1H, s, 17-CH₂),
5.10, 4.76 (each 1H, d, J_A = J_B = 12.5 Hz, 20-CH₂), 4.63 (1H, m, 1-CH), 2.98 (1H, d, J = 7.4 Hz,

13-CH), 2.31-2.24 (2H, m, -CH₂), 2.23 (2H, t, J = 4.4 Hz, 2'-CH₂), 2.10 (3H, s, -CH₃), 2.06 (2H,
 m, -CH₂), 1.96-1.76 (4H, m, -CH₂), 1.71-1.31 (10H, m, -CH₂), 1.21 (3H, s, 18-CH₃), 0.99 (3H, s,
 19-CH₃); ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 202.41, 196.99, 172.60, 170.37, 166.59, 146.77,
 121.45, 74.44, 72.23, 66.34, 62.68, 62.60, 61.62, 59.89, 55.42, 53.44, 45.63, 43.57, 42.16, 39.31,
 35.46, 34.01, 32.86, 29.96, 28.69, 27.75, 23.93, 23.87, 21.44, 17.45; C₃₀H₄₀O₈S₂ MS (ESI) *m/z* calcd for [M+K]⁺ 631.2, found 631.3.

7 4.1.1.10. Compound 16a. Orange red solid, yield: 18.8%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 8 7.68, 7.24 (each 2H, d, $J_A = J_B = 8.6$ Hz, Ar-H), 7.40 (1H, s, 8"-CH), 6.14 (1H, s, 17-CH₂), 6.08 9 (1H, d, J = 10.8 Hz, 6-OH), 5.93 (1H, s, 14-CH), 5.50 (1H, s, 17-CH₂), 4.63 (1H, dd, J = 11.1, 5.5 10 Hz, 1-CH), 4.30, 4.20 (each 1H, d, J_A = J_B = 10.6 Hz, 20-CH₂), 3.91 (1H, brs, -OH), 3.77 (1H, dd, 11 J = 10.3, 6.9 Hz, 6-CH), 3.14 (1H, d, J = 10.0 Hz, 13-CH), 2.90 (2H, m, 3'-CH₂), 2.72 (2H, m, 12 2'-CH₂), 2.52 (1H, m, -CH₂), 1.78 (1H, m, -CH₂), 1.48 (2H, m, -CH₂), 1.37-1.29 (4H, m, -CH₂), 1.99 (3H, s, -CH₃), 1.13 (6H, s, 18,19-CH₃); ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 215.53, 13 14 206.10, 171.57, 170.72, 170.19, 169.84, 153.45, 149.42, 136.06, 129.30, 128.17(×2), 122.84(×2), 15 120.74, 95.91, 75.78, 75.36, 74.37, 63.59, 61.71, 59.89, 53.87, 41.18, 39.79, 38.16, 33.57, 32.46, 16 30.27, 29.70, 29.41, 29.07, 25.15, 21.65, 21.52, 18.13; HRMS (ESI) m/z calcd for C₃₅H₃₈O₁₀S₃ 17 [M+Na]⁺ 737.1525, found 737.1534.

18 4.1.1.11. Compound 16b. Orange red solid, yield: 23.4%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 19 7.68, 7.22 (each 2H, d, $J_A = J_B = 8.7$ Hz, Ar-H), 7.40 (1H, s, 8"-CH), 6.17 (1H, s, 17-CH₂), 6.08 20 (1H, d, J = 10.6 Hz, 6-OH), 5.89 (1H, s, 14-CH), 5.52 (1H, s, 17-CH₂), 4.63 (1H, dd, J = 11.2, 5.6 21 Hz, 1-CH), 4.30, 4.20 (each 1H, d, J_A = J_B = 10.6 Hz, 20-CH₂), 4.09 (1H, brs, -OH), 3.78 (1H, t, J 22 = 7.7 Hz, 6-CH), 3.16 (1H, d, J = 9.9 Hz, 13-CH), 2.65 (2H, td, J = 7.3, 2.5 Hz, 3'-CH₂), 2.44 (2H, 23 t, 2'-CH₂), 2.01 (3H, s, -CH₃), 1.78 (1H, m, -CH₂), 1.48 (2H, m, -CH₂), 1.38-1.28 (4H, m, -CH₂), 24 1.13 (6H, s, 18,19-CH₃); ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 215.52, 206.11, 171.64, 171.32, 25 170.72, 169.86, 153.44, 149.43, 136.04, 129.23, 128.20(×2), 122.89(×2), 120.64, 95.98, 75.85, 26 75.36, 74.13, 63.58, 61.62, 59.97, 53.78, 41.18, 39.76, 38.13, 32.43, 30.25, 25.16, 21.61, 21.55, 27 19.59, 18.08; HRMS (ESI) m/z calcd for $C_{36}H_{40}O_{10}S_3$ [M+Na]⁺ 751.1682, found 751.1649.

1 4.1.1.12. Compound 16c. Orange red solid, yield: 13.1%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 2 7.95 (1H, m, 6'-H), 7.75, 7.43 (each 2H, d, $J_A = J_B = 8.6$ Hz, Ar-H), 7.72 (1H, m, 3'-H), 7.62 (2H, 3 m, 4'-H,5'-H), 7.40 (1H, s, 8"-H), 6.07 (1H, s, 7-OH), 6.07, 5.39 (2H, s, 17-CH₂), 4.65 (1H, m, 4 1-CH), 4.32, 4.21 (each 1H, d, J = 10.6 Hz, 20-H), 4.00 (1H, brs, -OH), 3.78 (1H, m, 6-CH), 3.37 5 (1H, d, J = 9.7 Hz, 13-CH), 2.01 (3H, s, -CH₃), 1.78 (1H, m, -CH₂), 1.49 (2H, m, -CH₂), 1.39-1.30 6 (4H, m, -CH₂), 1.13 (6H, s, 18,19-CH₃); ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 215.52, 206.12, 7 171.51, 169.85, 166.02, 164.77, 153.65, 149.41, 136.13, 132.60, 132.45, 131.53, 129.82, 129.60, 8 129.54, 129.04, 128.22 (×2), 123.03 (×2), 120.76, 96.02, 75.36, 74.22, 63.62, 61.74, 60.04, 53.94, 9 40.69, 39.82, 38.16, 33.58, 32.44, 30.26, 29.70, 25.17, 21.63, 21.57, 18.10; HRMS (ESI) m/z calcd 10 for C₃₉H₃₈O₁₀S₃ [M+Na]⁺ 785.1525, found 785.1526.

11 4.1.1.13. Compound 17a. Orange red solid, yield: 7.5%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 9.85 (1H, d, J = 3.4 Hz, -CHO), 9.79 (1H, d, J = 4.6 Hz, -CHO), 7.66, 7.23 (each 2H, d, $J_A = J_B = 3.4$ Hz, -CHO), 9.79 (1H, d, J = 4.6 Hz, -CHO), 7.66, 7.23 (each 2H, d, $J_A = J_B = 3.4$ Hz, -CHO), 9.79 (1H, d, J = 4.6 Hz, -CHO), 7.66, 7.23 (each 2H, d, $J_A = J_B = 3.4$ Hz, -CHO), 9.79 (1H, d, J = 4.6 Hz, -CHO), 7.66, 7.23 (each 2H, d, $J_A = J_B = 3.4$ Hz, -CHO), 9.79 (1H, d, J = 4.6 Hz, -CHO), 7.66, 7.23 (each 2H, d, $J_A = J_B = 3.4$ Hz, -CHO), 9.79 (1H, d, J = 4.6 Hz, -CHO), 9.79 (1H, d, J = 4.6 Hz, -CHO), 9.79 (1H, d, J = 4.6 Hz, -CHO), 9.79 (1H, d, $J_A = J_B = 3.4$ Hz, -CHO), 9.79 (1H, d, J = 4.6 Hz, -CHO), 9.79 (1H, d, $J_A = 3.4$ Hz, -CHO), 9.79 (1H, d, J = 4.6 Hz, -CHO), 9.70 (1H, d, J = 4.6 Hz, -CHO), 9. 12 13 8.7 Hz, Ar-H), 7.39 (1H, s, 8"-CH), 6.23 (1H, s, 17-CH₂), 5.81 (1H, s, 14-CH), 5.59 (1H, s, 14 17-CH₂), 5.11, 4.76 (each 1H, d, $J_A = J_B = 12.4$ Hz, 20-CH₂), 4.63 (1H, m, 1-CH), 3.02 (1H, d, J = 12.4 Hz, 3.65 (1H, m, 1-CH), 3.02 (1H, d, J = 12.4 Hz, 3.65 (1H, m, 1-CH), 3.02 (1H, d, J = 12.4 Hz, 3.65 (1H, m, 1-CH), 3.02 (1H, d, J = 12.4 Hz, 3.65 (1H, m, 1-CH), 3.02 (1H, d, J = 12.4 Hz, 3.65 (1H, m, 1-CH), 3.02 (1H, d, J = 12.4 Hz, 3.65 (1H, m, 1-CH), 3.02 (1H, d, J = 12.4 Hz, 3.65 (1H, m, 1-CH), 3.65 (1H, m 15 7.7 Hz, 13-CH), 2.93 (1H, m, 2'-CH₂), 2.82 (1H, m, 2'-CH₂), 2.73 (2H, m, 3'-CH₂), 2.33-2.23 (2H, 16 m, -CH₂), 2.10 (3H, s, -CH₃), 1.90 (2H, m, -CH₂), 1.71-1.49 (6H, m, -CH₂), 1.21 (3H, s, 18-CH₃), 1.01 (3H, s, 19-CH₃); ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 215.50, 202.31, 196.82, 171.71, 17 18 171.22, 170.40, 166.68, 153.57, 146.77, 136.01, 129.18, 128.15 (×2), 122.87 (×2), 121.87, 74.55, 19 72.59, 66.44, 62.35, 59.80, 45.69, 43.58, 41.99, 39.44, 34.04, 32.90, 29.94, 29.21 (×2), 24.09 (×2), 20 21.41, 17.53; HRMS (ESI) m/z calcd for $C_{35}H_{36}O_{10}S_3$ [M+H]⁺ 713.1549, found 713.1546.

21 *4.1.1.14. Compound* **17b.** Orange red solid, yield: 10.1%. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 22 9.80 (1H, d, J = 4.7 Hz, -CHO), 7.67, 7.22 (each 2H, d, $J_A = J_B = 8.6$ Hz, Ar-H), 7.41 (1H, s, 23 8"-CH), 6.26 (1H, s, 17-CH₂), 5.83 (1H, s, 14-CH), 5.60 (1H, s, 17-CH₂), 5.12, 4.77 (each 1H, d, 24 $J_A = J_B = 12.4$ Hz, 20-CH₂), 4.64 (1H, m, 1-CH), 3.01 (1H, d, J = 7.7 Hz, 13-CH), 2.65 (2H, m, 25 4'-CH₂), 2.45 (2H, m, 2'-CH₂), 2.28-2.22 (2H, m, -CH₂), 2.13 (1H, s, -CH₃), 2.10 (1H, d, J = 4.826 Hz, -CH), 2.03 (2H, m, 3'-CH₂), 1.22 (3H, s, 18-CH₃), 1.01 (3H, s, 19-CH₃); ¹³C NMR (CDCl₃, 27 100 MHz), δ (ppm): 215.54, 202.34, 172.13, 171.04, 170.46, 166.73, 153.62, 146.80, 136.01,

128.17 (×2), 123.00 (×2), 121.70, 74.53, 72.26, 66.40, 62.49, 59.89, 45.69, 43.59, 42.09, 39.43,
 34.04, 32.97 (×2), 29.96, 29.71, 23.93 (×2), 21.44, 19.45, 17.52; HRMS (ESI) *m/z* calcd for
 C₃₆H₃₈O₁₀S₃ [M+H]⁺ 727.1705, found 727.1703.

4 *4.2. MTT assay*

5 The antiproliferative activities were examined by the MTT assay following the method 6 described previously. All selected cell lines were incubated with target compounds for different 7 concentrations (64, 16, 4, 1, 0.25, 0.0625 and 0.015625 μM) through a standard 96-well plates. 8 After 72 h, MTT solution (20 mL, 5 mg/mL) and DMSO (150 mL/well) were added, then 9 incubated for 10 min at room temperature. After that, the absorbance (OD) data of each well at 10 490 nm wavelength were measured by a Microplate Reader (BIO-RAD). Four human cancer and 11 two normal cell lines were selected for the assay, and half inhibition rates (IC₅₀) were calculated.

12 *4.3. H*₂*S* release experiment

13 Sodium phosphate buffer was used to prepare the stock solution of Na₂S (20 mM) in 100 mL 14 volumetric flask. Aliquots of Na₂S stock solution were transferred into a 50 mL volumetric flask 15 to obtain standard solutions of 5, 10, 20, 40, 60, 80, 100 and 150 µM, respectively. 1 mL of each 16 standard solutions were added to react with the methylene blue (MB⁺) cocktail (200 μ L of 30 mM 17 FeCl₃ in 1.2M HCl, 200 µL of 20 mM N,N-dimethyl-1,4-phenylenediamine sulfate in 7.2M HCl 18 and 100 μ L of 1%w/v of Zn(OAc)₂ in H₂O) at room temperature for 20 min in a triplicate manner 19 [83]. The mixture was measured at 670 nm in UV-Vis spectrophotometer and then the Na₂S 20 calibration curve was obtained. In order to promote compounds to release H₂S, TCEP or 21 L-cysteine was used as an accelerator. All compounds were dissolved in THF solution (40 mM) 22 and added into phosphate buffer in the presence of TCEP or L-cysteine (1 mM). Then 2 mL 23 mixture was transferred to colorimetric cuvette containing methylene blue (MB⁺) cocktail in 24 designated time. After 20 min incubation, the absorbance of each compound was analyzed by 25 UV-Vis spectrophotometer at 670 nm. The H₂S concentration of each derivative was calculated 26 through standard curve.

27 *4.4. Cell cycle analysis*

28 Effects of 12b on cell cycle arrest in Bel-7402 cells were tested and DNA content of cell

nuclei was measured via flow cytometry [84]. Bel-7402 cells were incubated in 6-well plates at 37 °C for 24 h. Then **12b** was dissolved in DMSO and joined cell culture with designated concentrations in triplicate manner. While DMSO was used as control. After 48 h incubation, all cells were centrifuged and fixed with 70% ethanol at 4 °C overnight and suspended again in PBS mixed with 100 mL RNase A and 400 mL PI. Cell cycle distribution of DNA content was evaluated via flow cytometer (FACS Calibur Becton-Dickinson, Franklin Lake, NJ, USA).

7 4.5. Hoechst 333258 staining

Hoechst 33258 staining assay was used to observe the morphology change of nuclei. Bel-7402
cells were cultured in 6-well plates at 37 °C with 2 mL medium. After 24 h of incubation, 12b of
designated concentrations (0, 0.45, 0.90 and 1.80 μM) was added for another 48 h incubation.
Cells were harvested by mild trypsinization, collected by centrifugation and washed twice with
PBS. After that, 500 μL of Hoechst mixture (2 mg/mL) in PBS was added for 15 min at room
temperature in darkness in order to stain aforementioned cells. Finally, cells were washed by PBS
and assessed via a fluorescence microscope.

15 *4.6. Cell apoptosis assay*

Bel-7402 cells were treated with designated concentrations of 12b (0, 0.45, 0.90 and 1.80 μM)
for 24 h incubation in 6-well plates. Then, cells were washed twice with PBS and suspended in
annexin V binding buffer. The mixture was incubated with V-FITC and PI at room temperature
for 15 min in dark. After that, cells with double-staining were analyzed by flow cytometry to
detect apoptotic cells.

21 4.7. Mitochondrial membrane potential assay

Bel-7402 cells were cultured in 6-well plates with different concentrations of 12b (0, 0.45,
0.90 and 1.80 µM) for 48 h, then washed with PBS and stained with JC-1 at room temperature in
darkness. A flow cytometry was used to measure the number of cells with collapsed mitochondrial
membrane potentials.

26 4.8. Western blot assay

Bel-7402 cells were treated with 12b (0, 0.45, 0.90 and 1.80 μM) in triplicate for 48 h.
Following the measurement of protein level, sodium dodecyl sulfate polyacrylamide gel

electrophoresis (10% gel, SDS-PAGE) was applied to split each cell lysates, and then transferred
onto nitrocellulose membranes. Afterwards membranes were blocked with 5% of nonfat milk,
incubated with monoclonal antibodies for 12 h at 4 °C. Then washed with TBST, incubated with
appropriate second antibodies and followed by chemiluminescence detection [85]. Protein
visualization was analyzed by Keygen ECL system (KeyGEN Biotech, Nanjing, China) while
resulting images were obtained by Clinx ChemiScope chemiluminescence imaging system.
ChemiScope analysis program was used to gain relative optical densities for individual protein.

8

9 Acknowledgment

This paper was financially supported by the National Natural Science Foundation of China
(21772124, 21502121), Natural Science Foundation of Liaoning Province (20170540858),
General Scientific Research Projects of Department of Education in Liaoning Province
(2017LQN05), Key Laboratory of Quality Control of TCM of Liaoning Province (17-137-1-00)
and Career Development Support Plan for Young and Middle-aged Teachers in Shenyang
Pharmaceutical University.

16

17 References

- 18 [1] T. Rodrigues, D. Reker, P. Schneider, G. Schneider, Counting on natural products for drug design,
- 19 Nat. Chem. 8 (2016) 531-541.
- [2] D.J. Newman, G.M. Cragg, Natural products as sources of new drugs from 1981 to 2014, J. Nat.
 Prod. 79 (2016) 629-661.
- [3] J. Yang, W.G. Wang, H.Y. Wu, X. Du, X.N. Li, Y. Li, J.X. Pu, H.D. Sun, Bioactive enmein-type
 ent-kaurane diterpenoids from *Isodon phyllostachys*, J. Nat. Prod. 79 (2016) 132-140.
- 24 [4] X. Luo, J.X. Pu, W.L. Xiao, Y. Zhao, X.M. Gao, X.N. Li, H.B. Zhang, Y.Y. Wang, Y. Li, H.D. Sun,
- 25 Cytotoxic *ent*-kaurane diterpenoids from *Isodon rubescens* var. *lushiensis*, J. Nat. Prod. 73 (2010)
 26 1112-1116.
- 27 [5] S.S. Hong, S.A. Lee, X.H. Han, J.S. Hwang, C. Lee, D. Lee, J.T. Hong, Y. Kim, H. Lee, B.Y.
- 28 Hwang, ent-Kaurane diterpenoids from Isodon japonicus, J. Nat. Prod. 71 (2008) 1055-1058.

- 1 [6] J. Zou, X. Du, G. Peng, Y.M. Shi, W.G. Wang, R. Zhan, L.M. Kong, X.N. Li, Y. Li, J.X. Pu, H.D.
- 2 Sun, Ternifolide A, a new diterpenoid rossessing a rare macrolide motif from *Isodon ternifolius*, Org.
- **3** Lett. 14 (2012) 3210-3213.
- 4 [7] Q.B. Han, S. Cheung, J. Tai, C.F. Qiao, J.Z. Song, T.F. Tso, H.D. Sun, H.X. Xu, Maoecrystal Z, a
- 5 cytotoxic diterpene from *Isodon eriocalyx* with a unique skeleton, Org. Lett. 8 (2006) 4727-4730.
- 6 [8] W. Zhao, J.X. Pu, X. Du, J. Su, X.N. Li, J.H. Yang, Y.B. Xue, Y. Li, W.L. Xiao, H.D. Sun,
- 7 Structure and cytotoxicity of diterpenoids from *Isodon adenolomus*, J. Nat. Prod. 74 (2011) 1213-1220.
- 8 [9] J. Zou, L.T. Pan, Q.J. Li, J.H. Zhao, J.X. Pu, P. Yao, N.B. Gong, Y. Lu, T.P. Kondratyuk, J.M.
- 9 Pezzuto, H.H.S. Fong, H.J. Zhang, H.D. Sun, Rubesanolides A and B: diterpenoids from Isodon
- 10 *rubescens*, Org. Lett. 13 (2011) 1406-1409.
- 11 [10] W.G. Wang, X. Du, X.N. Li, H.Y. Wu, X. Liu, S.Z. Shang, R. Zhan, C.Q. Liang, L.M. Kong, Y.
- 12 Li, J.X. Pu, H.D. Sun, New Bicyclo[3.1.0]hexane unit ent-kaurane diterpene and its seco-derivative
- 13 from *Isodon eriocalyx* var. *laxiflora*, Org. Lett. 14 (2012) 1302-1305.
- 14 [11] J. Xu, J. Yang, Q. Ran, L. Wang, J. Liu, Z. Wang, X. Wu, W. Hua, S. Yuan, L. Zhang, M. Shen, Y.
- 15 Ding, Synthesis and biological evaluation of novel 1-*O* and 14-*O*-derivatives of oridonin as potential
- 16 anticancer drug candidates, Bioorg. Med. Chem. Lett. 18 (2008) 4741-4744.
- 17 [12] D. Li, L. Wang, H. Cai, Y. Zhang, J. Xu, Synthesis and biological evaluation of novel
 18 furozan-based nitric oxide-releasing derivatives of oridonin as potential anti-tumor agents, Molecules
 19 17 (2012) 7556-7568.
- [13] C.Y. Ding, Y.S. Zhang, H.J. Chen, C. Wild, T.Z. Wang, M.A. White, Q. Shen, J. Zhou,
 Overcoming synthetic challenges of oridonin A-ring structural diversification: regio- and
 stereoselective installation of azides and 1,2,3-triazoles at the C-1, C-2, or C-3 position, Org. Lett. 15
 (2013) 3718-3721.
- [14] C. Ding, Y. Zhang, H. Chen, Z. Yang, C. Wild, N. Ye, C.D. Ester, A. Xiong, M.A. White, Q. Shen,
 J. Zhou, Oridonin ring A-based diverse constructions of enone functionality: identification of novel
 dienone analogues effective for highly aggressive breast cancer by inducing apoptosis, J. Med. Chem.
 56 (2013) 8814-8825.
- 28 [15] C. Ding, Y. Zhang, H. Chen, Z. Yang, C. Wild, L. Chu, H. Liu, Q. Shen, J. Zhou, Novel
- 29 nitrogen-enriched oridonin analogues with thiazole-fused A-ring: protecting group-free synthesis,
- 30 enhanced anticancer profile, and improved aqueous solubility, J. Med. Chem. 56 (2013) 5048-5058.

- 1 [16] S. Xu, L. Pei, C. Wang, Y.K. Zhang, D. Li, H. Yao, X. Wu, Z.S. Chen, Y. Sun, J. Xu, Novel
- 2 hybrids of natural oridonin-bearing nitrogen mustards as potential anticancer drug candidates, ACS
- 3 Med. Chem. Lett. 5 (2014) 797-802.
- 4 [17] S. Xu, D. Li, L. Pei, H. Yao, C. Wang, H. Cai, H. Yao, X. Wu, J. Xu, Design, synthesis and
- 5 antimycobacterial activity evaluation of natural oridonin derivatives, Bioorg. Med. Chem. Lett. 24
- 6 (2014) 2811-2814.
- 7 [18] S. Xu, H. Yao, S. Luo, Y.K. Zhang, D.H. Yang, D. Li, G. Wang, M. Hu, Y. Qiu, X. Wu, H. Yao,
- 8 W. Xie, Z.S. Chen, J. Xu, A novel potent anticancer compound optimized from a natural oridonin
 9 scaffold induces apoptosis and cell cycle arrest through the mitochondrial pathway, J. Med. Chem. 60
- **10** (2017) 1449-1468.
- 11 [19] Y. Ding, C. Ding, N. Ye, Z. Liu, E.A. Wold, H. Chen, C. Wild, Q. Shen, J. Zhou, Discovery and
- development of natural product oridonin-inspired anticancer agents, Eur. J. Med. Chem. 122 (2016)
 102-117.
- 14 [20] D. Li, T. Han, S. Xu, T. Zhou, K. Tian, X. Hu, K. Cheng, Z. Li, H. Hua, J. Xu, Antitumor and
- antibacterial derivatives of oridonin: a main composition of Dong-Ling-Cao, Molecules 21 (2016) 575.
- 16 [21] E. Fujita, T. Fujita, H. Katayama, M. Shibuya, T. Shingu, Terpenoids. Part XV. Structure and
- 17 absolute configuration oridonin isolated from *Isodon japonicus* and *Isodon trichocarpus*, J. Chem. Soc.
- **18** C 21 (1970) 1674–1681.
- 19 [22] G.B. Zhou, H. Kang, L. Wang, L. Gao, P. Liu, J. Xie, F.X. Zhang, X.Q. Weng, Z.X. Shen, J. Chen,
- 20 L.J. Gu, M. Yan, D.E. Zhang, S.J. Chen, Z.Y. Wang, Oridonin, a diterpenoid extracted from medicinal
- 21 herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects
- 22 on t(8;21) leukemia in vitro and in vivo, Blood 109 (2007) 3441-3450.
- 23 [23] X. Qi, D. Zhang, X. Xu, F. Feng, G. Ren, Q. Chu, Q. Zhang, K. Tian, Oridonin nanosuspension
- 24 was more effective than free oridonin on G₂/M cell cycle arrest and apoptosis in the human pancreatic
- 25 cancer PANC-1 cell line, Int. J. Nanomed. 7 (2012) 1793-1804.
- 26 [24] Y. Lu, Y. Sun, J. Zhu, L. Yu, X. Jiang, J. Zhang, X. Dong, B. Ma, Q. Zhang, Oridonin exerts
- 27 anticancer effect on osteosarcoma by activating PPAR-γ and inhibiting Nrf2 pathway, Cell Death Dis.
- **28** 9 (2018) 15.

- 1 [25] Z. Yao, F. Xie, M. Li, Z. Liang, W. Xu, J. Yang, C. Liu, H. Li, H. Zhou, L.H. Qu, Oridonin
- 2 induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells, Cell
- **3** Death Dis. 8 (2017) 2633.
- 4 [26] J. Zhou, E.J. Yun, W. Chen, Y. Ding, K. Wu, B. Wang, C. Ding, E. Hernandez, J. Santoyo, R.C.
- 5 Pong, H. Chen, D. He, J. Zhou, J.T. Hsieh, Targeting 3-phosphoinositide-dependent protein kinase 1
- 6 associated with drug-resistant renal cell carcinoma using new oridonin analogs, Cell Death Dis. 8
 7 (2017) 2701.
- 8 [27] K. Qing, Z. Jin, W. Fu, W. Wang, Z. Liu, X. Li, Z. Xu, J. Li, Synergistic effect of oridonin and a
- 9 PI3K/mTOR inhibitor on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma,
- 10 J. Hematol. Oncol. 9 (2016) 72.
- 11 [28] K.E. Lazarski, B.J. Moritz, R.J. Thomson, The total synthesis of *Isodon* diterpenes, Angew. Chem.
- 12 Int. Ed. 53 (2014) 10588-10599.
- [29] A. Cernijenko, R. Risgaard, P.S. Baran, 11-Step total synthesis of (-)-Maoecrystal V, J. Am. Chem.
 Soc. 138 (2016) 9425-9428.
- 15 [30] J.T. Yeoman, V.W. Mak, S.E. Reisman, A unified strategy to *ent*-kauranoid natural products: total
- syntheses of (-)-trichorabdal A and (-)-longikaurin E, J. Am. Chem. Soc. 135 (2013) 11764-11767.
- 17 [31] J.Y. Cha, J.T. Yeoman, S.E. Reisman, A concise total synthesis of (-)-maoecrystal Z, J. Am. Chem.
- **18** Soc. 133 (2011) 14964-14967.
- 19 [32] B.J. Moritz, D.J. Mack, L. Tong, R.J. Thomson, Total synthesis of the *Isodon* diterpene
 20 sculponeatin N, Angew. Chem. Int. Ed. 53 (2014) 2988-2991.
- 21 [33] L.M. Li, G.Y. Li, J.X. Pu, W.L. Xiao, L.S. Ding, H.D. Sun, ent-Kaurane and cembrane
- diterpenoids from *Isodon sculponeatus* and their cytotoxicity, J. Nat. Prod. 72 (2009) 1851-1856.
- 23 [34] W.G. Wang, B.C. Yan, X.N. Li, X. Du, H.Y. Wu, R. Zhan, Y. Li, J.X. Pu, H.D. Sun,
- 6,7-Seco-ent-kaurane-type diterpenoids from Isodon eriocalyx var. laxiflora, Tetrahedron 70 (2014)
 7445-7453.
- 26 [35] H.D. Sun, S.X. Huang, Q.B. Han, Diterpenoids from *Isodon* species and their biological activities,
- 27 Nat. Prod. Rep. 23 (2006) 673-698.
- 28 [36] M. Liu, W.G. Wang, H.D. Sun, J.X. Pu, Diterpenoids from *Isodon* species: an update, Nat. Prod.
- **29** Rep. 34 (2017) 1090-1140.

- 1 [37] H. Li, R. Jiao, J. Mu, S. Xu, X. Li, X. Wang, Z. Li, J. Xu, H. Hua, D. Li, Bioactive natural
- 2 spirolactone-type 6,7-seco-ent-kaurane diterpenoids and synthetic derivatives, Molecules 23 (2018)
- **3** 2914.
- 4 [38] Z. Lv, B. Chen, C. Zhang, G. Liang, Total syntheses of trichorabdal A and maoecrystal Z, Chem.
- 5 Eur. J. 24 (2018) 9773-9777.
- 6 [39] T.J. Maimone, P.S. Baran, Modern synthetic efforts toward biologically active terpenes, Nat.
- 7 Chem. Biol. 3 (2007) 396-407.
- 8 [40] C. Tang, B. Wu, J. Wu, Z. Zhang, B. Yu, Novel strategies using total gastrodin and gastrodigenin,
- 9 or total gastrodigenin for quality control of gastrodia elata, Molecules 23 (2018) 270.
- [41] J. Wu, B. Wu, C. Tang, J. Zhao, Analytical techniques and pharmacokinetics of gastrodia elata
 blume and its constituents, Molecules 22 (2017) 1137.
- 12 [42] C. Tang, J. Wang, J. Yu, L. Wang, M. Cheng, W. Cui, J. Zhao, H. Xiao, Identification,
- characterization and in vitro neuroprotection of N⁶-(4-hydroxybenzyl) adenine riboside and its
 metabolites, Phytochem. Lett. 20 (2017) 146-150.
- 15 [43] B. Meka, S.R. Ravada, M. Murali Krishna Kumar, K. Purna Nagasree, T. Golakoti, Synthesis of
- new analogs of AKBA and evaluation of their anti-inflammatory activities, Bioorg. Med. Chem. 25
 (2017) 1374-1388.
- 18 [44] R. Cannalire, D. Machado, T. Felicetti, S. Santos Costa, S. Massari, G. Manfroni, M.L. Barreca, O.
- 19 Tabarrini, I. Couto, M. Viveiros, S. Sabatini, V. Cecchetti, Natural isoflavone biochanin A as a
- 20 template for the design of new and potent 3-phenylquinolone efflux inhibitors against mycobacterium
- 21 avium, Eur. J. Med. Chem. 140 (2017) 321-330.
- 22 [45] G.G. Llanos, L.M. Araujo, I.A. Jimenez, L.M. Moujir, J. Rodriguez, C. Jimenez, I.L. Bazzocchi,
- 23 Structure-based design, synthesis, and biological evaluation of withaferin A-analogues as potent
- 24 apoptotic inducers, Eur. J. Med. Chem. 140 (2017) 52-64.
- 25 [46] J. Wang, R. Ge, X. Qiu, X. Xu, L. Wei, Z. Li, J. Bian, Discovery and synthesis of novel Wogonin
- derivatives with potent antitumor activity in vitro, Eur. J. Med. Chem. 140 (2017) 421-434.
- 27 [47] T. Han, J. Li, J. Xue, H. Li, F. Xu, K. Cheng, D. Li, Z. Li, M. Gao, H. Hua, Scutellarin derivatives
- as apoptosis inducers: Design, synthesis and biological evaluation, Eur. J. Med. Chem. 135 (2017)
 270-281.
- 30 [48] B. Eignerova, M. Tichy, J. Krasulova, M. Kvasnica, L. Rarova, R. Christova, M. Urban, B.

- 1 Bednarczyk-Cwynar, M. Hajduch, J. Sarek, Synthesis and antiproliferative properties of new
- 2 hydrophilic esters of triterpenic acids, Eur. J. Med. Chem. 140 (2017) 403-420.
- 3 [49] K. Tian, F. Xu, X. Gao, T. Han, J. Li, H. Pan, L. Zang, D. Li, Z. Li, T. Uchita, M. Gao, H. Hua,
- 4 Nitric oxide-releasing derivatives of brefeldin A as potent and highly selective anticancer agents, Eur. J.
- 5 Med. Chem. 136 (2017) 131-143.
- 6 [50] L. Wang, D. Li, S. Xu, H. Cai, H. Yao, Y. Zhang, J. Jiang, J. Xu, The conversion of oridonin to
- 7 spirolactone-type or enmein-type diterpenoid: synthesis and biological evaluation of
- 8 *ent-6*,7-*seco*-oridonin derivatives as novel potential anticancer agents, Eur. J. Med. Chem. 52 (2012)
- **9** 242-250.
- 10 [51] D. Li, H. Cai, B. Jiang, G. Liu, Y. Wang, L. Wang, H. Yao, X. Wu, Y. Sun, J. Xu, Synthesis of
- spirolactone-type diterpenoid derivatives from kaurene-type oridonin with improved antiproliferative
 effects and their apoptosis-inducing activity in human hepatoma Bel-7402 cells, Eur. J. Med. Chem. 59
- **13** (2013) 322-328.
- [52] D. Li, T. Han, K. Tian, S. Tang, S. Xu, X. Hu, L. Wang, Z. Li, H. Hua, J. Xu, Novel nitric
 oxide-releasing spirolactone-type diterpenoid derivatives with in vitro synergistic anticancer activity as
 apoptosis inducer, Bioorg. Med. Chem. Lett. 26 (2016) 4191-4196.
- 17 [53] S. Xu, H. Yao, M. Hu, D. Li, Z. Zhu, W. Xie, H. Yao, L. Wu, Z.S. Chen, J. Xu,
 18 6,7-*Seco-ent*-kauranoids derived from oridonin as potential anticancer agents, J. Nat. Prod. 80 (2017)
 19 2391-2398.
- 20 [54] A.K. Steiger, S. Pardue, C.G. Kevil, M.D. Pluth, Self-immolative thiocarbamates provide access
- to triggered H₂S donors and analyte replacement fluorescent probes, J. Am. Chem. Soc. 138 (2016)
 7256-7259.
- 23 [55] G.K. Kolluru, X. Shen, S. Yuan, C.G. Kevil, Gasotransmitter heterocellular signaling, Antioxid.
- 24 Redox Signal. 26 (2017) 936-960.
- 25 [56] J.L. Wallace, R. Wang, Hydrogen sulfide-based therapeutics: Exploiting a unique but ubiquitous
- 26 gasotransmitter, Nat. Rev. Drug. Discov. 14 (2015) 329-345.
- 27 [57] C. Szabo, Gasotransmitters in cancer: From pathophysiology to experimental therapy, Nat. Rev.
- 28 Drug. Discov. 15 (2016) 185-203.
- 29 [58] M. Whiteman, S. Le Trionnaire, M. Chopra, B. Fox, J. Whatmore, Emerging role of hydrogen
- 30 sulfide in health and disease: Critical appraisal of biomarkers and pharmacological tools, Clin. Sci. 121

1 (2011) 459-488.

- 2 [59] D. Wu, J. Wang, H. Li, M. Xue, A. Ji, Y. Li, Role of hydrogen sulfide in ischemia-reperfusion
- 3 injury, Oxid. Med. Cell Longev. 2015 (2015) 1-16.
- 4 [60] L. Xiao, J.H. Dong, X. Teng, S. Jin, H.M. Xue, S.Y. Liu, Q. Guo, W. Shen, X.C. Ni, Y.M. Wu,
- 5 Hydrogen sulfide improves endothelial dysfunction in hypertension by activating peroxisome
- 6 proliferator-activated receptor delta/endothelial nitric oxide synthase signaling, J. Hypertens. 36 (2018)

7 651-665.

- 8 [61] S. Mani, A. Untereiner, L. Wu, R. Wang, Hydrogen sulfide and the pathogenesis of atherosclerosis,
- 9 Antioxid. Redox Signal. 20 (2014) 805-817.
- 10 [62] N. Sen, Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration,
- 11 J. Mol. Biol. 429 (2017) 543-561.
- 12 [63] R.N. Carter, N.M. Morton, Cysteine and hydrogen sulphide in the regulation of metabolism:
- 13 insights from genetics and pharmacology, J. Pathol. 238 (2016) 321-332.
- 14 [64] C. Szabo, A. Papapetropoulos, International union of basic and clinical pharmacology. CII:
- 15 pharmacological modulation of H₂S Levels: H₂S donors and H₂S biosynthesis inhibitors, Pharmacol.
- 16 Rev. 69 (2017) 497-564.
- 17 [65] Y.Y. Mok, M.S. Atan, C. Yoke Ping, W. Zhong Jing, M. Bhatia, S. Moochhala, P.K. Moore, Role
- 18 of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen
- 19 sulphide biosynthesis, Br. J. Pharmacol. 143 (2004) 881-889.
- 20 [66] D. Wu, M. Li, W. Tian, S. Wang, L. Cui, H. Li, H. Wang, A. Ji, Y. Li, Hydrogen sulfide acts as a
- 21 double-edged sword in human hepatocellular carcinoma cells through EGFR/ERK/MMP-2 and
- 22 PTEN/AKT signaling pathways, Sci. Rep. 7 (2017) 5134.
- 23 [67] S.S. Wang, Y.H. Chen, N. Chen, L.J. Wang, D.X. Chen, H.L. Weng, S. Dooley, H.G. Ding,
- 24 Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR
- signaling pathway, Cell Death Dis. 8 (2017) 2688.
- 26 [68] J.L. Wallace, J.G. Ferraz, M.N. Muscara, Hydrogen sulfide: an endogenous mediator of resolution
- 27 of inflammation and injury, Antioxid. Redox Signal. 17 (2012) 58-67.
- 28 [69] Y. Zhen, W. Zhang, C. Liu, J. He, Y. Lu, R. Guo, J. Feng, Y. Zhang, J. Chen, Exogenous
- 29 hydrogen sulfide promotes C6 glioma cell growth through activation of the p38
- 30 MAPK/ERK1/2-COX-2 pathways, Oncol. Rep. 34 (2015) 2413-2422.

- 1 [70] K. Kashfi, Anti-cancer activity of new designer hydrogen sulfide-donating hybrids, Antioxid.
- 2 Redox Signal. 20 (2014) 831-846.
- 3 [71] X. Hu, R. Jiao, H. Li, X. Wang, H. Lyu, X. Gao, F. Xu, Z. Li, H. Hua, D. Li, Antiproliferative
- 4 hydrogen sulfide releasing evodiamine derivatives and their apoptosis inducing properties, Eur. J. Med.
- 5 Chem. 151 (2018) 376-388.
- 6 [72] M. Li, J. Li, T. Zhang, Q. Zhao, J. Cheng, B. Liu, Z. Wang, L. Zhao, C. Wang, Syntheses,
- 7 toxicities and anti-inflammation of H₂S-donors based on non-steroidal anti-inflammatory drugs, Eur. J.
- 8 Med. Chem. 138 (2017) 51-65.
- 9 [73] L. Li, M. Whiteman, Y.Y. Guan, K.L. Neo, Y. Cheng, S.W. Lee, Y. Zhao, R. Baskar, C.H. Tan,
- 10 P.K. Moore, Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule
- 11 (GYY4137): New insights into the biology of hydrogen sulfide, Circulation 117 (2008) 2351-2360.
- 12 [74] J. Kang, A.J. Ferrell, W. Chen, D. Wang, M. Xian, Cyclic acyl disulfides and acyl selenylsulfides
- as the precursors for persulfides (RSSH), selenylsulfides (RSeSH), and hydrogen sulfide (H₂S), Org.
 Lett. 20 (2018) 852-855.
- 15 [75] J.L. Wallace, G. Caliendo, V. Santagada, G. Cirino, Markedly reduced toxicity of a hydrogen
- 16 sulphide-releasing derivative of naproxen (ATB-346), Br. J. Pharmacol. 159 (2010) 1236-1246.
- 17 [76] M. Chattopadhyay, R. Kodela, K.R. Olson, K. Kashfi, NOSH-aspirin (NBS-1120), a novel nitric
- 18 oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro
- and in a xenograft mouse model, Biochem. Biophys. Res. Commun. 419 (2012) 523-528.
- 20 [77] J.W. Elrod, J.W. Calvert, J. Morrison, J.E. Doeller, D.W. Kraus, L. Tao, X. Jiao, R. Scalia, L. Kiss,
- 21 C. Szabo, H. Kimura, C.W. Chow, D.J. Lefer, Hydrogen sulfide attenuates myocardial
- ischemia-reperfusion injury by preservation of mitochondrial function, Proc. Natl. Acad. Sci. U. S. A
 104 (2007) 15560-15565.
- [78] B. Szczesny, K. Modis, K. Yanagi, C. Coletta, S. Le Trionnaire, A. Perry, M.E. Wood, M.
 Whiteman, C. Szabo, AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular
 bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA
 integrity in oxidatively stressed endothelial cells in vitro, Nitric oxide 41 (2014) 120-130.
- 28 [79] J.M. Paquette, M. Rufiange, M. Iovu Niculita, J. Massicotte, M. Lefebvre, P. Colin, A. Telmat, M.
- 29 Ranger, Safety, tolerability and pharmacokinetics of trimebutine 3-thiocarbamoylbenzenesulfonate
- 30 (GIC-1001) in a randomized phase I integrated design study: single and multiple ascending doses and

- 1 effect of food in healthy volunteers, Clin. Ther. 36 (2014) 1650-1664.
- 2 [80] P. Qiu, S. Zhang, Y. Zhou, M. Zhu, Y. Kang, D. Chen, J. Wang, P. Zhou, W. Li, Q. Xu, R. Jin, J.
- 3 Wu, G. Liang, Synthesis and evaluation of asymmetric curcuminoid analogs as potential anticancer
- 4 agents that downregulate NF-kB activation and enhance the sensitivity of gastric cancer cell lines to
 5 irinotecan chemotherapy, Eur. J. Med. Chem. 139 (2017) 917-925.
- 6 [81] S. Ma, D. Zhong, P. Ma, G. Li, W. Hua, Y. Sun, N. Liu, L. Zhang, W. Zhang, Exogenous
- 7 Hydrogen Sulfide Ameliorates Diabetes-Associated Cognitive Decline by Regulating the
- 8 Mitochondria-Mediated Apoptotic Pathway and IL-23/IL-17 Expression in db/db Mice, Cell Physiol.
- 9 Biochem. 41 (2017) 1838-1850.
- 10 [82] F. Xu, X. Gao, H. Li, S. Xu, X. Li, X. Hu, Z. Li, J. Xu, H. Hua, D. Li, Hydrogen sulfide releasing

11 enmein-type diterpenoid derivatives as apoptosis inducers through mitochondria-related pathways,

- 12 Bioorg. Chem. 82 (2018) 192-203.
- 13 [83] Z. Bai, J. Zhang, Q. Zhang, T. Zhang, J. Li, Q. Zhao, Z. Wang, D. He, J. Cheng, J. Zhang, B. Liu,
- 14 Synthesis, toxicities and bio-activities of manganese complexes with CO and H₂S dual donors, Eur. J.
- 15 Med. Chem. 159 (2018) 339-356.
- 16 [84] X. Gao, J. Li, M. Wang, S. Xu, W. Liu, L. Zang, Z. Li, H. Hua, J. Xu, D. Li, Novel enmein-type
- 17 diterpenoid hybrids coupled with nitrogen mustards: Synthesis of promising candidates for anticancer
- 18 therapeutics, Eur. J. Med. Chem. 146 (2018) 588-598.
- 19 [85] T. Han, K. Tian, H. Pan, Y. Liu, F. Xu, Z. Li, T. Uchita, M. Gao, H. Hua, D. Li, Novel hybrids of
- 20 brefeldin A and nitrogen mustards with improved antiproliferative selectivity: Design, synthesis and
- 21 antitumor biological evaluation, Eur. J. Med. Chem. 150 (2018) 53-63.
- 22

Highlights

- •H₂S donating *ent*-kaurane and spirolactone-type derivatives were synthesized.
- •12b showed potent antiproliferative effect against Bel-7402 cells.
- $\bullet 12b$ arrested Bel-7402 cell cycle at G_1 phase and induced mitochondria dysfunction.
- •12b regulated the expression of apoptosis-related proteins.