DOI: 10.1002/ejoc.200600077

Fluorous Synthesis of Hydantoin-, Piperazinedione-, and Benzodiazepinedione-Fused Tricyclic and Tetracyclic Ring Systems

Wei Zhang,*^[a] Yimin Lu,^[a] Christine Hiu-Tung Chen,^[a] Dennis P. Curran,^[b] and Steven Geib^[b]

Keywords: Fluorous synthesis / Microwave reaction / Solid-phase extraction / Cycloaddition / Diversity-oriented synthesis

Fluorous proline derivatives generated from one-pot, threecomponent [3+2] cycloaddition of azomethine ylides are employed in different post-condensation reactions to form hydantoin-, piperazinedione-, and benzodiazepinedione-fused tricyclic and tetracyclic ring systems. High synthetic efficiency is achieved by conducting fast microwave reactions and purification by easy fluorous solid-phase extractions. Methods developed for these novel drug-like heterocyclic compounds can be applied to diversity-oriented library syntheses.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Introduction

Fluorous synthesis employs perfluoroalkyl (R_f) chains as "phase tags"^[1] to improve the efficiency of the purification of reaction mixtures.^[2] This technology shares the characteristics of solution-phase synthesis, which has a homogeneous reaction environment,^[3] easy intermediate analysis,^[4]

and good compatibility with other synthetic techniques such as microwave^[5] and multicomponent reactions.^[6] Compared with its counterpart, solid-phase synthesis, fluorous synthesis requires less development time and has the capability of exploring new reactions on the fluorous support directly.^[7] As a "beadless" synthetic technology, fluo-

Scheme 1. Fluorous synthesis of heterocycles 2-4.

- [a] Fluorous Technologies, Inc. University of Pittsburgh Applied Research Center,
 970 William Pitt Way, Pittsburgh, Pennsylvania 15238, USA
- Fax: +1-412-628-3053 E-Mail: w.zhang@fluorous.com
- [b] Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

rous synthesis has been applied to the parallel and mixture synthesis^[8] of small molecules, peptides,^[9] and oligosaccharides.^[10]

We have recently developed several methods for the synthesis of heterocyclic systems by using an orchestrated sequence of a microwave-assisted, fluorous multicomponent reaction (F-MCR) and fluorous solid-phase extraction (F-

SHORT COMMUNICATION

SPE) to speed up reactions and simplify purification.^[6,11] Reported in this paper are approaches to three novel triaza tricyclic and tetracyclic ring systems **2–4** (Scheme 1). Proline derivatives **1**, generated from one-pot, three-component [3+2] cycloaddition^[12] of azomethine ylides, are further converted to hydantoin-, piperazinedione-, and benzodiazepinedione-fused compounds **2–4**, respectively. Each of these three heterocyclic scaffolds has four stereocenters on the central pyrrolidine ring and up to four points of diversity (R¹ to R⁴). Compound **2** has ring skeleton similar to those of tricyclic thrombin inhibitors.^[13] The structure of compound **3** is partially related to diketopiperazine-based inhibitors of human hormone-sensitive lipase.^[14,15] Compound **4** contains a privileged benzodiazepine moiety which has a wide range of pharmaceutical utilities.^[16]

Results and Discussion

Preparations of fluorous amino esters 5 and one-pot, three-component 1,3-dipolar cycloaddition reactions were conducted by following established procedures.^[6a,6b] Thus a mixture of a fluorous amino ester (1.0 equiv.), a benzaldehyde (1.2 equiv.), an N-alkylmaleimide (1.5 equiv.), and Et₃N (3 equiv.) in DMF was heated under microwave irradiation at 130 °C for 20 min to afford proline derivative 1 (Scheme 2).^[17,18] Since the fluorous amino ester 5 was used as the limiting agent, only the desired product 1 was expected to be fluorous. The crude product was loaded onto a FluoroFlash cartridge. The non-fluorous components such as the unreacted aldehyde, N-alkylmaleimide, and Et₃N salt were eluted out with a fluorophobic solvent (80:20 MeOH/H₂O). Fluorous compound 1 was collected by eluting with methanol, a more fluorophilic solvent. After F-SPE purification, the purity of the product was usually >90% as determined by ¹H NMR spectroscopic analysis (Figure 1). Bicyclic prolines 1 with different R^1-R^3 substitution groups were synthesized in 75-90% yields. The stereochemistry of compound 1a was established on the basis of literature information^[17c,17g] and was confirmed by singlecrystal X-ray diffraction (Figure 2, left). There is no evidence for the racemization of amino acid 5 during the cycloaddition.

Figure 1. ¹H NMR spectroscopic analysis (in CDCl₃) of compound **1a**, before (top spectrum) and after (bottom spectrum) F-SPE.

With the key intermediates 1 in hand, we then performed post-condensation reactions to generate different heterocyclic ring systems. The reaction of 1 with a phenylisocyanate or a phenylthioisocyanate (5 equiv.) in the presence of a catalytic amount of *N*,*N*-4-dimethylaminopyridine (DMAP) in toluene gave urea or thiourea 6. After F-SPE purification, compound 6 was mixed with K₂CO₃ and heated under microwave irradiation at 100 °C for 5 min. Fluorous tag cleavage and hydantoin ring formation led to tricyclic compound 2 (Scheme 3). Four analogs of 2 were produced in 75–85% yields. After F-SPE and HPLC purification, the purities of the products were >95%. The stereochemistry of compound 2a was confirmed by single-crystal X-ray diffraction (Figure 2, right).

In the synthesis of piperazinedione-fused tricyclic compounds **3a** and **3b** (Scheme 4), direct *N*-acylation of **1a** with *a*-amino acids or *a*-amino acid chlorides were attempted, but the reactions gave products in very low yields (10-25%). Acylation of **1a** with chloroacetyl chloride followed by chlo-

Scheme 2. Synthesis of fluorous proline derivatives by one-pot, [3+2] cycloaddition of azomethine ylides. 5 (1 equiv.), aldehyde (1.2 equiv.), maleimide (1.5 equiv.). a) Et₃N (3 equiv.), DMF, microwave (130 °C, 20 min), F-SPE.

SHORT COMMUNICATION

1a (R1=Me, R2=pOMe, R3=Et)

2a (R¹=Me, R²=pOMe, R³=Et, R⁴ = H, X = O)

Figure 2. Single-crystal X-ray structures of compounds 1a and 2a.

Scheme 3. Synthesis of hydantoin-fused tricyclic compounds 2a-d. a) R⁴-PhNCX (5.0 equiv.), DMAP (0.5 equiv.), toluene, microwave (130 °C, 10 min), F-SPE. b) K₂CO₃ (2 equiv.), DMF, microwave (100 °C, 5 min), F-SPE, HPLC.

rine displacement with $BuNH_2$ or 3,5-dimethylaniline gave compounds **8a** and **8b** in 92% and 90% yields, respectively. The detag/cyclization reactions were promoted by 1,8-diazabicyclo[4.3.0]non-5-ene (DBU) under microwave irradiation at 180 °C for 15 min to give product **3a** in 45% yield. However, under the same conditions, only a very small amount of 3b (<5%) was detected from the reaction mixture by LCMS.

The syntheses of benzodiazepine-fused tricyclic compounds 4a-c were accomplished by a three-step reaction sequence (Scheme 5). *N*-acylation of 1 with 2-nitrobenzoyl chloride gave the acylation product 9. We have found that

Scheme 4. Synthesis of piperazinedione-fused tricyclic compounds 3a-b. a) ClCH₂COCl (1.5 equiv.), Et₃N (2.5 equiv.), CH₂Cl₂, 25 °C, 30 min, F-SPE. b) R⁴NH₂ (2.5 equiv.), MeOH, microwave (120 °C, 10 min), F-SPE. c) DBU (2 equiv.), MeOH-DMF, microwave (180 °C, 15 min), F-SPE, HPLC.

SHORT COMMUNICATION

Scheme 5. Synthesis of benzodiazepinedione-fused tetracyclic compounds **4a**–c. a) 2-nitrobenzoylchloride (3 equiv.), Et₃N (2 equiv.), DMF, 80 °C, 2 h, F-SPE. b) Zn dust (10 equiv.), AcOH, sonication, 25 °C, 2 h, F-SPE, 65–71%. c) DBU (2 equiv.), dioxane, microwave (130 °C, 5 min), F-SPE, HPLC.

the *N*-acylation reaction was sensitive to \mathbb{R}^1 substitution; only small \mathbb{R}^1 groups such as H and Me gave products in good yields. Compounds **9** were then treated with zinc dust in acetic acid under sonication to reduce the nitro group and form **10**. The cyclative tag cleavage of compounds **10** with DBU produced tricyclic compounds **4a–c** in 45–58% yields.

Conclusion

In summary, we have developed the synthetic routes to three triaza tricyclic and tetracyclic ring systems by using the common intermediates generated by [3+2] cycloaddition of azomethine ylides. Microwave-assisted fluorous synthesis speeds up reactions and simplifies product purification. These heterocyclic compounds with variations in ring skeleton, stereochemistry, and substitution are good candidates for diversity-oriented syntheses.

Supporting Information (see footnote on the first page of this article): General experimental procedures and analytical data for representative intermediates and all final products are provided.

Acknowledgments

This work was supported by the National Institute of General Medical Sciences SBIR Grants (2R44GM062717-02 and 2R44GM067326-02). We thank Professor Peter Wipf and Dr. John Hodges for helpful suggestions and discussions.

- [1] D. P. Curran, Angew. Chem. Int. Ed. 1998, 37, 1175–1196.
- [2] Selected reviews and monographs on fluorous synthesis: a) J. A. Gladysz, D. P. Curran, I. T. Horvath (Eds.), *Handbook of Fluorous Chemistry*, Wiley-VCH, Weinheim, 2004; b) W. Zhang, *Chem. Rev.* 2004, 104, 2531–2556; c) W. Zhang, *Curr. Opin. Drug Disc. Dev.* 2004, 7, 784–797; d) G. Pozzi, I. Shepperson, *Coord. Chem. Rev.* 2003, 242, 115–124; e) W. Zhang, *Tetrahedron* 2003, 59, 4475–4489; f) A. P. Dobbs, M. R. Kimberley, J. Fluorine Chem. 2002, 118, 3–17; g) C. C. Tzschucke, C. Markert, W. Bannwarth, S. Roller, A. Hebel, R. Haag, *Angew. Chem. Int. Ed.* 2002, 41, 3964–4000; h) L. P. Barthel-Rosa, J. A. Gladysz, *Coord. Chem. Rev.* 1999, 190–192, 587; i) I. T. Horv-

ath, Acc. Chem. Res. **1998**, 31, 641–650; j) A. Studer, S. Hadida, S. Y. Ferritto, P. Y. Kim, P. Jeger, P. Wipf, D. P. Curran, Science **1997**, 275, 823–826; k) I. T. Horvath, T. Rabai, Science **1994**, 266, 72–76.

- [3] C. H.-T. Chen, W. Zhang, Mol. Diversity 2005, 9, 353-359.
- [4] a) D. P. Curran, Synlett 2001, 1488–1496; b) D. P. Curran in Handbook of Fluorous Chemistry (Eds.: J. A. Gladysz, D. P. Curran, I. T. Horvath), Wiley-VCH, Weinheim, 2004, p. 101.
- [5] a) W. Zhang, T. Nagashima, Y. Lu, C. H.-T. Chen, *Tetrahedron Lett.* 2004, 45, 4611–4613; b) W. Zhang, C. H.-T. Chen, Y. Lu, T. Nagashima, Org. Lett. 2004, 6, 1473–1476; c) W. Zhang, Y. Lu, C. H.-T. Chen, Mol. Diversity 2003, 7, 199–202; d) K. Olofeeson, S.-Y. Kim, M. Larhed, D. P. Curran, A. Hallberg, J. Org. Chem. 1999, 64, 4539–4541; e) M. Larhed, M. Hoshino, S. Hadida, D. P. Curran, A. Hallberg, J. Org. Chem. 1997, 62, 5583–5587.
- [6] a) Y. Lu, W. Zhang, Mol. Diversity 2005, 9, 91–98; b) W. Zhang, C. H.-T. Chen, Tetrahedron Lett. 2005, 46, 1807–1810;
 c) Y. Lu, W. Zhang, QSAR Comb. Sci. 2004, 23, 827–835; d) W. Zhang, P. Tempest, Tetrahedron Lett. 2004, 45, 6757–6760.
- [7] W. Zhang, Y. Lu, S. Geib, Org. Lett. 2005, 7, 2269–2272.
- [8] Selected papers on fluorous mixture synthesis: a) Q. Zhang,
 D. P. Curran, *Chem. Eur. J.* 2005, *11*, 4866–4880; b) W. Zhang, *Arkivoc* 2004, 101–109; c) W. Zhang, Z. Luo, C. H.-T. Chen,
 D. P. Curran, *J. Am. Chem. Soc.* 2002, *124*, 10443–10450; d) Z.
 Luo, Q. Zhang, Y. Oderaotoshi, D. P. Curran, *Science* 2001, 291, 1766–1769.
- [9] a) K. Goto, T. Miura, D. Hosaka, H. Matsumoto, M. Mizuno, H.-k. Ishida, T. Inazu, *Tetrahedron* 2004, 60, 8845; b) V. Montanari, K. Kumar, J. Am. Chem. Soc. 2004, 126, 9528–9529; c) M. Mizuno, K. Goto, T. Miura, D. Hosaka, T. Inazu, Chem. Commun. 2003, 972; d) P. C. de Visser, M. van Helden, D. V. Filippov, G. A. van der Marel, J. W. Drijfhout, J. H. van Boom, D. Noortc, H. S. Overkleeft, *Tetrahedron Lett.* 2003, 44, 9013– 9016; e) D. V. Filippov, D. J. van Zoelen, S. P. Oldfield, G. A. van der Marel, H. S. Overkleeft, J. W. Drijfhout, J. H. van Boom, *Tetrahedron Lett.* 2002, 43, 7809–7812.
- [10] a) L. Manzoni, R. Castelli, Org. Lett. 2004, 6, 4195–4198; b)
 Y. Jing, X. Huang, Tetrahedron Lett. 2004, 45, 4615–4618; c)
 T. Miura, K. Goto, D. Hosaka, T. Inazu, Angew. Chem. Int. Ed. 2003, 42, 2047–2051; d) L. Manzoni, Chem. Commun.
 2003, 2930–2931; e) E. R. Palmacci, M. C. Hewitt, P. H. Seeberger, Angew. Chem. Int. Ed. 2001, 40, 4433–4437; f) D. P. Curran, R. Ferritto, Y. Hua, Tetrahedron Lett. 1998, 39, 4937–4940.
- [11] T. Nagashima, W. Zhang, J. Comb. Chem. 2004, 6, 942–949.
- [12] Recent reviews and monographs on [3+2] cycloadditions of azomethine ylides: a) I. Coldham, R. Hufton, *Chem. Rev.* 2005,

105, 2765–2809; b) K. Ruck-Braun, T. H. E. Freysoldt, F. Wierschem, Chem. Soc. Rev. 2005, 34, 507–516; c) K. Harju, J. Yli-Kauhaluoma, Mol. Diversity 2005, 9, 187–207; d) A. Padwa, W. H. Pearson (Eds.), Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, Wiley, Hoboken, 2003; e) C. Najera, J. M. Sansano, Curr. Org. Chem. 2003, 7, 1105–1150; f) M. Albers, T. Meyer, Handbook of Combinatorial Chemistry (Eds.: K. C. Nicolaou, W. Hartwig), Wiley-VCH, Weinheim, 2002, vol. 1, p. 453; g) E. J. Kantorowski, M. J. Kurt, Mol. Diversity 1996, 2, 207–216.

- [13] J. Olsen, P. Seiler, B. Wagner, H. Fisher, T. Tschopp, U. Obst-Sander, D. W. Banner, M. Kansy, K. Muller, F. Diederrich, *Org. Biomol. Chem.* 2004, *2*, 1339–1352.
- [14] D. H. Slee, A. S. Bhat, T. N. Nguyen, M. Kish, K. Lundeen, M. J. Newman, S. J. McConnell, J. Med. Chem. 2003, 46, 1120– 1122.
- [15] For related tricyclic piperazinedione ring systems, see: a) K. Furutsuka, H. Hayashi, Y. Shiono, J. Nat. Prod. 1999, 62, 315–317; b) J. M. Roe, R. A. B. Webster, A. Ganesan, Org. Lett. 2003, 5, 2825–2827; c) S. V. Ley, E. Cleator, P. R. Hewitt, Org. Biomol. Chem. 2003, 1, 3492–3494, and references therein.
- [16] a) A. Kamal, K. L. Reddy, V. Devaiah, N. Shankaraiah, D. R. Reddy, *Mini-Rev. Med. Chem.* **2006**, *6*, 53–68; b) D. A. Horton, G. T. Bourne, M. L. Smythe, *Chem. Rev.* **2003**, *103*, 893–930;

SHORT COMMUNICATION

c) A. Grieder, A. W. Thomas, *Synthesis* **2003**, 1707–1711; d) C. Boojamra, K. M. Burow, L. A. Thompson, J. A. Ellman, *J. Org. Chem.* **1997**, *62*, 1240–1256, and references cited there in.

- [17] Solid-supported [3+2] cycloaddition reactiones of azomethine ylides: a) M. Komatsu, H. Okada, T. Akaki, Y. Oderaotashi, S. Minakata, Org. Lett. 2002, 4, 3505–3508; b) A. K. Ganguly, N. Seah, V. Popov, C. H. Wang, R. Kuang, A. K. Saksena, B. N. Pramanik, T. M. Chan, A. T. McPhail, Tetrahedron Lett. 2002, 43, 8981–8983; c) H. R. Hoveyda, D. G. Hall, Org. Lett. 2001, 3, 3491–3494; d) A. G. M. Barrett, R. J. Boffey, M. U. Frederiksen, C. G. Newton, R. S. Roberts, Tetrahedron Lett. 2001, 42, 5579–5581; e) H. A. Dondas, R. Grigg, W. S. MacLachlan, D. T. MacPherson, J. Markandu, V. Sridharan, S. Suganthan, Tetrahedron Lett. 2000, 41, 967–970; f) G. Peng, A. Sohn, M. A. Gallop, J. Org. Chem. 1999, 64, 8342–8349; g) A. Bicknell, N. W. Hird, Bioorg. Med. Chem. Lett. 1996, 6, 2441–2444; h) B. C. Hamper, D. R. Dukesherer, M. S. South, Tetrahedron Lett. 1996, 37, 3671–3674; i) S. P. Hollinshead, Tetrahedron Lett. 1996, 37, 9157–9160.
- [18] Fluorous, silane-assisted [3+2] cycloaddition of azomethine ylides: M. Komatsu, H. Okada, S. Yokoi, S. Minakata, *Tetrahedron Lett.* 2003, 44, 1603–1606.

Received: January 31, 2006 Published Online: March 27, 2006