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Abstract—The preparations of DD-ribo- and LL-lyxo-phytosphingosines (1, 2) are described. Chelation-controlled addition of tetradec-
ylmagnesium bromide to pentylidene-protected DD-threitol aldehyde 6 afforded the key intermediate tetrol 7, providing the desired
LL-lyxo stereochemistry of phytosphingosine. Inversion at C4 of intermediate 7 provided the DD-ribo stereochemistry.
� 2005 Elsevier Ltd. All rights reserved.
Figure 1. Structures of DD-ribo-PHS (1), LL-lyxo-PHS (2), and their

corresponding 2-azido-3,4-O-dibenzyl intermediates 3 and 4,

respectively.
DD-ribo-Phytosphingosine (4DD-hydroxysphinganine, PHS,
1, Fig. 1) consists of a long-chain base (an aliphatic
chain, predominantly octadecyl) with a 2-amino-1,3,4-
triol head group. It is broadly distributed in fungal,
plant, and animal sphingolipids, where it forms the back-
bone of various glycosphingolipids.1 In addition to its
structural role in membranes, DD-ribo-PHS (1) has been
implicated in the regulation of cellular growth; for exam-
ple, PHS is involved in the heat stress response of yeast
cells2 and induction of apoptosis in some cancer cells.3

Amide-linked derivatives of PHS, which constitute
�30% of the total ceramide content of the outer layer
of the epidermis (stratum corneum), are important com-
ponents of the lipid architecture that make up the water
permeability barrier of human skin.4 PHS also forms the
backbone of (a) the marine glycolipid KRN7000, a li-
gand of natural killer cells (a unique class of T lympho-
cytes that produce cytokines and have many potential
therapeutic applications in disease settings),5 and (b)
the glycosylphosphatidylinositol (GPI) of the mem-
brane-anchored proteins in yeast.6

The biological significance of PHS has intensified the
interest in this lipid as a synthetic target.7 We report
here the preparation of 1 and one of its diastereomers,
LL-lyxo-PHS (2), from DD-threose synthon 68 via reaction
with tetradecylmagnesium bromide. The route also
provides a convenient access to the corresponding
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2-azido-3,4-O-dibenzyl intermediates 3 and 4, which
are useful galactosyl acceptors in the preparation of
galactosylphytoceramides.9

Scheme 1 illustrates the retrosynthetic analysis for our
syntheses of DD-ribo- and LL-lyxo-PHS (1 and 2, respec-
tively) starting with readily available DD-(�)-tartaric acid
(5). The key step is the addition of the long aliphatic
chain to aldehyde 6 under stereocontrolled conditions,
which was accomplished by a chelation-controlled Grig-
nard reaction. After the 4S-hydroxy group was pro-
tected as a benzyl ether, the acetal of the tetrol was
released to form a 1,2-diol. Regioselective azidation at
C2 was accomplished with inversion of configuration,
affording azido alcohol 4. Reduction of the azido group
and removal of the O-benzyl groups of 4 in a one-pot
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Scheme 1. Retrosynthetic plan.
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reaction gave target 2, which was characterized as its N-
Boc derivative 11. For the synthesis of 1, the requisite R
configuration at C4 was obtained by inversion of inter-
mediate 7 using the Mitsunobu reaction.

Scheme 2 outlines the synthesis of 2 from DD-tartaric acid
(5). Aldehyde 6 was prepared from DD-tartaric acid as re-
ported previously.8 Reaction of aldehyde 6 with tetradec-
ylmagnesium bromide in Et2O at 0 �C gave a 9:1
mixture of compounds 7 and 8.10 The diastereoselecti-
vity of the Grignard addition is markedly higher than
that of the reaction between aldehyde 6 and tetra-
decynyllithium in Et2O at�20 �C in the presence of ZnBr2,
which (as we reported previously) furnished the
2R,3R,4S and 2R,3R,4R diastereomers in a 3:1 ratio.8

Thus Grignard addition afforded the chelation-con-
trolled product 7,11 which was obtained in 68% yield
after purification by column chromatography (elution
with hexane/EtOAc 3:1). The configuration at C4 was
confirmed when 7 was finally converted to LL-lyxo-PHS
(2). After the hydroxy group of 7 was protected as a benzyl
ether (BnBr, NaH, catalytic n-Bu4NBr (TBAB)), selec-
tive deprotection of 9 with 5% H2SO4 provided 1,2-diol
1012 in 82% yield for the two steps. Diol 10 was con-
verted to azido alcohol 4 in a one-pot reaction.13 This
was accomplished by adding the diol to a mixture of
diisopropyl azodicarboxylate (DIAD) and Ph3P at
0 �C. After 3 h, TMSN3 was added to accomplish the
azide substitution reaction together with silylation of
the primary hydroxyl group. Hydrolysis of the silyl ether
with n-Bu4NF (TBAF) provided azido alcohol 4 in 61%
Scheme 2. Synthesis of N-Boc-LL-lyxo-phytosphingosine (11). Reagents

and conditions: (a) Ref. 8; (b) C14H29Br, Mg, BrCH2CH2Br, Et2O; (c)

BnBr, NaH, THF; (d) 5% H2SO4, MeOH; (e) (i) PPh3, DIAD, CH2Cl2,

0 �C, (ii) TMSN3, 0 �C–rt, (iii) TBAF, THF; (f) Pd(OH)2/C, H2,

MeOH; (g) Boc2O, Et3N, dioxane/H2O.
yield. Simultaneous reduction of the azido group and
hydrogenolysis of the benzyl groups in the presence of
Pearlman�s catalyst (Pd(OH)2/C) gave 2, whose amino
group was protected as carbamate 11 for ease of isola-
tion14 (78% yield for the two steps).

Scheme 3 outlines the synthesis of 1 from alcohol 7. The
configuration at C4 of compound 7 was inverted by
Mitsunobu reaction (p-nitrobenzoic acid, DIAD,
PPh3). Hydrolysis of benzoate ester 1215 with NaOMe
in methanol gave alcohol 8 (80% overall yield for the
two steps). As in the preparation of 2 (Scheme 2), the
C4 hydroxy group was protected as a benzyl ether and
the acetonide was opened by treatment with H2SO4.
After the secondary hydroxy group of diol 1416 was con-
verted to an azido group,17 the azido group was reduced
and the O-benzyl groups were deprotected to give prod-
uct 1. The amino group of 1 was protected as a N-Boc
group to give 1518 (78% yield for two steps).

In summary, short routes to LL-lyxo-PHS (2) and DD-ribo-
PHS (1) via DD-threitol acetal derivative 6 are reported
here. Coupling of tetradecylmagnesium bromide with
aldehyde 6 gave a mixture of alcohols 7 and 8 in a 9:1
ratio. After protection of the 4-hydroxy group and
deprotection of the 1,2-hydroxy groups, the 2-hydroxy
group was converted to an azido group with inversion
of configuration. Hydrogenolysis gave LL-lyxo-PHS (2).
For the synthesis of DD-ribo-PHS (1), a Mitsunobu reac-
tion was used to invert the requisite configuration of the
third chiral center.
Scheme 3. Synthesis of N-Boc-DD-ribo-phytosphingosine (15). Reagents

and conditions: (a) DIAD, PPh3, p-nitrobenzoic acid, CH2Cl2; (b)

NaOMe, MeOH; (c) BnBr, NaH, THF; (d) 5% H2SO4, MeOH; (e) (i)

PPh3, DIAD, CH2Cl2, 0 �C, (ii) TMSN3, 0 �C–rt, (iii) TBAF, THF; (f)

Pd(OH)2/C, H2, MeOH; (g) Boc2O, Et3N, dioxane/H2O.
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