2-(1-Benzotriazolyl)pyridine: A Robust Bidentate Ligand for the Palladium-Catalyzed C-C (Suzuki, Heck, Fujiwara–Moritani, Sonogashira), C-N and C-S Coupling Reactions

Akhilesh K. Verma,^{a,*} Rajeev R. Jha,^a Ritu Chaudhary,^a Rakesh K. Tiwari,^b and Abhinandan K. Danodia^a

^a Department of Chemistry, University of Delhi, Delhi – 110007, India E-mail: averma@acbr.du.ac.in

Received: July 4, 2012; Revised: October 15, 2012; Published online: February 1, 2013

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201200583.

Abstract: A new class of bidentate ligand, 1-(pyridine-2-yl)-1*H*-benzo[*d*][1,2,3]triazole has been designed and employed for the palladium-catalyzed C–C (Suzuki, Heck, Fujiwara–Moritani, and Sonogashira), C–N and C–S coupling reactions. The ligand was found to be inexpensive, thermally stable, easy to synthesize from easily accessible starting materials on a multigram scale, show simplicity in use, and robustness in application, making this ligand effective

Introduction

ليبر ا

> Transition metal-catalyzed carbon-carbon, carbon-nitrogen, and carbon-sulfur bond formating reactions are among the most important processes in chemistry, because they provide key steps in the construction of various organic substrates, complex bioactive molecules, agrochemicals, natural products and pharmaceutically viable molecules.^[1] In 2010, the Nobel Prize in Chemistry awarded to Heck, Negishi, and Suzuki for their work on cross-coupling reactions emphasized the importance of palladium in organic synthesis.^[2] Among all the metals, palladium has emerged as a powerful tool^[3] and allows a wide range of chemically distinct partners to sustain synthetic transformations like C-H functionalization, alkylation, alkynylation, alkenylation, benzylation and a variety of arylation reactions efficiently.^[4]

> Up to the 1990s, triphenylphosphine was used as a ligand^[5] in most of the palladium-catalyzed reactions, and thereafter wide varieties of ligands have been designed to carry out these reactions efficiently under mild reaction conditions.^[6] In spite of the tremendous utility of these ligands in palladium-catalyzed organic synthesis, they suffered from several

for different coupling reactions. Suitably, the donor ability of the N=N bond of the benzotriazole ring and lone pair of electrons on the N of the pyridine ring enhance the bidentate ability of the ligand.

Keywords: benzotriazoles; Fujiwara–Moritani reaction; Heck reaction; N-arylation; S-arylation; Sonogashira coupling; Suzuki coupling

drawbacks, e.g., various phosphine ligands are expensive, air sensitive,^[7] and prone to degrade at high temperatures. Many other phosphine-free palladium complexes like N-heterocyclic carbenes,^[8-11] carbocyclic carbenes,^[12] imines,^[13] ureas,^[14] thioureas^[15] and selenides^[16] have emerged as an alternative for these coupling reactions. To the best of our knowledge, the so far known ligands reported in the literatureare limited for a few coupling reactions. Thus, the development of an inexpensive, broadly applicable and robust catalytic system to generate a variety of C(aryl)–C, C(aryl)–N and C(aryl)–S bonds is paramount and challenging.

The mild reaction conditions of these coupling reactions offer significant advantages over traditional methods, which require either activated molecules or harsh reaction conditions. Recently, significant developments in the Suzuki coupling reaction^[17] and N-arylation of aryl halides, have been reported by Buchwald^[18] and Hartwig.^[19] The stereoelectronic effects and the bite angle^[20] of the N,N bidentate ligands are significant factors for the coupling reactions. Designed benzotriazole-based ligands are easy to prepare and are thermally and air stable. Suitably, the donor ability of the N=N bond of the benzotriazole ring and

^b Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, RI 02881, USA

lone pair of electrons on the N of the pyridine ring enhance the bidentate ability of the ligand.

Katritzky's group has extensively explored benzotriazole as a synthetic auxiliary due to its incredible properties.^[21] The designed ligand L4 was suppose to provide a compelling variation to the theme of NN bidentate ligand,^[22] since benzotriazole and pyridine can provide electrons for the formation of a complex with metals. Benzotriazole possesses, both electrondonor as well as electron-acceptor properties with respect to the group attached to it.^[21] In view of the above facts, and our recent success on the coupling reactions using benzotriazole as a ligand^[23,24] we were motivated for the design of a more efficient and practical ligand for the palladium-catalyzed coupling reactions (Scheme 1). Herein for the first time, we are reporting 1-(pyridine-2-yl)-1*H*-benzo[*d*][1,2,3]triazole (L4)^[25] as a robust, phosphine-free, inexpensive and air stable bidentate ligand for the palladium-catalyzed Suzuki, Heck, Fujiwara-Moritani, Sonogashira, Buchwald-Hartwig (C-N), and C-S coupling reactions (Scheme 2). The designed ligand L4 could be synthesized on a multigram scale by the reaction of inexpensive and readily available benzotriazole and 2-bromopyridine under copper catalysis in 96% yield.^[21,23,24b] It is essential to note that the ligand is air stable and thermally stable up to 274.7 °C.^[36,25]

Scheme 1. Ligands **L1–L4**, designed for various palladiumcatalyzed coupling reactions.

Results and Discussion

The Suzuki coupling reaction represents one of the most synthetically valuable methods for the synthesis of biaryl derivatives.^[17] This reaction has been successfully applied for the synthesis of complex and biologically important natural and synthetic compounds.^[26] A search of the literature revealed that the coupling of hindered substrates has been less studied and needs to be explored.^[27] Thus, we initiated our study with the sterically hindered 2,4,6-trimethoxyphenylboronic acid (2a). To identify the optimal reaction conditions for the reaction, we examined the reaction of 4-bromotoluene (1a) with boronic acid 2a, using 3 mol% of Pd(OAc)₂, 6 mol% of ligand L1 and 2.0 equiv. of K_2CO_3 in 2.0 mL of DMF/H₂O (4:1) at 25°C. Using above reaction conditions, product 3a was obtained in only 8% yield (Table 1, entry 1). Increasing the catalyst loading from 3 to 5 mol% and ligand L1 from 5 to 10 mol% afoorded the desired coupling product **3a** in 42% yield (entry 2). The yield of the product remained the same after 12 h (entry 3). Reaction with ligands L2 and L3 provided the coupling product 3a in 50 and 58% yields, respectively, after 12 h (entries 4 and 5). Fortunately, when ligand L4 was used, it afforded the desired coupling product 3a in 93% yield (entry 6). With a selective ligand in hand, other parameters like time, base and solvent were investigated.

The progress of the reaction was monitored at different time intervals at room temperature. After 1 h, coupling product **3a** was obtained in 75% yield (entry 7), and similarly we observed that the reaction was completed after 2 h (entry 8). Decreasing the catalyst loading from 5 to 2 mol% and then to 1 mol%, did not affect the yield of the coupling product **3a** (entries 9 and 10). However, further decreasing the catalyst loading from 1 mol% to 0.8 and then 0.5 mol%, afforded the coupling product in 63 and 52% yields, respectively (entries 11 and 12). Decreas-

Scheme 2. The applications of ligand L4 in various coupling reactions.

422 asc.wiley-vch.de

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 1. Optimization of the reaction conditions for the Suzuki coupling. $^{[a]}$

Br	B(OH) ₂		OMe
	MeO	Me Pd cat/L	
	+	solvent, base	MeO
Me	 OMe		OMe
1a	2a		3a
	24		

Entry	Pd. cat. (mol%)	L [mol%]	Time [h]	Yield [%] ^[b]
1	$Pd(OAc)_2(3)$	L1 (6)	02	8
2	$Pd(OAc)_2(5)$	L1 (10)	02	42
3	$Pd(OAc)_2(5)$	L1 (10)	12	42
4	$Pd(OAc)_2(5)$	L2 (5)	12	50
5	$Pd(OAc)_2(5)$	L3 (5)	12	58
6	$Pd(OAc)_2(5)$	L4 (5)	12	93
7	$Pd(OAc)_2(5)$	L4 (5)	01	75
8	$Pd(OAc)_2(5)$	L4 (5)	02	93
9	$Pd(OAc)_2(2)$	L4 (2)	02	93
10	$Pd(OAc)_2(1)$	L4 (1)	02	93
11	$Pd(OAc)_2$ (0.8)	L4 (0.8)	02	63
12	$Pd(OAc)_2(0.5)$	L4 (0.5)	02	52
13	$Pd(OAc)_2(1)$	L4 (1)	02	70 ^[c]
14	$Pd(OAc)_2(1)$	L4 (1)	02	78 ^[d]
15	$Pd(OAc)_2(1)$	L4 (1)	02	80 ^[e]
16	$Pd(OAc)_2(1)$	L4 (1)	02	79 ^{[f (])}
17	$Pd(OAc)_2(1)$	L4 (1)	02	73 ^{g]}
18	$Pd(OAc)_2(1)$	L4 (1)	02	78 ^{h]}
19	$Pd_{2}(dba)_{3}(1)$	L4 (1)	02	85
20	$PdCl_{2}(1)$	L4 (1)	02	60
21	$Pd(OAc)_2(1)$	L4 (2)	02	93
22	$Pd(OAc)_2(1)$	-	06	05

^[a] Unless otherwise specified, all reactions were performed with 1a (1.0 mmol), 2a (1.2 equiv.), and base K₂CO₃ (2.0 equiv.) in solvent (2.0 mL).

^[b] Isolated yields.

^[c] Using 1.5 equiv. K_2CO_3 .

^[d] Using 2.0 equiv. Na₂CO₃.

^[e] Using 2.0 equiv. Cs₂CO₃.

- ^[f] Using toluene: H_2O (9:1).
- ^[g] Using DME: H_2O (4:1).
- ^[h] Using DMSO: H_2O (9:1).

ing the amount of base from 2.0 to 1.5 equiv. afforded the product **3a** in lower yield (entry 13). Other bases like Na₂CO₃ and Cs₂CO₃ were found to be inferior for the reaction (entries 14 and 15). Amongst the different solvent systems, DMF/H₂O (4:1) was found to be most efficient (entries 10, 16–18). Other palladium sources like PdCl₂, Pd₂(dba)₃ were found to be less effective (entries 19 and 20). On changing the catalyst system by increasing the ligand from 1 mol% to 2 mol%, the yield of the product remained the same (entry 21). In the control experiment, a trace amount of coupling product was obtained in the absence of ligand (entry 22).

Under the optimized conditions (Table 1, entry 10), we examined the scope and generality of the reaction

by utilizing variety of aryl halides **1a-h** and boronic acids 2a-k (Table 2). The reaction tolerates various functional groups attached at different positions of the boronic acids $2\mathbf{a}-\mathbf{k}$ that could be useful for later modifications (Table 2, entries 1-14). The reaction of 5-bromoindole 1b with boronic acids 2b and 2c afforded the coupling products 3b and 3c in 71 and 73% yields, respectively (entries 2 and 3). Reactions with a less hindered substituent on the boronic acid afforded the coupling products 3d-f in higher yields (entries 4-6). Coupling of aryl halide 1c with 4-vinylphenylboronic acid (2f), afforded the product 3g chemoselectively in 92% yield, no Heck coupling product was observed in this reaction (entry 7). Reaction of 1,4-dibromo-2,5-diiodobenzene (1d) with p-tolylboronic acid (2g) provided the coupling products 3h selectively in 83% yield (entry 8). It was observed that the reaction of hindered 1,2,3,4-tetrabromothiophene (1e) with 4.5 equiv. of 2h furnished the tetrasubstituted coupling product **3i** in 80% yield (entry 9). The reaction conditions were also found to be compatible with sterically hindered heteroarenes with the core nucleus present either in many alkaloids or having a wide range of biological activities.^[28] The 4iodopyrano[4,3-*b*]quinoline (**1f**) and 4-(4bromophenyl)pyrrolo[1,2-a]quinoxaline (1g) on reaction with boronic acids 2i, 2h and 2j provided the corresponding coupling products 3j-l in 79, 83 and 88% yields, respectively (entries 10-12). Fortunately we were pleased to see that one of the most influential phase-II anticancer drugs, 9-bromonoscapine^[29] **1h**, on coupling with boronic acids 2k and 2g afforded the products 3m and 3n in 65 and 72% yields, respectively (entries 13 and 14).

The Heck reaction is another synthetically valuable C–C bond forming reaction used for the synthesis of a wide variety of natural products and biologically active compounds.^[30] With the success of designed ligand **L4** in a wide variety of Suzuki coupling reaction, we next optimized suitable conditions for the Heck reaction.^[25]

The coupling of 1.0 mmol of 4-bromoanisole (1i) with 1.5 equiv. of n-butyl acrylate (4a), by using 3 mol% Pd(OAc)₂, 3 mol% ligand L4, and 2.0 equiv. of K₂CO₃ in 2.0 mL of DMF at 120 °C for 10 h, afforded the desired product 5a in 94% yield (Table 3, entry 1). To establish the scope of the ligand, various olefins and substituted aryl halides were used. Reactions of acrylates 4a, 4c, 4d, acrylonitrile 4f, styrene 4b and alkenes 4e, 4g with a variety of aryl halides afforded the corresponding coupling products 5a-j in good to excellent yields (entries 1-10). Aryl halide 1j provided the coupling product 5b in 90% yield (entry 2). The ortho-substituted aryl halide 1k provided the desired product 5c in 82% yield (entry 3). The reaction conditions were also found to be compatible with base sensitive, 4-iodopyrano[4,3-b]quinoline 11,

FULL PAPERS

Entry	ArX	Boronic acid	Product	Yield [%] ^[b]
1	Me — Br 1a	MeO B(OH) ₂ 2a	MeO Me Me 3a	93/83 ^[c]
2	Br H 1b	B(OH) ₂ N H 2b	H 3b H	71 ^[d]
3	1b	Me N ^{Me} B(OH) ₂ 2c	Me Me ^N Me ^N	73 ^[d]
4	1a	(HO) ₂ B	Me State Sta	89
5	NO ₂ Ic	2d	NO ₂ 3e	91/86 ^[c]
6	1a	(HO) ₂ B 2e	Me 3f	90
7	1c	CH ₂ B(OH) ₂ 2f	CH ₂ NO ₂ 3g Me	92
8	Br Br Id	B(OH) ₂ Me 2g	Br Br	83 ^[e]

Table 2.	Suzuki-cou	oling of	arvl/heteroar	vl halides wi	th boronic	acids u	sing ligand l	[4 . ^[a]
Lable 2.	Suzuki cou	Jung Or	ur y l/ neterour	yi manaes wi	in obrome	ucius u	ising ngana i	

424 asc.wiley-vch.de

3h

Table 2. (Continued)

Entry	ArX	Boronic acid	Product	Yield [%] ^[b]
9	Br Br Br S Br 1e	B(OH) ₂ OMe 2h	MeO MeO S Ji	80 ^[e]
10	$ \begin{array}{c} $	B(OH) ₂ Lt 2i	HeO 3j	79 ^[d]
11	N N N Br Br	2h	OMe N N 3k	83 ^[d]
12	1g	B(OH) ₂ SMe 2j	SMe N N N SI	88 ^[d]
13	Br OH OMe MeO OMe MeO OMe	B(OH) ₂	MeO MeO MeO MeO MeO MeO MeO MeO MeO MeO	65 ^[f]
14	1h	2g	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & $	72 ^[f]

Adv. Synth. Catal. 2013, 355, 421-438

@ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

FULL PAPERS

^[a] Unless otherwise specified, all reactions were performed with aryl halide **1** (1.0 mmol), boronic acids **2** (1.2 equiv.), $Pd(OAc)_2$ (1.0 mol%), **L4** (1 mol%), and K_2CO_3 (2.0 equiv.) in DMF/H₂O at 25 °C for 2-4 h.

- ^[c] Using 5 mol% of Pd(OAc)₂, 10 mol% of L1, and 2 equiv. K_2CO_3 in DMF/water (4:1) at 80 °C for 2 h.
- ^[d] At 25° C for 6 h.
- ^[e] Using 2.2 equiv. of **2g** and 4.5 equiv. of **2h** for 6 h.

^[f] Using 5 mol% of Pd(OAc)₂, 5 mol% of L4, and 2 equiv. Cs_2CO_3 in DME/water (1:1) at 80 °C for 6 h.

 Table 3. Heck reaction aryl/heteroaryl halides with alkenes/acrylates using ligand L4.^[a]

Entry	ArX	Alkene	Product	Yield [%] ^[b]
1	MeO- Ti	OBu-n O 4a	MeO-	94
2	⟨Br 1j	4a	OnBu OnBu	90
3	OMe Br 1k	₩	OMe 5c	82
4	OMe OMe Me 11	OMe o 4c	OMe O N Me O O	77
5	1g	OEt O 4d	OEt N	85 ^[c]
6	1g	4c	OMe OMe	84 ^[c]
7	MeOC Br	4a	H ₃ COC 5g	91
8	1a	0 	Me - C - C - C - C - C - C - C - C - C -	68 ^[d]
9	1i	≪⊃CN 4f	H ₃ CO Si	89
10	1a	4g	Me 5j	76

^[a] Unless otherwise specified, all reactions were performed with aryl halide 1 (1.0 mmol), olefin 4 (1.5 equiv.), $Pd(OAc)_2$ (3.0 mol%), L4 (3.0 mol%), K₂CO₃ (2.0 equiv.) in 3.0 mL of DMF at 120 °C for 8–10 h.

^[c] Using 5 mol% Pd(OAc)₂, 5 mol% ligand L4, and 2 equiv. of K₃PO₄.

^[d] Using 3 equiv. of KF.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

^[b] Isolated yields.

^[b] Isolated yields.

and furnished the coupling product **5d** in 77% yield (entry 4). Quinoxaline derivative **1g** on reaction with acrylates **4d** and **4c** using K_3PO_4 afforded the corresponding coupling product **5e** and **5f** in 85% and 84% yields, respectively (entries 5 and 6). Reaction of aryl halide **1m** bearing an electron-withdrawing keto group with acrylate **4a**, afforded the alkenylated product **5g** in 91% yield (entry 7). Coupling of **1a** with 2-cyclopenten-1-one (**4e**) was also found to be compatible, and afforded the desired product **5h** in 68% yield (entry 8). The reaction of **1i** with acrylonitrile (**4f**) afforded the desired product **5i** in 89% yield (entry 9). Interestingly, coupling of aryl halide **1a** with 4,5-dihydro-1,3-dioxepine (**4g**) provided the desired coupling product **5j** in 76% yield (entry 10).

The efficacy of ligand L4 was further extended for the oxidative-Heck (Fujiwara–Moritani)^[25,31] coupling reaction between indoles and alkenes. Reaction of substituted indoles (**6a**, **6b** and **1b**) with 1.5 equiv. of alkene **4a**, **4b**, **4c**, using 2 mol% Pd(OAc)₂, 2 mol% of ligand L4, and 2.0 equiv. Cu(OAc)₂ as oxidant in 2.0 mL of DMF:DMSO (4:1) at 120 °C for 12 h afforded the alkenylated products **7a–f** regioselectively at the 3-position of the indole in 70–80% yields (Table 4, entries 1–6). It is interesting to note that the reaction of 5-bromoindole (**1b**) with alkene **4c** afforded the Fujiwara–Moritani coupling product **7b** regioselectively at the 3-position of the indole in 70% yield, no Heck coupling product was observed at the 5-position of indole (entry 2).

During the last decade, the Sonogashira reaction has become one of the most widely used methods for the incorporation of an alkyne functionality into organic compounds.^[32] A wide variety of natural products, pharmaceuticals, agriculture chemicals, organic materials was synthesized by using the Sonogashira coupling reaction. After attaining successful results in Suzuki, Heck and Fujiwara-Moritani coupling reactions, we next checked the efficacy and versatility of the ligand L4 in the Sonogashira coupling reaction.^[4b] The coupling of aryl bromide 1i with alkyne 8a was used as a test reaction. After exploring a wide range of conditions,^[25] we found that coupling product 9a was obtained in 90% yield using 2 mol% Pd(OAc)₂, 2 mol% L4, and 2 equiv. K_2CO_3 in 2 mL of DMF at 100°C for 1 h without any homocoupling of the alkyne (Table 5, entry 1). Reactions proceeded well with *ortho*-substituted halide **1k** (entry 2). Alkyne **8c** bearing an electron-rich thiophene ring, proved favourable for the reaction (entries 3 and 4). 1,4-Dibromo-2,5-diiodobenzene 1d, and 2,3,4,5-tetrabromothiophene 1e afforded the coupling products 9e and 9f selectively in 73% and 80% yields (entries 5 and 6). Thiophene halide 1e, on coupling with 8c, afforded the tetra-alkynylated coupling product 9g in 60% yields (entry 7). Compounds 9e, 9f and 9g are useful synthetic intermediate and can be further used for

Advanced > Synthesis &

Catalysis

[a] All the reactions were performed using an N-heterocycle 6 (1.0 mmol) and olefin 4 (1.5 equiv.), Pd(OAc)₂ (2 mol%), Cu(OAc)₂ (2 equiv.) and L4 (2 mol%) in 2.0 mL of DMF:DMSO (4:1) at 120 °C for 12 h.

^[b] Isolated yield.

metal-catalyzed tandem reactions $^{\left[23a,b\right] }$ and Bergman cyclizations. $^{\left[33\right] }$

The obtained successful results in various palladium-catalyzed C–C coupling reactions (Suzuki, Heck, Fujiwara–Moritani and Sonogashira), encouraged us to expand the applicability of the ligand L4 for other important class of C–N^[23c,d,34] and C–S^[23e,34] coupling reactions. Coupling of N-heterocycle **6a** with aryl halides **1k** and **1n** under optimized reaction conditions^[25] provided the desired cross-coupling products **10a** and **10b** in 78 and 67% yields, respectively (Table 6, entries 1 and 2). Electron-rich 3-methylindole (**6c**), 2methylindole (**6d**) and pyrrole (**6e**) on reaction with halides **1a**, **1p** and **1i** afforded the *N*-arylated products **10c–f** in 73–77% yields (entries 3–6). Reaction of 4Table 5. Sonogashira coupling using ligand L4.^[a]

Entry	ArX	Alkyne	Product	Yield [%] ^[b]
1	1i	Me-	MeO-	90
2	1k	su Sb	OMe 9b	77
3	N Br In	S 8c	$ \begin{array}{c} & & \\ & & $	81
4		8c	Me N S 9d	75
5	1d	Et-	Br Br Br Br	73 ^[c]
6	1e	8d	Et Br Br Et	80 ^[c]
7	1e	8c	s s g	60 ^[d]

^[a] Unless otherwise specified, all reactions were carried out using aryl halide **1** (1.0 mmol), alkyne **8** (1.2 equiv.), $Pd(OAc)_2$ (2.0 mol%), **L4** (2.0 mol%), K₂CO₃ (2.0 equiv.) in DMF (2.0 mL) at 100 °C for 1–2 h.

^[b] Isolated yield.

^[c] Using alkyne (2 equiv.), K_2CO_3 (4 equiv.), $Pd(OAc)_2$ (2 mol%), and L4 (2 mol%).

^[d] Using 8c (4 equiv.), K₂CO₃ (8 equiv.), Pd(OAc)₂ (5 mol%), and L4 (5 mol%).

methoxyaniline (6f) afforded the coupling product in 53% yield using 10 mol% L4 and 10 mol% $Pd(OAc)_2$ (entry 7).

We next investigated the application of ligand L4 in the coupling of aryl thiols with aryl bromides. The coupling of aryl bromide 1i with thiophenol 11a was used as a test reaction. After screening a wide range of conditions,^[25] we found that coupling product 12a was obtained in 94% yield using 1 mol% Pd(OAc)₂, 1 mol% L4, 1.4 equiv. KO-*t*-Bu in 2.0 mL of DMSO at 100 °C for 12 h (Table 7, entry 1). Aryl halides 1q and **1r** with an *ortho*-substituted electron-donating group afforded *S*-arylated product **12b** and **12c** in 93 and 92% yields, respectively (entries 2 and 3). Perbromothiophene **1e** provided the tetra-*S*-arylated and highly crowded product 2,3,4,5-[tetrakis(4-methoxyphenyl)thio]thiophene **12d** in 83% yield (entry 4). Aryl halide **1k** on reaction with 2-methylbenzenethiol (**11d**) afforded the product **12e** in 87% yield (entry 5). Coupling of octanethiol (**11e**) with electron-rich aryl halide **1i** provided the desired couple product **12f** in 67% yield (entry 6).

6a 6a	1k	MeO N 10a Br	78
6a		Br	
	1n		67
Me NH 6c	1a		77
6c	Br 1p	Me N 10d	74
Me	1i	Me N-OMe 10e	73
N H 6e	1р	Br N N 10f	74
OMe NH ₂ 6f	li		53 ^[c]
	$ \begin{array}{c} & Me \\ & & Gc \end{array} \\ \mathbf{6c} \\ \mathbf{6c} \\ & & Gc \\ & & & Gc \\ & & Gc \\ & & & Gc \\ & & Gc \\ & & & & & Gc \\ & & & & & Gc \\ & & & & & & Gc \\ & & & & & Gc \\ & & & & & & Gc \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & $	$\begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 6. N-Arylation of indoles, pyrrole and aniline with aryl halides using ligand L4.^[a]

[a] All the reactions were performed with an N-heterocycle 6 (1.0 mmol), aryl or heteroaryl halide 1 (1.2 equiv.), Pd(OAc)₂ (5.0 mol%), L4 (5.0 mol%), and KO-t-Bu (2.0 equiv.), in DMSO (2.0 mL) at 120 °C for 24 h. [b]

Isolated vields.

^[c] Using $Pd(OAc)_2$ (10.0 mol%), L4 (10.0 mol%).

Conclusions

In conclusion, we have designed an affordable and robust N,N-type bidentate ligand 1-(pyridine-2-yl)-1*H*-benzo[*d*][1,2,3]triazole (**L4**) for the palladium-catalyzed coupling reactions. Developed ligand L4 efficiently catalyzed the C-C (Suzuki, Heck, Fujiwara-Moritani, and Sonogashira), C-N and C-S coupling reaction. Noteworthy is the efficacy of ligand L4 to tolerate a variety of functional groups attached to reactants as well as simplicity, low cost and ready accessibility of ligand on a multigram scale. This ligand is expected to find applications in organic synthesis in general and in the synthesis of a variety of heterocycles as well as in material science. Furthermore, studies on the practical applications of such cross-coupling reactions are in progress within the group.

Experimental Section

General Methods

All the reactions were performed in oven-dried Schlenks flask under an argon atmosphere. Column chromatography was performed using silica gel (100-200 mesh). Thin layer chromatography (TLC) was performed on silica gel GF254 plates. ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz or 400 and 100 MHz, respectively. Thin-layer chro-

Entry	ArX	Thiol	Product	Yield [%] ^[b]
1	1i	Me SH	Me OMe	94
2	Me Br	SH J 11b	S Me 12b	93
3	N= ↓ 1r	11a	Me S 12c	92 ^[c]
4	1e	MeO SH 11c	OMe OMe S S S S OMe OMe 12d	83 ^[d]
5	1k	SH Me 11d	OMe S Me 12e	87
6	1i	HS ^{~C} 8H ₁₇ 11e	MeO 12f	67

Table 7.	S-Arylation	of thiols	with ary	l halides	using	ligand	L4. ^[a]	
	2							

^[a] Unless otherwise specified, all reactions were performed using arenethiol **11** (1.2 equiv.), aryl halide **1** (1.0 mmol), KO-*t*-Bu (1.4 equiv.), Pd(OAc)₂ (1.0 mol%) and **L4** (1.0 mol%) in DMSO (1.0 mL) at 100 °C for 8–12 h.

^[b] Isolated yields.^[c] At 80 °C.

^[d] Using thiol **11c** (4.0 equiv.), KO-*t*-Bu (5.0 equiv.), $Pd(OAc)_2$ (2.0 mol%) and L4 (2.0 mol%) in DMSO (4.0 mL) at 100 °C

matography was performed using commercially prepared 60 F_{254} silica gel plates and visualization was effected with short wavelength UV light (254 nm) and staining over an I₂ chamber. All melting points are uncorrected. High resolution mass spectra were recorded on a double focusing magnetic sector mass spectrometer.

Procedure for the Synthesis of Pyrroloquinoxalines (1g)

To a well-stirred solution of 4-bromobenzaldehyde 5 (1.2 equiv.), benzotriazole (1.0 equiv.) and 10 mol% $AlCl_3$ in THF, 1-(2-aminophenyl)pyrrole (1.0 mmol) was added. The reaction mixture was stirred at room temperature for 8–10 h. After the completion of the reaction, the mixture was extracted with ethyl acetate and water. The organic phases were washed with NaOH brine and dried with Na₂SO₄. The solvent was evaporated under vacuum and the obtained crude reaction mixture was purified by column chromatog-

raphy (hexane/ethyl acetate) to afford the desired product in excellent yields.

4-(4-Bromophenyl)pyrrolo[1,2-*a***]quinoxaline (1g):^[37]** The product was obtained as white needles (DCM/ether); yield: 308.9 mg (96%); mp 104–106 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.00–7.90 (m, 2H), 7.90–7.80 (m, 3H), 7.70–7.60 (m, 2H), 7.50 (td, *J* = 8.7 and 1.5 Hz, 1H), 7.50 (td, *J* = 8.0 and 1.4 Hz, 1H), 6.94 (t, *J* = 3.0 Hz, 1H), 6.93 (t, *J* = 2.9 Hz, 1H); ¹³C (100 MHz, CDCl₃): δ = 153.0, 137.2, 136.0, 131.7, 130.2, 127.7, 127.0, 125.3, 124.9, 124.1, 114.8, 114.1, 113.6, 108.5; IR (KBr): ν = 3139, 3110, 3079, 3043, 2919, 1612, 1587, 1531, 1473, 1420, 1391, 1369, 1097, 823, 749, 710 cm⁻¹; HR-MS (ESI): *m/z* = 322.0106, calcd. for C₁₇H₁₁BrN₂ (M++); 322.0106.

Procedure for the Synthesis of Ligand (BtCH₂Bt) L3

A flask was charged with CuI (10 mol%), BtCH₂Cl (1.0 mmol) and benzotriazole (1.0 equiv.) in DMF (5 mL). The reaction mixture was then heated at 100°C in the pres-

ence of base K_2CO_3 (2.0 equiv.) for 5–6 h. After the completion of reaction, reaction mixture was allowed to come to room temperature. To the reaction mixture was added ethyl acetate, and the resulting suspension was filtered. The filtrate was concentrated, and the residue was purified by column chromatography on silica gel to provide the desired product.

Di(1*H*-benzo[*d*][1,2,3]triazol-1-yl)methane (L3): $^{[38]}$ The product was obtained as white needles (DCM/ether); yield: 0.225 g (90%); mp 78–80°C; ¹H NMR (300 MHz, CDCl₃): δ =8.06 (d, *J*=8.4 Hz, 1H), 7.95 (d, *J*=8.4 Hz, 1H), 7.87–7.83 (m, 2H), 7.56 (dt, *J*=6.3 and 0.9 Hz, 1H), 7.42–7.36 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ =146.3, 145.0, 132.6, 128.6, 127.5, 124.6, 120.2, 118.5, 109.9, 64.8; HR-MS (ESI): *m*/*z*=250.0965, calcd. for C₁₃H₁₀N₆ (M+H⁺): 250.0967.

Procedure for the Synthesis of Ligand (BtPy) L4^[24b]

To a solution of DMSO (3.0 mL), CuI (5.0 mol%), KO-*t*-Bu (1.4 equiv.), benzotriazole (1.0 mmol) and 1.1 equiv. of 2bromopyridine was added. The reaction mixture was allowed to stirred at 120 °C for 12 h. After the completion, of reaction, the resulting solution was filtered, and the reaction mixture was extracted with ethyl acetate and water. The organic layer was evaporated under reduced pressure. The crude reaction mixture was purified by column chromatography using ethyl acetate/hexane as the eluent.

1-(Pyridine-2-yl)-1*H***-benzo[***d***][1,2,3]triazole (L4):^[24b] The product was obtained as white needles (DCM/ether); yield: 0.182 g (96%); mp 109–111 °C; ¹H NMR (300 MHz, CDCl₃): \delta=8.67–8.61 (m, 2H), 8.30 (d,** *J***=8.4 Hz, 1H), 8.13(d,** *J***=8.1 Hz, 1H), 7.94 (td,** *J***=7.5 and 8.1 Hz, 1H), 7.61 (td,** *J***=7.5 and 7.8 Hz, 1H), 7.46 (td,** *J***=7.8 and 7.5 Hz, 1H), 7.47–7.27 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): \delta=151.6, 148.3, 146.7, 138.8, 131.5, 128.7, 124.9, 122.2, 119.7, 114.8, 114.4; IR (KBr): \nu=3112, 3065, 1595, 1475, 1287, 1073, 1061, 784, 752, 735 cm⁻¹; HR-MS (ESI):** *m/z***=196.0750, calcd. for C₁₁H₈N₄ (M+H⁺): 196.0749.**

General Procedure for the Suzuki Reaction (3a-n)

To a mixture of DMF/water (4:1; 2 mL), $Pd(OAc)_2$ (1.0 mol%), ligand L4 (1.0 mol%) were added aryl halide (0.5 mmol), arylboronic acid (1.2 equiv.) and K_2CO_3 (2.0 equiv.). The reaction mixture was then flushed with nitrogen and stirred at room temperature until the aryl halide was consumed, as determined by TLC. The reaction mixture was extracted with ethyl acetate and water. Organic layer was evaporated under reduced pressure. The crude reaction mixture was purified using silica gel column chromatography using ethyl acetate/hexane as the eluent.

2,4,6-Trimethoxy-4'-methylbiphenyl (3a):^[39] The product was obtained as a white needles (DCM/ether); yield: 240.0 mg (93%), mp 48–50 °C; ¹H NMR (300 MHz, CDCl₃): δ =7.45 (d, *J*=7.8 Hz, 2H), 7.23 (d, *J*=7.8 Hz, 2H), 6.76 (s, 2H), 3.91 (s, 6H), 3.88 (s, 3H), 2.39 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =153.5, 138.5, 137.4, 137.2, 137.1, 129.5, 126.9, 104.2, 60.9, 56.2, 21.1; IR (KBr): *v*=2933, 2834, 1588, 1500, 1458, 1420, 1237, 1131, 809, 767 cm⁻¹; HR-MS (ESI): *m*/*z*=258.1259, calcd. for C₁₆H₁₈O₃ (M+H⁺): 258.1256.

1H,1'H-5,5'-Biindole (3b):^[40] The product was obtained as white needles (DCM/ether); yield: 116.9 mg (71%); mp 80–85°C; ¹H NMR (300 MHz, CDCl₃): δ = 8.13 (brs, 2H), 7.89

(s, 2H), 7.54–7.44 (m, 4H), 7.25–7.22 (m, 2H), 6.61 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ =134.9, 134.8, 128.4, 124.6, 122.5, 119.3, 111.0, 102.9; HR-MS (ESI): *m*/*z*=232.1001, calcd. for C₁₆H₁₂N₂ (M+H⁺): 232.1000.

4-(1*H***-Indol-5-yl)-***N***,***N***-dimethylaniline (3c):^[41] The product was obtained as white needles (DCM/ether); yield: 172.2 mg (73%); mp 134–136°C; ¹H NMR (300 MHz, CDCl₃): \delta = 8.07 (brs, 1 H), 7.80 (s, 1 H), 7.54 (d,** *J* **= 8.7 Hz, 2 H), 7.41 (dd,** *J* **= 8.7 and 2.7 Hz, 2 H), 7.23–7.17 (m, 1 H), 6.82 (d,** *J* **= 8.7 Hz, 2 H), 6.57 (s, 1 H), 2.98 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃): \delta = 149.5, 134.8, 133.6, 131.1, 128.4, 127.9, 124.6, 121.6, 118.3, 113.1, 111.1, 102.9, 40.8; IR (KBr): \nu = 3003, 2955, 2899, 2834, 1606, 1511, 1495, 1242, 1175, 1029, 832 cm⁻¹; HR-MS:** *m/z* **= 236.1316, calcd. for C₁₆H₁₆N₂ (M + H⁺): 236.1313.**

2-(4-Methylphenyl)-biphenyl (3d):^[39] The product was obtained as a colourless oil; yield: 217.3 mg (89%): ¹H NMR (300 MHz, CDCl₃): δ =7.33–7.25 (m, 4H), 7.23–7.18 (m, 1H), 7.13–7.07 (m, 4H), 6.95–6.89 (m, 3H), 6.54 (d, *J*=7.2 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =141.7, 140.5, 138.5, 137.1, 131.7, 130.6, 129.8, 129.7, 128.6, 127.8, 127.4, 127.2, 127.0, 126.4, 21.1; HR-MS (ESI): *m*/*z* = 244.1252, calcd. for C₁₉H₁₆ (M+H⁺): 244.1252.

2-(3-Nitrophenyl)-biphenyl (3e):^[39] The product was obtained as white needles (DCM/ether); yield: 249.1 mg (91%); mp: 60–62 °C: ¹H NMR (300 MHz, CDCl₃): $\delta = 8.00-7.96$ (m, 2H), 7.39 (s, 4H), 7.32–7.22 (m, 2H), 7.14 (s, 3H), 7.04–7.03 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 148.1$, 143.3, 141.0, 140.5, 138.0, 136.1, 130.8, 130.3, 129.9, 128.7, 128.6, 128.2, 127.9, 127.0, 124.6, 121.5; IR (KBr): $\nu = 2960$, 2923, 2851, 1532, 1466, 1453, 1437, 1347, 1085, 875, 766, 748, 701 cm⁻¹; HR-MS (ESI): m/z = 275.0945, calcd. for C₁₈H₁₃NO₂ (M+H⁺): 275.0946.

4'-(4-Flurobenzyloxy)-4-methylbiphenyl (3f):^[39] The product was obtained as white needles (DCM/ether); yield: 262.9 mg (90%); mp 100–105 °C; ¹H NMR (300 MHz, CDCl₃): δ =7.44–7.31 (m, 6H), 7.15 (d, *J*=7.8, 2H), 7.02–6.91 (m, 4H), 4.96 (s, 2H), 2.29 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =164.1, 160.9, 157.9, 137.8, 136.4, 134.1, 132.7, 129.4, 129.3, 129.2, 127.9, 126.6, 115.6, 115.3, 115.0, 69.4, 21.0; IR (KBr): ν =2916, 2863, 1497, 1236, 806 cm⁻¹; HR-MS (ESI): *m*/*z*=292.1263, calcd. for C₂₀H₁₇FO (M+H⁺): 292.1263.

3-Nitro-4'-vinylbiphenyl (3g):^[39] The product was obtained as white needles (DCM/ether); yield: 206.1 mg (92%); mp 68–70 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.36 (s, 1H), 8.11 (d, *J* = 7.2 Hz, 1H), 7.84 (d, *J* = 7.1 Hz, 1H), 7.54–7.37 (m, 5H), 6.73 (q, *J* = 10.8 Hz, 1H), 5.78 (d, *J* = 17.7 Hz, 1H), 5.26 (d, *J* = 10.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ = 148.7, 142.3, 137.8, 136.3, 135.9, 132.7, 129.7, 127.2, 126.9, 126.6, 121.9, 121.6, 114.8; IR (KBr): ν = 3082, 2960, 2925, 2851, 1668, 1625, 1527, 1511, 1344, 902, 843.1, 805.9, 730.4 cm⁻¹; HR-MS (ESI): *m*/*z* = 225.0790, calcd. for C₁₄H₁₁NO₂ (M+H⁺): 225.0790.

2',5'-Dibromo-4,4''-dimethyl-1,1':4',1''-terphenyl (3h): The product was obtained as white needles (DCM/ether); yield: 343.1 mg (83%); mp 162–164 °C; ¹H NMR (400 MHz, CDCl₃): δ =7.60 (s, 2H), 7.32 (d, *J*=8.0 Hz, 4H), 7.24 (d, *J*=6.4 Hz, 4H), 2.4 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ =142.6, 137.9, 136.6, 135.2, 129.1, 128.8, 121.4, 21.3; HR-MS (ESI): *m*/*z*=413.9621, calcd. for C₂₀H₁₆Br₂ (M+H⁺): 413.9619.

2,3,4,5-Tetrakis(4-methoxyphenyl)thiophene (3);^[42] The product was obtained as yellow needles (DCM/ether); yield: 406.4 mg (80%); mp 178–180 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.13(d, *J*=8.8 Hz, 4H), 6.84 (d, *J*=8.8 Hz, 4H), 6.74 (d, *J*=8.8 Hz, 4H), 6.65 (d, *J*=8.8 Hz, 4H), 3.75 (s, 6H), 3.72 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 158.6, 158.0, 138.3, 137.2, 131.9, 130.3, 129.1, 127.0, 113.7, 113.3, 55.2, 55.0; HR-MS (ESI): *m/z* = 508.1705, calcd. for C₃₂H₂₈O₄S (M+H⁺): 508.1708.

4-(4-Ethylphenyl)-1-methoxy-3-phenyl-1*H*-pyrano[4,3-

b]quinoline (3j):^[43] The product was obtained as orange needles (DCM/ether); yield: 310.0 mg (79%); mp 92–94°C; ¹H NMR (300 MHz, CDCl₃): δ =8.05 (s, 1H), 7.97 (d, *J*= 8.4 Hz, 1H), 7.77 (d, *J*=8.1 Hz, 1H), 7.60 (td, *J*=6.9 and 1.2 Hz, 1H), 7.42 (t, *J*=8.1 Hz, 1H), 7.55–7.31 (m, 4H), 7.23–7.13 (m, 5H), 6.29 (s, 1H), 3.74 (s, 3H), 2.67 (q, *J*= 7.5 Hz, 2H), 1.26 (t, *J*=7.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =153.2, 150.0, 148.8, 143.7, 135.5, 132.7, 132.3, 132.2, 129.9, 129.5, 128.7, 128.4, 128.0, 127.6, 127.3, 126.8, 126.4, 125.7, 122.6, 117.5, 100.0, 56.1, 28.6, 15.4; HR-MS (ESI): *m*/*z*=393.1729, calcd. for C₂₇H₂₃NO₂ (M+H⁺): 393.1729.

4-(4'-Methoxybiphenyl-4-yl)pyrrolo[1,2-a]quinoxaline

(3k):^[37] The product was obtained as white needles (DCM/ ether); yield: 290.6 mg (83%); mp 187–190 °C; ¹H NMR (300 MHz, CDCl₃): δ =8.06 (d, J=7.5 Hz, 4H), 7.90 (d, J= 8.1 Hz, 1H), 7.73 (d, J=7.8 Hz, 2H), 7.60 (d, J=8.4 Hz, 2H), 7.50–7.40 (m, 2H), 7.07–7.01 (m, 3H), 6.90 (s, 1H), 3.90 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =159.3, 154.0, 142.2, 136.7, 136.2, 133.0, 130.1, 129.0, 128.2, 127.0, 126.8, 125.3, 125.2, 114.6, 114.3, 114.0, 113.6, 108.6, 55.3; HR-MS (ESI): m/z=350.1418, calcd. for C₂₄H₁₈N₂O (M+H⁺): 350.1419.

4-[4'-(Methylthio)biphenyl-4-yl]pyrrolo[1,2-*a*]quinoxaline (3):^[37] The product was obtained as white needles (DCM/ ether); yield: 322.2 mg (88%); mp 173–175 °C; ¹H NMR (400 MHz, CDCl₃): δ =8.10–8.00 (m, 3H), 7.99–7.98 (m, 1H), 7.88–7.86 (m, 1H), 7.73 (d, *J*=8.0 Hz, 2H), 7.60 (d, *J*= 8.0 Hz, 2H), 7.51–7.45 (m, 2H), 7.34 (d, *J*=8.8 Hz, 2H), 7.04 (m, 1H), 6.90 (t, *J*=3.3 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =153.8, 141.8, 138.1, 137.2, 136.2, 130.2, 129.1, 127.4, 127.1, 127.0, 126.9, 126.8, 125.2, 114.6, 113.9, 113.6, 108.5, 15.7; IR (KBr): *v*=2919, 1458, 1475, 1423, 1369, 1318, 1098, 816, 761, 742, 721 cm⁻¹; HR-MS (ESI): *m/z*=366.1190, calcd. for C₂₄H₁₈N₂S (M+H⁺): 366.1191.

6,7-Dimethoxy-3-(4-methoxy-6-methyl-9-phenyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinolin-5-yl)isobenzofuran-1(3H)-one (3m): The product was obtained as white needles (DCM/ether); yield: 317.2 mg (65%); mp 189–191°C; ¹H NMR (300 MHz, CDCl₃): δ = 7.37–7.24 (m, 3 H), 7.18 (d, J = 6.9 Hz, 3 H), 6.98 (d, J = 8.1 Hz, 1 H), 5.90 (s, 1 H), 5.84 (s, 1 H), 5.57 (s, 1 H), 4.49 (s, 1 H), 4.07–3.96 (m, 6 H), 3.83 (s, 3 H), 2.51 (s, 3 H), 2.21–2.16 (m, 2 H), 1.32–1.06 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃): δ = 167.9, 152.4, 147.7, 146.2, 140.8, 139.6, 133.7, 129.9, 128.3, 127.5, 118.0, 117.9, 116.6, 100.9, 62.3, 61.3, 59.5, 56.9, 29.7; IR (KBr): ν = 2942, 2856, 2795, 1752, 1492, 1439, 1376, 1262, 1276, 1059, 1077, 1014, 1034, 706 cm⁻¹; HR-MS (ESI): m/z = 489.1785, calcd. for C₂₈H₂₇NO₇ (M+H⁺): 489.1788.

6,7-Dimethoxy-3-(4-methoxy-6-methyl-9-*p*-tolyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-*g*]isoquinolin-5-yl)isobenzofuran-

1(3*H***)-one (3n):^[44] The product was obtained as white needles (DCM/ether); yield: 361.5 mg (72%); mp 210–212°C;** ¹H NMR (300 MHz, CDCl₃): δ = 7.26–7.22 (m, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 1H), 6.12 (d, *J* = 8.1 Hz, 1H), 5.97 (s, 1H), 5.91 (s, 1H), 5.56 (d, *J* = 4.2 Hz, 1H), 4.50 (d, *J* = 4.2 Hz, 1H), 4.11 (d, *J* = 5.4 Hz, 6H), 3.90 (s, 3H), 2.56 (s, 3H), 2.38 (s, 3H), 2.27–2.18 (m, 1H), 2.14–2.13 (m, 2H), 1.69–1.62 (m 1H); ¹³C NMR (75 MHz, CDCl₃): δ = 168.1, 152.3, 147.6, 146.0, 140.9, 139.5, 137.3, 133.7, 131.1, 130.9, 130.0, 129.8, 129.0, 120.6, 117.9, 117.8, 117.7, 116.5, 115.1, 100.8, 82.1, 62.4, 61.1, 59.6, 50.9, 46.8, 27.1, 21.3; IR (KBr): ν = 2936, 2903, 2853, 2806, 1758, 1497, 1467, 1458, 1438, 1422, 1377, 1270, 1084, 1056, 1032, 1010, 819, 715 cm⁻¹; HR-MS (ESI): *m/z* = 503.1942, calcd. for C₂₉H₂₉NO₇ (M+H⁺): 503.1944.

General Procedure for the Heck Reaction (5a-j)

A mixture of aryl halide (1.0 mmol), Pd(OAc)₂ (3.0 mol%), **L4** (3.0 mol%) and K₂CO₃ (2.0 equiv.) in 3.0 mL of DMF was flushed with nitrogen with the addition of alkene (1.5 equiv.) and the reaction mixture was stirred at 120 °C with the progress of reaction being monitored by TLC. After completion of the reaction, the mixture was diluted with ethyl acetate and water. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using ethyl acetate/hexane as eluent.

(*E*)-Butyl 3-(4-methoxyphenyl)acrylate (5a):^[45] The product was obtained as a viscous colourless oil; yield: 219.9 mg (94%); ¹H NMR (300 MHz, CDCl₃): δ = 7.64 (d, *J* = 15.9 Hz, 1H), 7.46 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 6.32 (d, *J* = 15.9, Hz, 1H), 4.19 (t, *J* = 6.9 Hz, 2H), 3.82 (s, 3H), 1.73–1.64 (m, 2H), 1.44 (q, *J* = 7.5 Hz, 2H), 0.96 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 167.4, 161.3, 144.2, 130.8, 127.2, 115.7, 113.3, 64.2, 55.3, 30.7, 19.2, 10.9; HR-MS (ESI): *m*/*z* = 234.1256, calcd. for C₁₄H₁₈O₃ (M+H⁺): 234.1256.

(*E*)-Butyl 3-phenylacrylate (5b):^[46] The product was obtained as a colourless oil; yield: 182.5 mg (90%); ¹H NMR (300 MHz, CDCl₃): δ =7.61 (d, *J*=16.2 Hz, 1H), 7.45 (dd, *J*=3.6 and 1.5 Hz, 2H), 7.39–7.30 (m, 3H), 6.34 (d, *J*=15.9 Hz, 1H), 4.16 (t, *J*=6.9 Hz, 2H), 1.64–1.59 (m, 2H), 1.40–1.32 (m, 2H), 0.96 (t, *J*=7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =167.1, 144.5, 134.5, 130.4, 129.3, 128.8, 127.5, 118.2, 64.4, 31.6, 19.2, 13.7; HR-MS (ESI): *m*/*z*=204.1150, calcd. for C₁₃H₁₆O₂ (M+H⁺): 204.1150.

(*E*)-1-Methoxy-2-styrylbenzene (5c):^[47] The product was obtained as a viscous colourless oil; yield: 171.3 mg (82%): ¹H NMR (400 MHz, CDCl₃): δ =7.52 (d, *J*=8.0 Hz, 1H), 7.45 (t, *J*=8.1 Hz, 3H), 7.26 (t, *J*=7.3 Hz, 2H), 7.18–7.14 (m, 2H), 7.03 (d, *J*=16.1 Hz, 1H), 6.89 (t, *J*=7.4 Hz, 1H), 6.82 (d, *J*=8.0 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =156.9, 137.9, 129.1, 128.6, 128.5, 127.3, 126.5, 123.4, 120.7, 110.9, 55.5; IR (KBr): *v*=2925, 1592, 1486, 1480, 1242, 1105, 1029, 964, 752, 689 cm⁻¹; HR-MS (ESI): *m*/*z*=210.1046, calcd. for C₁₅H₁₄O (M+H⁺): 210.1045.

(*E*)-Methyl3-(1-methoxy-3-(*p*-tolyl)-1*H*-pyrano[4,3-*b*]quinolin-4-yl)acrylate (5d):^[43] The product was obtained as a pale yellow needles (DCM/ether); yield: 298.0 mg (77%); mp 149–150 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.24 (d, *J* = 8.8 Hz, 1H), 8.19 (s, 1H), 7.82–7.79 (m, 3H), 7.73 (t, *J* =

432 asc.wiley-vch.de

ch.de © 2013 Wile

5.8 Hz, 1H), 7.54–7.51 (m, 3H), 7.28 (d, J=8.08 Hz, 2H), 6.21 (s, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =169.0, 162.6, 148.9, 148.2, 141.1, 139.5, 132.9, 130.8, 130.5, 130.2, 129.4, 129.2, 127.6, 126.5, 126.3, 122.7, 119.2, 110.9, 100.7, 56.7, 51.3, 21.5; HR-MS (ESI): m/z=387.1471, calcd. for C₂₄H₂₁NO₄ (M+H⁺): 387.1471.

(*E*)-Ethyl 3-{4-(pyrrolo[1,2-*a*]quinoxalin-4 yl)phenyl}acrylate (5e):^[37]: The product was obtained as white needles (DCM/ether); yield: 290.8 mg (85%); mp 89–91 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.05–8.01 (m, 4 H), 7.90 (d, *J* = 8.0 Hz, 1 H), 7.80 (d, *J* = 16.1 Hz, 1 H), 7.70 (d, *J* = 8.0 Hz, 2 H), 7.50 (t, *J* = 8.0 Hz, 1 H), 7.49 (t, *J* = 9.5 Hz, 1 H), 7.01– 6.99 (m, 1 H), 6.90 (t, *J* = 3.0 Hz, 1 H), 6.53 (d, *J* = 16.1 Hz, 1 H), 4.29 (q, *J* = 8.0 Hz, 2 H), 1.35 (t, *J* = 7.3 Hz, 3 H); ¹³C (100 MHz, CDCl₃): δ = 166.8, 153.3, 143.8, 140.0, 136.1, 135.7, 130.2, 129.1, 128.2, 127.7, 127.1, 125.3, 125.1, 119.1, 114.7, 114.1, 113.6, 108.4, 60.6, 14.3; IR (KBr): ν =2926, 1718, 1627, 1437, 1370, 1320, 1172, 986, 831, 750, 742, 712 cm⁻¹; HR-MS (ESI): *m*/*z* = 342.1365, calcd. for C₂₂H₁₈N₂O₂ (M+H⁺): 342.1368.

(*E*)-Methyl 3-{4-(pyrrolo[1,2-*a*]quinoxalin-4-yl)phenyl}acrylate (5f):^[37] The product was obtained as pale yellow needles (DCM/ether); yield: 275.6 mg (84%); 102–104°C; ¹H NMR (300 MHz, CDCl₃): δ =8.04 (d, *J*=7.8 Hz, 4H), 7.90 (d, *J*=7.8 Hz, 1H), 7.80–7.70 (m, 3H), 7.50–7.40 (m, 2H), 7.03 (d, *J*=18.3 Hz, 2H), 6.50 (d, *J*=15.9 Hz, 1H), 3.80 (s, 3H); ¹³C (75 MHz, CDCl₃): δ =167.3, 153.3, 144.2, 140.2, 136.1, 135.7, 130.3, 129.2, 128.3, 127.8, 127.2, 125.4, 125.1, 119.7, 114.8, 114.1, 113.7, 108.5, 51.8; HR-MS (ESI): *m/z*=328.1212, calcd. for C₂₁H₁₆N₂O₂ (M+H⁺): 328.1212.

(*E*)-Butyl 3-(4-acetylphenyl)acrylate (5g):^[48] The product was obtained as a colourless oil; yield: 222.8 mg (91%); ¹H NMR (300 MHz, CDCl₃): δ =7.97 (d, *J*=8.3 Hz, 2H), 7.69 (d, *J*=16.1 Hz, 1H), 7.61 (d, *J*=8.3 Hz, 2H), 6.53 (d, *J*=16.0 Hz, 1H), 4.23 (t, *J*=6.6 Hz, 2H), 1.73–1.65 (m, 2H), 2.61 (s, 3H), 1.48–1.41 (m, 2H), 0.97 (t, *J*=7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =197.1, 166.5, 142.9, 138.8, 138.0, 128.8, 128.1, 120.8, 64.6, 30.7, 26.6, 19.2, 13.7; HR-MS (ESI): *m/z*=246.1253, calcd. for C₁₅H₁₈O₃ (M+H⁺): 246.1256.

3-*p***-Tolylcyclopent-2-enone (5h):** The product was obtained as white needles (DCM/ether); yield: 117.0 mg (68%); mp 136–138 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.56 (d, *J* = 8.1 Hz, 2H), 7.26 (d, *J* = 7.8 Hz, 2H), 6.54 (s, 1H), 3.02–3.05 (m, 2H), 2.56–2.59 (m, 2H), 2.41(s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 209.4, 174.1, 141.9, 131.3, 129.6, 126.8, 126.6, 35.3, 29.7, 21.6; HR-MS (ESI): *m*/*z* = 172.0888, calcd. for C₁₂H₁₂O (M+H⁺): 172.0888.

(*E*)-3-(4-Methoxyphenyl)acrylonitrile (5i):^[49] The product was obtained as a colourless liquid; yield: 140.8 mg (89%); ¹H NMR (400 MHz, CDCl₃): δ =7.69 (d, *J*=8.8 Hz, 1H), 7.29 (d, *J*=8.1 Hz, 1H), 7.20 (d, *J*=16.1 Hz, 1H), 6.85–6.80 (m, 2H), 5.60 (d, *J*=16.1 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =161.9, 149.9, 130.8, 128.9, 126.1, 118.6, 114.3, 114.1, 93.1, 55.3; IR (KBr): *v*=2962, 2933, 2840, 2212, 1628, 1603, 1573, 1252, 1174, 802, 768 cm⁻¹; HR-MS (ESI): *m*/*z*=159.0680, calcd. for C₁₀H₉NO (M+H⁺): 159.0684.

6-(*p***-Tolyl)-4,5-dihydro-1,3-dioxepine (5j):** The product was obtained as a colourless liquid; yield: 144.4 mg (76%); ¹H NMR (400 MHz, CDCl₃): δ = 7.08–7.04 (m, 4H), 6.37

(dd, J=2.2 and 7.3 Hz, 1 H), 5.10 (d, J=7.3 Hz, 1 H), 4.84 (dd, J=3.6 and 7.3 Hz, 1 H), 4.75 (d, J=7.32 Hz, 1 H), 3.90–3.86 (m, 1 H), 3.71–3.68 (m, 1 H), 3.37-3.32 (m, 1 H), 2.25 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ =145.9, 137.8, 136.6, 129.3, 127.8, 112.3, 98.1, 47.9, 21.0; HR-MS (ESI): m/z= 190.0995 calcd. for C₁₂H₁₄O₂ (M+H⁺): 190.0994.

General Procedure for the Fujiwara–Moritani Reaction (7a–f)

Pd(OAc)₂ (2.0 mol%) and L4 (2.0 mol%) were added to a mixture of the alkene (1.5 equiv.), copper(II) acetate (2.0 equiv.) and the N-heterocycle (1.0 mmol) in DMF:DMSO (4:1, 2.0 mL). The reaction mixture was then flushed with nitrogen and heated at 120 °C for 12 h. After completion of the reaction, the mixture was cooled to room temperature, then filtered and washed with saturated aqueous NaCl solution. The resultant solution was extracted with ethyl acetate. The combined organic fractions were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was purified by column chromatography (ethyl acetate/hexane).

(*E*)-Butyl 3-(1*H*-indol-3-yl)acrylate (7a):^[50] The product was obtained as yellow needles (DCM/ether); yield: 194.4 mg (80%); mp 81–85 °C; ¹H NMR (300 MHz, CDCl₃): δ =8.60 (s, 1 H), 7.87–7.82 (m, 2 H), 7.40 (d, *J*=1.8, Hz, 1 H), 7.33 (d, *J*=7.2 Hz, 1 H), 7.22–7.15 (m, 2 H), 6.40 (d, *J*= 15.9 Hz, 1 H), 4.15 (t, *J*=6.6 Hz, 2 H), 1.68–1.58 (m, 2 H), 1.39 (q, *J*=7.5 Hz, 2 H), 0.90 (t, *J*=7.5 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃): δ =167.4, 161.3, 144.2, 130.8, 127.2, 115.7, 113.3, 64.2, 30.7, 19.2, 10.9; IR (KBr): ν =3271, 2959, 2929, 2868, 1682, 1572, 1616, 1433, 1272, 1227, 1181, 1115, 1085, 970, 819, 724 cm⁻¹; HR-MS (ESI): *m/z*=243.1259, calcd. for C₁₅H₁₇NO₂ (M+H⁺): 243.1259.

(*E*)-Methyl 3-(5-bromo-1*H*-indol-3-yl)acrylate (7b): The product was obtained as white needles (DCM/ether); yield: 195.3 mg (70%); mp 128–130 °C; ¹H NMR (400 MHz, CDCl₃): δ =8.67 (brs, 1H), 7.95–7.94 (m, 1H), 7.78 (d, *J*=16.1 Hz, 1H), 7.40–7.39 (m, 1H), 7.30–7.27 (m, 1H), 7.19 (d, *J*=5.9 Hz, 1H), 6.32 (d, *J*=16.1 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =168.5, 137.7, 135.6, 129.5, 126.9, 126.2, 123.0, 114.8, 113.5, 113.1, 113.1, 51.5; HR-MS (ESI): m/z=278.9895, calcd. for C₁₂H₁₀BrNO₂ (M+H⁺): 278.9895.

(*E*)-Butyl 3-(5-methoxy-1*H*-indol-3-yl)acrylate (7c): The product was obtained as white needles (DCM/ether); yield: 207.4 mg (76%); mp 160–162 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.44 (brs, 1 H), 7.83 (d, *J* = 16.1 Hz, 1 H), 7.38 (d, *J* = 2.9 Hz, 1 H), 7.25–7.24 (m, 1 H), 7.21–7.18 (m, 1 H), 6.85 (dd, *J* = 2.2 and 8.8 Hz, 1 H), 6.30 (d, *J* = 15.4 Hz, 1 H), 4.15 (t, *J* = 6.2 Hz, 2 H), 3.82 (s, 3 H), 1.65–1.60 (m, 2 H), 1.41–1.35 (m, 2 H), 0.90 (t, *J* = 7.3 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.6, 155.4, 138.3, 132.0, 129.2, 125.9, 113.3, 113.2, 112.6, 112.4, 102.5, 64.1, 55.9, 30.9, 19.2, 13.8; HR-MS (ESI): *m/z* = 273.1365, Calcd for C₁₆H₁₉NO₃ (M+H⁺): 273.1365.

(*E*)-Butyl 3-(5-bromo-1*H*-indol-3-yl)acrylate (7d):^[51] The product was obtained as white needles (DCM/ether); yield: 231.2 mg (72%); mp 143–145 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.68 (brs, 1 H), 8.01 (s, 1 H), 7.82 (d, *J* = 16.1 Hz, 1 H), 7.45–7.44 (m, 1 H), 7.35–7.32 (m, 1 H), 7.27–7.24 (m, 1 H), 6.38 (d, *J* = 16.1 Hz, 1 H), 4.20 (t, *J* = 6.6 Hz, 2 H), 1.72–

1.65 (m, 2H), 1.46–1.39 (m, 2H), 0.95 (t, J=7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.4$, 137.5, 135.7, 129.6, 126.9, 126.2, 123.0, 114.8, 113.8, 113.0, 64.3, 30.8, 19.2, 13.7; IR (KBr): $\nu = 3199$, 3171, 2955, 2899, 1660, 1622, 1452, 1389, 1288, 1259, 1234, 1063, 970, 841, 795 cm⁻¹; HR-MS (ESI): m/z = 321.0364, calcd. for C₁₅H₁₆BrNO₂ (M+H⁺): 321.0364.

(*E*)-5-Methoxy-3-styryl-1*H*-indole (7e): The product was obtained as yellow needles (DCM/ether); yield: 191.7 mg (77%); mp 110–112 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.09 (brs, 1 H), 7.52 (d, *J*=7.2 Hz, 2 H), 7.41–7.19 (m, 7 H), 7.05 (d, *J*=16.5 Hz, 1 H), 6.92 (dd, *J*=6.6 and 2.1 Hz, 1 H), 3.92 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃): δ =154.7, 138.5, 131.9, 128.6, 126.6, 126.1, 125.8, 125.2, 124.3, 121.6, 115.4, 112.6, 112.1, 102.4, 56.1; HR-MS (ESI): *m/z*=249.1155, calcd. for C₁₇H₁₅NO (M+H⁺): 249.1154.

(*E*)-3-Styryl-1*H*-indole (7f):^[51] The product was obtained as pale yellow needles (DCM/ether); yield: 164.2 mg (75%); mp 100–102 °C; ¹H NMR (300 MHz, CDCl₃): δ =8.22 (brs, 1H), 8.11 (s, 1H), 7.53 (d, *J*=7.2 Hz, 2H), 7.39–7.32 (m, 5H), 7.28–7.13 (m, 3H), 7.06 (d, *J*=16.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ =138.2, 135.4, 128.7, 126.3, 125.8, 125.6, 124.5, 122.8, 120.8, 115.3, 113.8, 112.8; IR (KBr): *v*=3056, 3021, 2960, 2923, 2853, 1624, 1598, 1455, 1337, 1315, 950, 738 cm⁻¹; HR-MS (ESI): *m*/*z*=219.1049, calcd. for C₁₆H₁₃N (M+H⁺): 219.1048.

General Procedure for the Sonogashira Reaction (9ag)

A flask was charged with $Pd(OAc)_2$ (2.0 mol%), L4 (2.0 mol%), K₂CO₃ (2.0 equiv.) and 1.0 mmol of aryl halide in 2.0 mL of DMF under a nitrogen atmosphere. After stirring at room temperature for 15 min, the terminal alkyne (1.2 equiv.), was added to the flask, and the reaction mixture stirred at the 100 °C for 1–2 h. After the completion of reaction, the mixture was cooled to room temperature, diluted with ethyl acetate and the resulting suspension was filtered. The filtrate was concentrated, and the residue was purified by column chromatography on silica gel to provide the desired product (ethyl acetate/hexane).

1-Methoxy-4-(*p***-tolylethynyl)benzene (9a):**^[52] The product was obtained as white needles (DCM/ether); yield: 199.9 mg (90%); mp: 120–122 °C; ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.44 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.4$, 138.0, 132.9, 131.3, 129.0, 128.9, 120.4, 115.5, 113.9, 88.6, 88.1, 55.2, 21.5; HR-MS (ESI): m/z = 222.1046, calcd. for C₁₆H₁₄O (M+H⁺): 222.1045.

1-Methoxy-2-(phenylethynyl)benzene (9b):^[53] The product was obtained as a pale yellow oil; yield: 160.8 mg (77%); ¹H NMR (300 MHz, CDCl₃): δ =7.57–7.49 (m, 4H), 7.33–7.28 (m, 3H), 6.96 (m, 2H), 3.91 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =159.9, 133.5, 131.6, 129.7, 128.3, 128.2, 126.5, 123.5, 120.5, 112.4, 110.7, 93.4, 85.7, 55.8; IR (KBr): ν =3057, 3020, 2959, 2938, 2215, 1593, 1497, 1275, 1245, 751, 690 cm⁻¹; HR-MS (ESI): *m*/*z*=208.0889, calcd. for C₁₅H₁₂O (M+H⁺): 208.0888.

3-Bromo-2-(thiophen-3-ylethynyl)pyridine (9c): The product was obtained as a yellow oil; yield: 213.1 mg (81%); ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (dd, *J* = 1.4 and 4.6 Hz, 1H), 7.79 (dd, *J* = 1.4 and 8.2 Hz, 1H), 7.60–7.59 (m, 1H), 7.23–7.21 (m, 1 H), 7.19–7.17 (m, 1 H), 7.01–6.98 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 147.6, 143.0, 139.2, 130.2, 129.3, 125.1, 122.9, 122.8, 120.4, 88.7, 86.5; IR (KBr): ν = 3045, 3105, 2925, 2849, 2212, 1565, 1461, 1438, 1399, 1020, 783, 749, 624 cm⁻¹; HR-MS: m/z = 262. 9404, calcd. for C₁₁H₆BrNS (M+H⁺): 262.9404.

3-Methyl-1-(2-(thiophen-3-ylethynyl)phenyl)-1*H***-indole** (9d):^[24] The product was obtained as a yellow oil; yield: 234.8 mg (75%); ¹H NMR (300 MHz, CDCl₃): δ = 7.70–7.66 (m, 2H), 7.49–7.44 (m, 2H), 7.39–7.35 (m, 2H), 7.27 (d, *J* = 5.0 Hz, 2H), 7.23–7.21 (m, 1H), 7.19 (dd, *J* = 2.0 and 3.2 Hz, 1H), 7.11 (d, *J* = 3.2 Hz, 1H), 6.79 (d, *J* = 5.2 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 141.1, 136.8, 133.3, 129.7, 129.5, 129.2, 129.0, 126.9, 126.8, 126.7, 125.3, 122.1, 120.6, 119.7, 119.1, 111.3, 111.1, 90.0, 86.3, 9.9; IR (KBr): ν = 3103, 2931, 2851, 1594, 1489, 1459, 1360, 867, 777 cm⁻¹; HR-MS: m/z = 313.0928, calcd. for C₂₁H₁₅NS (M+H⁺): 313.0925.

4,4'-(2,5-Dibromo-1,4-phenylene)bis(ethyne-2,1-diyl)bis-(ethylbenzene) (9e): The product was obtained as white needles (DCM/ether); yield: 357.2 mg (73%); mp: 176–178 °C; ¹H NMR (300 MHz, CDCl₃): δ =7.75 (s, 2H), 7.49 (d, *J*= 8.1 Hz, 4H), 7.20 (d, *J*=8.1 Hz, 4H), 2.67 (q, *J*=7.5 Hz, 4H), 1.24 (t, *J*=7.5 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ =145.7, 136.5, 135.9, 135.2, 132.3, 131.7, 129.7, 128.0, 127.3, 125.5, 125.3, 123.8, 122.5, 120.0, 119.6, 119.3, 119.0, 114.2, 111.7, 95.7, 86.5, 28.9, 28.7, 15.4, 15.3; IR (KBr): ν =3042, 3029, 2959, 2924, 2864, 2214, 1509, 1448, 1420, 1371, 1052, 880, 827, 750, 710 cm⁻¹; HR-MS: *m/z*=489.9934, calcd. for C₂₆H₂₀Br₂ (M+H⁺): 489.9932.

3,4-Dibromo-2,5-bis[(4-ethylphenyl)ethynyl]thiophene

(9f): The product was obtained as yellow needles (DCM/ ether); yield: 396.1 mg (80%); mp 115–117°C; ¹H NMR (400 MHz, CDCl₃): δ =7.41 (d, J=8.2 Hz, 4H), 7.13 (d, J= 8.2 Hz, 4H), 2.60 (q, J=7.7 Hz, 4H), 1.17 (t, J=7.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ =145.9, 131.7, 128.0, 121.3, 119.0, 118.6, 98.9, 80.4, 28.9, 15.3; HR-MS: m/z= 495.9499, calcd. for C₂₄H₁₈Br₂S (M+H⁺): 495.9496.

3,3',3",3"'-[Thiophene-2,3,4,5-tetrayltetrakis(ethyne-2,1diyl)]tetrathiophene (9g): The product was obtained as light yellow needles (DCM/ether); yield: 304.2 mg (60%); mp 115–117 °C; ¹H NMR (400 MHz, CDCl₃): δ =7.62–7.59 (m, 4H), 7.33–7.30 (m, 4H), 7.25–7.20 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ =130.1, 130.0, 129.9, 129.7, 127.8, 125.8, 125.5, 121.6, 121.2, 121.1 (2C), 121.0, 120.5, 118.1, 94.4, 93.2, 91.4, 82.1, 80.9, 80.4, 80.3; IR (KBr): ν =3103, 2955, 2925, 2851, 2207, 1660, 1622, 1407, 1354, 872, 775, 683 cm⁻¹; HR-MS: *m*/*z*=507.9543, calcd. for C₂₈H₁₂S₅ (M+ H⁺): 507.9543.

General Procedure for the N-arylation Reaction (10a-g)

To a solution of DMSO (2.0 mL), Pd(OAc)₂ (5.0 mol%), L4 (5.0 mol%), KO-t-Bu (2.0 equiv.), 1.0 mmol of the N-heterocycle and 1.2 equiv. of heteroaryl halide were added. The mixture was then heated at 120 °C under a nitrogen atmosphere until the aryl halide was consumed, as determined by TLC. The reaction mixture was washed with ethyl acetate and water. The organic layer was then washed with brine and dried over Na₂SO₄. The solvent was removed under vacuum, and the crude residue was purified by column chromatography on silica gel using hexanes or a mixture of hexane and ethyl acetate as eluent.

1-(2-Methoxyphenyl)-1*H***-indole (10a):**^[54] The product was obtained as white needles (DCM/ether); yield: 173.9 mg (78%); mp 68–70 °C; ¹H NMR (300 MHz, CDCl₃): δ =7.77–7.73 (m, 1 H), 7.51–7.34 (m, 4 H), 7.33–7.12 (m, 3 H), 6.72 (d, *J*=3.0 Hz, 1 H), 6.59 (d, *J*=3.3 Hz, 1 H), 3.85 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃): δ =158.2, 136.3, 132.8, 128.9, 128.3, 125.9, 122.1, 121.0, 120.0, 114.7, 110.3, 102.8, 55.6; IR (KBr): ν =2927, 2854, 1596, 1474, 1455, 1275, 1246, 1093, 1021, 744 cm⁻¹; HR-MS: *m/z*=223.0998, calcd. for C₁₅H₁₃NO (M+H⁺): 223.0997.

1-(3-Bromo-pyridin-2-yl)-1*H***-indole (10b):**^[23c] The product was obtained as a colorless oil; yield: 182.1 mg (67%); ¹H NMR (300 MHz, CDCl₃): δ =8.48 (d, *J*=3.6 Hz, 1H), 8.03 (dd, *J*=1.6 and 6.3 Hz, 1H), 7.59 (dd, *J*=1.3 and 5.4 Hz, 1H), 7.43 (d, *J*=3.3 Hz, 1H), 7.35 (d, *J*=8.1 Hz, 1H), 7.28–7.08 (m, 3H), 6.63 (d, *J*=3.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ =150.2, 147.8, 143.3, 135.9, 129.0, 127.7, 123.4, 122.6, 121.7, 120.9, 115.7, 111.9, 104.4; IR (KBr): ν = 3055, 2924, 2853, 1567, 1474, 1458, 1330, 1210, 1022, 742, 614 cm⁻¹; HR-MS: *m/z*=271.9949, calcd. for C₁₃H₉BrN₂ (M+H⁺): 271.9949.

3-Methyl-1-*p***-tolyl-1***H***-indole (10c):^[55] The product was obtained as a colourless oil; yield: 170.2 mg (77%); ¹H NMR (300 MHz, CDCl₃): \delta=7.65–7.52 (m, 2H), 7.37 (d,** *J***=8.1 Hz, 1H), 7.32–7.12 (m, 6H), 2.43 (s, 3H), 2.40 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): \delta=136.1, 131.0, 129.6, 129.1, 128.1, 125.3, 123.1, 121.3, 119.6, 113.8, 111.4, 30.1, 20.6; IR (KBr): \nu=2925, 2962, 2857, 1616, 1512, 793, 756 cm⁻¹; HR-MS:** *m***/***z***=221.1204, calcd. for C₁₆H₁₅N (M+H⁺): 221.1204.**

1-(2-Bromophenyl)-3-methyl-1*H***-indole** (10d):^[23c] The product was obtained as a colourless oil; yield: 210.8 mg (74%); ¹H NMR (300 MHz, CDCl₃): δ =7.79 (d, *J*=8.0 Hz, 1H), 7.68–7.66 (m, 1H), 7.45 (q, *J*=8.0 Hz, 2H), 7.34–7.32 (m, 1H), 7.23–7.21 (m, 2H), 7.13–7.11 (m, 1H), 7.06 (s, 1H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =138.9, 137.1, 134.1, 129.9, 129.3, 129.1, 128.4, 126.4, 122.4, 121.9, 119.8, 119.2, 112.5, 110.7, 9.9; IR (KBr): ν =3053, 2919, 2855, 1615, 1591, 1454, 737 cm⁻¹; HR-MS: *m*/*z*=285.0153, calcd. for C₁₅H₁₂NBr (M+H⁺): 285.0153.

1-(4-Methoxyphenyl)-2-methyl-1*H***-indole (10e):^[56] The product was obtained as white needles; (DCM/ether); yield: 172.9 mg (73%); mp 63–65 °C; ¹H NMR (300 MHz, CDCl₃): \delta=7.58–7.54 (m, 1H), 7.28–7.23 (m, 2H), 7.12–7.05 (m, 4H), 7.02 (d,** *J***=2.1 Hz, 1H), 6.37 (s, 1H), 3.89 (s, 3H), 2.27 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): \delta=159.0, 138.5, 137.4, 130.6, 129.2, 128.0, 120.8, 119.8, 119.5, 114.6, 110.0, 100.7, 55.5, 13.3; HR-MS:** *m/z***=237.1154, calcd. for C₁₆H₁₅NO (M+H⁺): 237.1154.**

1-(2-Bromophenyl)-1*H***-pyrrole (10f):**^[57] The product was obtained as a colourless oil; yield: 163.5 mg (74%); ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (dd, *J* = 1.0 and 6.9 Hz, 1H), 7.42–7.34 (m, 2H), 7.25 (dd, *J* = 2.0 and 6.0 Hz, 1H), 6.90 (t, *J* = 2.0 Hz, 2H), 6.37 (t, *J* = 2.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 140.5, 133.9, 128.9, 128.4, 128.3, 122.4, 120.0, 109.3; HR-MS: *m*/*z* = 220.9840, calcd. for C₁₀H₈BrN (M+H⁺): 220.9840.

Bis(4-methoxyphenyl)amine (10g):^[58] The product was obtained as colourless needles (ether/hexane); yield: 121.4 mg (53%); mp 97–98 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta =$

7.52 (brs, 1H), 6.90 (d, J=8.1 Hz, 4H), 6.81–6.78 (m, 4H), 3.67 (S, 6H); ¹³C NMR (100 MHz, DMSO- d_6): δ =152.8, 138.0, 118.1, 114.5, 55.2; IR (KBr): ν =3421, 2958, 2937, 2914, 2839, 1510, 1298, 1240, 1221, 1180, 829, 816, 762 cm⁻¹; HR-MS: m/z=229.1108, calcd. for C₁₄H₁₅NO₂ (M+H⁺): 229.1103.

General Procedure for the S-Arylation Reaction (12a–f)

To a round-bottomed flask containing 1.0 mmol of ArX 1, 1.4 mmol of KO-*t*-Bu, 1.0 mol% of Pd(OAc)₂ and 1.0 mol% of L4, 2.0 mL of solvent were added under a nitrogen atmosphere. After that thiophenol (11) 1.0 equiv. was added in the reaction mixture, which was stirred vigorously for 12 h at 100 °C. After the completion of reaction, ethyl acetate was added to the reaction mixture and the whole washed with water. The organic layer was collected, dried over Na₂SO₄, evaporated under vacuum, and the residue was purified by column chromatography to afford the desired product (ethyl acetate/hexane).

(4-Methoxyphenyl)(*p*-tolyl)sulfane (12a):^[59] The product was obtained as a colourless oil; yield: 215.1 mg (94%); ¹H NMR (300 MHz, CDCl₃): δ =7.29–7.24 (m, 4H), 6.87–6.83 (m, 4H), 3.78 (s, 3H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =158.1, 130.1, 128.7, 114.6, 55.3, 18.0; IR (KBr): ν =3003, 2936, 2835, 1590, 1491, 1475, 1288, 1247, 1172, 1030, 825, 636, 622 cm⁻¹; HR-MS: *m/z*=230.0765, calcd. for C₁₄H₁₄OS (M+H⁺): 230.0765.

Phenyl(o-tolyl)sulfane (12b):^[60] The product was obtained as a colourless oil; yield: 86.1 mg (93%); ¹H NMR (300 MHz, CDCl₃): δ =7.51–7.48 (m, 2H), 7.32–7.27 (m, 5H), 7.26–7.22 (m, 1H), 7.19–7.11 (m, 1H), 2.48 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =137.5, 137.0, 132.2, 131.2, 130.0, 129.7, 128.9, 126.3, 21.0; HR-MS: *m/z*=200.0661, calcd. for C₁₃H₁₂S (M+H⁺): 200.0660.

2-(*p***-Tolylthio)pyridine (12c):**^[61] The product was obtained as a colourless oil; yield: 185.0 mg (92%); ¹H NMR (300 MHz, CDCl₃): δ =8.41 (dd, *J*=2.4 and 3.6 Hz, 1H), 7.51–7.47 (m, 2H), 7.42 (dt, *J*=5.7 and 1.8 Hz, 1H), 7.26– 7.23 (m, 2H), 6.99–6.94 (m, 1H), 6.83 (d, *J*=6.0 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =162.2, 149.5, 139.4, 136.6, 135.2, 130.4, 127.2, 120.8, 119.6, 21.3; HR-MS: *m/z*=201.0612, calcd. for C₁₂H₁₁NS (M+H⁺): 201.0612.

2,3,4,5-Tetrakis(4-methoxyphenylthio)thiophene (12d): The product was obtained as a colourless oil; yield: 527.9 mg (83%); ¹H NMR (400 MHz, CDCl₃): δ =7.40–7.37 (m, 3H), 7.29–7.25 (m, 5H), 6.85–6.79 (m, 8H), 3.78 (s, 3H), 3.75 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ =160.5, 159.6, 158.7, 148.6, 136.0, 135.3, 132.7, 131.1, 129.3, 125.8, 124.9, 123.9, 122.8, 115.1, 114.8, 114.5, 55.3 (2C), 55.2 (2C); IR (KBr): ν =3001, 2936, 2834, 1590, 1572, 1492, 1461, 1289, 1247, 1172, 1030, 825, 798 cm⁻¹; HR-MS: *m/z*=636.0589, calcd. for C₃₂H₂₈O₄S₅ (M+H⁺): 636.0591.

(2-Methoxyphenyl)(*o*-tolyl)sulfane (12e):^[62] The product was obtained as a colourless oil; yield: 199.1 mg (87%); ¹H NMR (300 MHz, CDCl₃): δ =7.34 (d, *J*=7.2 Hz, 1H), 7.27–7.13 (m, 4H), 6.78–6.72 (m, 3H), 3.74 (s, 3H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =160.0, 140.3, 137.6, 133.4, 133.2, 130.6, 129.9, 128.1, 126.7, 121.5, 114.8, 111.9, 55.2, 20.6; HR-MS: *m*/*z*=230.0765, calcd. for C₁₄H₁₄OS (M+H⁺): 230.0765.

(4-Methoxyphenyl)(octyl)sulfane(12f):^[62] The product was obtained as a yellow oil; yield: 168.9 mg (67%); ¹H NMR (400 MHz, CDCl₃): δ =7.34 (dd, *J*=6.6 and 2.2 Hz, 2H), 6.77 (dd, *J*=6.6 and 2.2 Hz, 2H), 3.72 (s, 3H), 2.74 (t, *J*=7.3 Hz, 2H), 2.43–2.41 (m, 2H), 1.55–1.46 (m, 6H), 1.32–1.28 (m, 2H), 1.21–1.18 (m, 2H), 0.82–0.78 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =158.7, 132.9, 126.9, 114.4, 55.3, 35.8, 34.3, 31.8, 29.1, 28.8, 22.6, 15.5, 14.1; IR (KBr): ν =2954, 2925, 2854, 1593, 1493, 1463, 1284, 1245, 1035, 826, 638 cm⁻¹; HR-MS: *m/z*=252.1550, calcd. for C₁₅H₂₄OS (M + H⁺): 252.1548.

Acknowledgements

We thank DST, UGC, University of Delhi (DU-DST PURSE) for financial support, USIC for instrumentation facilities. R.R.J, R.C, and A.D are greatful to CSIR, RGNF and DST for the Fellowships.

References

- [1] Reviews on transition metal-catalyzed reactions, see: a) J. Magano, J. R. Dunetz, Chem. Rev. 2011, 111, 2177-2250, and references cited therein; b) X. Chen, K. M. Engle, D. Wang, J. Q. Yu, Angew. Chem. 2009, 121, 5196-5217; Angew. Chem. Int. Ed. 2009, 48, 5094-5115; c) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976-10011; Angew. Chem. Int. Ed. 2009, 48, 9792-9826; d) I. Nakamura, Y. Yamamoto, Chem. Rev. 2004, 104, 2127-2198; e) J. A. Gladysz, Chem. Rev. 2011, 111, 1167-1169; f) H. Li, C. C. C. J. Seechurn, T. J. Colacot, ACS Catal. 2012, 2, 1147-1164; g) T. M. Shaikh, C.-M. Weng, F.-E. Hong, Coord. Chem. Rev. 2012, 256, 771-803; h) C. C. C. J. Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. 2012, 124, 5150-5174; Angew. Chem. Int. Ed. 2012, 51, 5062-5085; i) G. Cahiez, A. Moyeux, Chem. Rev. 2010, 110, 1435-1462; j) A. Roglans, A. P. -Quintana, M. Moreno-Manas, Chem. Rev. 2006, 106, 4622-4643; k) J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359-1469.
- [2] a) A. Suzuki, Angew. Chem. 2011, 123, 6854–6869; Angew. Chem. Int. Ed. 2011, 50, 6722–6737; b) E. I. Negishi, Angew. Chem. 2011, 123, 6870–6897; Angew. Chem. Int. Ed. 2011, 50, 6738–6764; c) X. F. Wu, P. Anbarasan, H. Neumann, M. Beller, Angew. Chem. 2010, 122, 9231–9234; Angew. Chem. Int. Ed. 2010, 49, 9047– 9050; d) M. J. Niphakis, G. I. Georg, Org. Lett. 2011, 13, 196–199; e) H. A. Ioannidou, C. Kizas, P. A. Koutentis, Org. Lett. 2011, 13, 3466–3469; f) F. Proutiere, F. Schoenebeck, Angew. Chem. 2011, 123, 8342–8345; Angew. Chem. Int. Ed. 2011, 50, 8192–8195.
- [3] a) R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461–1473; b) G. C. Fu, Acc. Chem. Res. 2008, 41, 1555–1564; c) R. Chinchilla, C. Njera, Chem. Rev. 2007, 107, 874–922; d) A. Molnar, Chem. Rev. 2011, 111, 2251–2320; e) S. M. Islam, P. Mondal, K. Tuhinab, A. S. Roya, J. Chem. Technol. Biotechnol. 2010, 85, 999–1010, and references cited therein.

- [4] a) C. Johansson, T. J. Colacot, Angew. Chem. 2010, 122, 686–718; Angew. Chem. Int. Ed. 2010, 49, 676–707;
 b) H. Doucet, J. C. Hierso application, Angew. Chem. 2007, 119, 850–888; Angew. Chem. Int. Ed. 2007, 46, 834–871; c) M. Nakanishi, D. Katayev, C. Besnard, E. P. Kundig, Angew. Chem. 2011, 123, 7576–7579; Angew. Chem. Int. Ed. 2011, 50, 7438–7441; d) Z. Wang, K. Li, D. Zhao, J. Lan, J. You, Angew. Chem. 2011, 123, 5477–5481; Angew. Chem. Int. Ed. 2011, 50, 5365–5369.
- [5] a) A. Zapf, M. Beller, *Chem. Commun.* 2005, 431–440, and references cited therein; b) D. S. Surryand, S. L. Buchwald, *Angew. Chem.* 2008, *120*, 6438–6461; *Angew. Chem. Int. Ed.* 2008, 47, 6338–6361.
- a) A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. [6] 2000, 122, 4020-4028; b) A . Zapf, A. Ehrentraut, M. Beller, Angew. Chem. 2000, 112, 4315-4317; Angew. Chem. Int. Ed. 2000, 39, 4153-4155; c) J. P. Stambuli, R. Kuwano, J. F. Hartwig, Angew. Chem. 2002, 114, 4940-4942; Angew. Chem. Int. Ed. 2002, 41, 4746-4748; d) C. A. Fleckenstein, H. Plenio, Chem. Eur. J. 2007, 13, 2701-2716; e) C. A. Fleckenstein, H. Plenio, J. Org. Chem. 2008, 73, 3236-3244; f) N. Kataoka, Q. Shelby, J. P. Stambuli, J. F. Hartwig, J. Org. Chem. 2002, 67, 5553–5566; g) A. S. Guram, A. O. King, J. G. Allen, X. Wang, L. B. Schenkel, J. Chan, E. E. Bunel, M. M. Faul, R. D. Larsen, M. J. Martinelli, P. J. Reider, Org. Lett. 2006, 8, 1787-1789; h) T. Hoshi, T. Nakazawa, I. Saitoh, A. Mori, T. Suzuki, J. Sakai, H. Hagiwara, Org. Lett. 2008, 10, 2063-2066; i) K. L. Billingsley, K. W. Anderson, S. L. Buchwald, Angew. Chem. 2006, 118, 3564-3568; Angew. Chem. Int. Ed. 2006, 45, 3484-3488; j) K. Billingsley, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3358-3366; k) C. M. So, C. P. Lau, F. Y. Kwong, Angew. Chem. 2008, 120, 8179-8183; Angew. Chem. Int. Ed. 2008, 47, 8059-8063; 1) B. Bhayana, B. P. Fors, S. L. Buchwald, Org. Lett. 2009, 11, 3954–3957.
- [7] a) L. Ackermann, H. K. Potukuchi, A. Althammer, R. Born, P. Mayer, *Org. Lett.* 2010, *12*, 1004–1007; b) L. Ackermann, R. Vicente, N. Hofmann, *Org. Lett.* 2009, *11*, 4274–4276; c) L. Ackermann, *Synthesis* 2006, 1557–1571.
- [8] a) C. W. K. Gstttmayr, V. P. W. Bhm, E. Herdtweck, M. Grosche, W. A. Herrmann, Angew. Chem. 2002, 114, 1421–1423; Angew. Chem. Int. Ed. 2002, 41, 1363–1365;
 b) G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, Angew. Chem. 2003, 115, 3818–3821; Angew. Chem. Int. Ed. 2003, 42, 3690–3193; c) C. Song, Y. Ma, Q. Chai, C. Ma, W. Jiang, M. B. Andrus, Tetrahedron 2005, 61, 7438–7446; d) N. Marion, O. Navarro, J. Mei, E. D. Stevens, N. M. Scott, S. P. Nolan, J. Am. Chem. Soc. 2006, 128, 4101–4111; e) M. G. Organ, S. Calimsiz, M. Sayah, K. H. Hoi, A. J. Lough, Angew. Chem. 2009, 121, 2419–2423; Angew. Chem. Int. Ed. 2009, 48, 2383–2387.
- [9] a) W. A. Herrmann, K. Ofele, S. K. Schneider, E. Herdtweck, S. D. Hoffmann, *Angew. Chem.* 2006, *118*, 3943–3947; *Angew. Chem. Int. Ed.* 2006, *45*, 3859–3862;
 b) Q. Dai, W. Gao, D. Liu, L. M. Kapes, X. Zhang, *J. Org. Chem.* 2006, *71*, 3928–3934.
- [10] a) D. Bianchi, R. Bortolo, R. D'Aloisio, M. K. Ricci, Angew. Chem. 1999, 111, 734–736; Angew. Chem. Int. Ed. 1999, 38, 706–708; b) C. Yang, S. P. Nolan, Synlett

Advanced > Synthesis & Catalysis

2001, *10*, 1539–1542; c) M. J. Dai, B. Liang, C. H. Wang, Z. J. You, J. Xiang, G. B. Dong, J. H. Chen, Z. Yang, *Adv. Synth. Catal.* **2004**, *346*, 1669–1673.

- [11] a) M. R. Buchmeiser, K. Wurst, J. Am. Chem. Soc.
 1999, 121, 11101–11107; b) T. Kawano, T. Shinomaru, I. Ueda, Org. Lett. 2002, 4,
 2545–2547; c) C. Najera, J. Gil-Moito, S. Karlstrum, L. R. Falvello, Org. Lett. 2003, 5, 1451–1454.
- [12] a) D. Bourissou, O. Guerret, F. P. Gabai, G. Betrand, *Chem. Rev.* 2000, 100, 39–92; b) D.-H. Lee, M.-J. Jin, *Org. Lett.* 2011, 13, 252–255; c) G. A. Molander, B. Canturk, *Angew. Chem.* 2009, 121, 9404–9425; *Angew. Chem. Int. Ed.* 2009, 48, 9240–9261; d) D. F. Wass, M. F. Haddow, T. W. Hey, A. Guy Orpen, C. A. Russell, R. L. Wingad, M. Green, *Chem. Commun.* 2007, 2704– 2706; e) Q. Yao, M. Zabawa, J. Woo, C. Zheng, *J. Am. Chem. Soc.* 2007, 129, 3088–3089.
- [13] D. A. Alonso, C. Najera, M. C. Pacheco, Org. Lett. 2000, 2, 1823–1826.
- [14] X. Cui, Y. Zhou, N. Wang, L. Liu, Q. Guo, *Tetrahedron Lett.* 2007, 48, 163–167.
- [15] a) D. Yang, Y. C. Chen, N. Y. Zhu, Org. Lett. 2004, 6, 1577–1580; b) W. Chen, R. Li, B. Han, B. J. Li, Y. C. Chen, Y. Wu, L. S. Ding, D. Yang, Eur. J. Org. Chem. 2006, 1177–1184.
- [16] Q. Yao, E. P. Kinney, C. Zheng, Org. Lett. 2004, 6, 2997–2999.
- [17] For recent reviews, see: a) N. Miyaura, A. Suzuki, *Chem. Rev.* 1995, 95, 2457–2483; b) A. Suzuki, *J. Organomet. Chem.* 1999, 576, 147–168; c) M. Lamblin, L. N. Hardy, J. C. Hierso, E. Fouquet, F. X. Felpinb, *Adv. Synth. Catal.* 2010, 352, 33–79.
- [18] a) J. P. Wolfe, S. Wagaw, S. L. Buchwald, J. Am. Chem. Soc. 1996, 118, 7215–7215; b) J. P. Wolfe, S. L. Buchwald, J. Org. Soc., 1997, 62, 1264–1267; c) J. F. Marcoux, S. Wagaw, S. L. Buchwald, J. Org. Soc., 1997, 62, 1568–1569; d) D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 9722–9723; e) J. P. Wolfe, S. L. Buchwald, Angew. Chem. 1999, 111, 2570–2573; Angew. Chem. Int. Ed. 1999, 38, 2413–2416; f) J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 9550–9561.
- [19] For aminations see: a) J. F. Hartwig, *Synlett* 1997, 329–340; b) G. Mann, J. F. Hartwig, M. S. Driver, C. F. Rivas, *J. Am. Chem. Soc.* 1998, 120, 827–828.
- [20] B. C. Hamann, J. F. Hartwig, J. Am. Chem. Soc. 1998, 120, 3694–3703.
- [21] a) A. R. Katritzky, X. Lan, J. Z. Yang, O. V. Denisko. *Chem. Rev.* **1998**, *98*, 409–548; b) C. Richardson, P. J. Steel, *Dalton Trans.* **2003**, 992–1000.
- [22] a) C. A. Bessel, J. A. Margarucci, J. H. Acquaye, R. S. Rubmo, J. Crandai, A. J. Jircitano, K. J. Takeuchi, *J. Inorg. Chem.* **1993**, *32*, 5779–5784; b) J. P. Collman, M. Zhong, C. Zhang, S. Costanzo, *J. Org. Chem.* **2001**, *66*, 7892–7897.
- [23] a) A. K. Verma, T. Kesharwani, J. Singh, V. Tandon, R. C. Larock, Angew. Chem. 2009, 121, 1150—1163; Angew. Chem. Int. Ed. 2009, 48, 1138–1143; b) A. K. Verma, M. Joshi, V. P. Singh, Org. Lett. 2011, 13, 1630– 1633; c) A. K. Verma, J. Singh, R. C. Larock, Tetrahedron 2009, 65, 8434–8439; d) A. K. Verma, J. Singh, V. K. Sankar, R. Chaudhary, R. Chandra, Tetrahedron

Lett. **2007**, *48*, 4207–4210; e) A. K. Verma, J. Singh, R. Chaudhary, *Tetrahedron Lett.* **2007**, *48*, 7199–7202.

- [24] a) A. K. Verma, S. P. Shukla, J. Singh, V. Rustagi, J. Org. Chem. 2011, 76, 5670–5684; b) A. R. Katritzky, J. wu, Synthesis 1994, 597–600.
- [25] See the Supporting Information.
- [26] a) A. G. Myers, N. J. Tom, M. E. Fraley, s. B. Cohen, D. J. Madar, J. Am. Chem. Soc. 1997, 119, 6702–6710;
 b) N. K. Garg, D. D. Caspi, B. M. Stoltz, J. Am. Chem. Soc. 2004, 126, 9552–9553; c) G. Bringmann, R. Gotz, P. A. Keller, R. Walter, M. R. Boyd, F. Lang, A. Garacia, J. J. Walsh, L. Tellitu, K. V. Bhaskar, T. R. Kelly, J. Org. Chem. 1998, 63, 1090–1097.
- [27] a) T. Hoshi, I. Saitoh, T. Nakazawa, T. Suzuki, J. Sakai, H. Hagiwara, J. Org. Chem. 2009, 74, 4013–4016; b) K. R. J. Thomas, P. Tyagi, J. Org. Chem. 2010, 75, 8100–8111, and references cited therein; c) O. Navarro, R. A. Kelly, E. D. Stevens, S. P. Nolan, J. Am. Chem. Soc. 2003, 125, 16194–16195; d) G. Altenhoff, G.; R. Goddard, C. W. Lehmann, F. Glorius, J. Am. Chem. Soc. 2004, 126, 15195–15201.
- [28] a) M. J. Niphakis, G. I. Georg, Org. Lett. 2011, 13, 196–199; b) M. Anniyappan, D. Muralidharan, P. T. Perumal, Tetrahedron Lett. 2003, 44, 3653–3657; c) L. H. Singer, N. P. Kong, J. Am. Chem. Soc. 1966, 88, 5213–5219; d) N. Ravindranath, C. Ramesh, M. R. Reddy, B. Das, Chem. Lett. 2003, 3, 222–223; e) R. A Smits, H. D. Lim, A. Hanzer, J. Med. Chem. 2008, 51, 2457–2467.
- [29] a) A. K. Verma, S. Bansal, J. Singh, R. K. Tiwari, V. K. Sankar, V. Tandon, R. Chandra, Bioorg. Med. Chem, 2006, 14, 6733-6736, and references cited therein; b) J. W. Landen, V. Hau, M. Wang, T. Davis, B. Ciliax, B. H. Wainer, E. G. V. Meir, J. D. Glass, H. C. Joshi, D. R. Archer, Clin. Cancer Res. 2004,10, 5187-5201; c) R. C. Mishra, P. Karna, S. R. Gundala, V. Pannu, R. A. Stanton, K. K. Gupta, M. H. Robinson, M. Lopus, L. Wilson, M. Henary, R. Aneja, Biochem. Pharmacol. 2011, 82, 110-121; d) R. A. Stanton, K. M. Gernert, J. H. Nettles, R. Aneja, Med. Res. Rev. 2011, 31, 443-481; e) R. Aneja, T. Miyagi, P. Karna, T. Ezell, D. Shukla, M. V. Gupta, C. Yates, S. R. Chinni, H. Zhau, L. W. Chung, H. C. Joshi, *Eur. J. Cancer* **2010**, 46, 1668-1678; f) K. Ye, Y. Ke, N. Keshava, J. Shanks, J. A. Kapp, R. R. Tekmal, J. Petros, H. C. Joshi, Proc. Natl. Acad. Sci. USA 1998, 95, 1601-1606.
- [30] a) R. F. Heck, J. P. Nolley Jr, J. Org. Chem. 1972, 37, 2320–2322; b) J. L. Bras, J. Muzart, Chem. Rev. 2011, 111, 1170–1214, and references cited therein; c) S. J. Danishefsky, J. J. Masters, W. B. Young, J. T. Link, L. B. Snyder, T. V. Magee, D. K. Jung, R. C. A. Isaacs, W. G. Bornmann, C. A. Alaimo, C. A. Coburn, M. J. Di Grandi, J. Am. Chem. Soc. 1996, 118, 2843–2859; d) C. Y. Hong, N. Kado, L. E. Overman, J. Am. Chem. Soc. 1993, 115, 11028–11029; e) V. H. Rawal, S. Iwasa, J. Org. Chem. 1994, 59, 2685–2686; f) L. E. Overman, D. J. Ricca, V. D. Tran, J. Am. Chem. Soc. 1993, 115, 2042–2044; g) D. J. Kucera, S. J. O'Connor, L. E. Overman, J. Org. Chem. 1993, 58, 5304–5306.
- [31] a) N. P. Grimster, C. Gauntlett, C. R. A. Godfrey, M. J. Gaunt, Angew. Chem. 2005, 117, 3185–3189; Angew. Chem. Int. Ed. 2005, 44, 3125–3129; b) L. Djakovitch, P. Rouge, J. Mol. Catal. A 2007, 273, 230–239; c) I.

Moritani, Y. Fujiwara, *Tetrahedron Lett.* **1967**, *8*, 1119–1122.

- [32] a) D.-S. Kim, J. Ham, Org. Lett. 2010, 12, 1092–1095 and references cited therein; b) S. S. Bag, R. Kundu, M. Das, J. Org. Chem. 2011, 76, 2332–2337; c) O. Vechorkin, D. Barmaz, V. Proust, X. Hu, J. Am. Chem. Soc. 2009, 131, 12078–12079 and references cited therein.
- [33] a) K. K. Wang, *Chem. Rev.* **1996**, *96*, 207–222; b) A. Basak, S. Mandal, S. S. Bag, *Chem. Rev.* **2003**, *103*, 4077–4094.
- [34] a) E.-I. Negishi, S. Baba, J. Chem. Soc. Chem. Commun. 1976, 596–597; b) S. Baba, E.-I. Negishi, J. Am. Chem. Soc. 1976, 98, 6729–6731; c) M. Carril, R. S. Martin, E. Dominguez, Chem. Soc. Rev. 2008, 37, 639– 647; d) Z. Huang, E.-I. Negishi, J. Am. Chem. Soc. 2007, 129, 14788–14792.
- [35] a) S. Schroter, C. Stock, T. Bach, *Tetrahedron* 2005, 61, 2245–2267; b) S.-W. Cheng, M.-C. Tseng, K.-H. Lii, C.-R. Leec, S.-G. Shyu, *Chem. Commun.* 2011, 47, 5599–5601; c) I. P. Beletskaya, V. P. Ananikov, *Chem. Rev.* 2011, 111, 1596–1636; d) P. H. Lee, Y. Park, S. Park, E. Lee, S. Kim, *J. Org. Chem.* 2011, 76, 760–765; e) D. J. C. Prasad, G. Sekar, *Org. Lett.* 2011, 13, 1008–1011.
- [36] I. Novak, T. Abu-Izneid, J. Phys. Chem. A: 2009, 113, 9751–9756.
- [37] A. K. Verma, R. R. Jha, V. K. Sankar, T. Aggarwal, R. P. Singh, R. Chandra, *Eur. J. Org. Chem.* 2011, 11, 6998–7010.
- [38] A. R. Katritzky, C. V. Hughes, S. Rachwal, J. Heterocycl. Chem. 1989, 26, 1579–1588.
- [39] R. R. Jha, R. Chaudhary, R. Chandra, A. K. Verma, J. Indian Chem. Soc. 2011, 88, 1187–1194.
- [40] K. Billingsley, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3358–3366.
- [41] Y.-Y. Peng, J. Liu, X. Lei, Z. Yin, Green Chem. 2010, 12, 1072–1075.
- [42] D. T. Tung, D. T. Tuan, N. Rasool, A. Villinger, H. Reinke, C. Fischer, P. Langera, *Adv. Synth. Catal.* 2009, *351*, 1595–1609.
- [43] T. Aggarwal, M. Imam, N. K. Kaushik, V. S. Chauhan, A. K. Verma, ACS Comb. Sci. 2011, 13, 530–536.

- [44] C. Acuff, D. Kalman, PCT Int. Appl. 2010030582, 2010.
- [45] G. Xie, P. Chellan, J. Mao, K. Chibale, G. S. Smith, *Adv. Synth. Catal.* **2010**, 352, 1641–1647.
- [46] A. V. Mekhaev, A. V. Pestov, P. A. Slepukhin, Yu. G. Yatluk, M. G. Pervova, M. A. Samorukova, O. N. Chupakhin, *Russian. J. Org. Chem.* **2011**, 47, 1366–1369.
- [47] S. Proch, Y. Mei, J. M. R. Villanueva, Y. Lu, A. Karpov, M. Ballauff, R. Kempe, *Adv. Synth. Catal.* **2008**, *350*, 493–500.
- [48] J. Ye, X. Zhang, W. Chen, S. Shimada, Organometallics 2008, 27, 4166–4172.
- [49] A. K. Gupta, C. H. Song, C. H. Oh, *Tetrahedron Lett.* 2004, 45, 4113–4116.
- [50] R. Alvarez, C. Martinez, Y. Madich, J. Denis, J. M. Aurrecoechea, A. R. de Lera, *Chem. Eur. J.* 2010, 16, 12746–12753.
- [51] N. P. Grimster, C. Gauntlett, C. R. A. Godfrey, M. J. Gaunt, Angew. Chem. 2005, 117, 3185–3189; Angew. Chem. Int. Ed. 2005, 44, 3125–3129.
- [52] T. Li, X. Qu, G. Xie, J. Mao, Chem. Asian J. 2011, 6, 1325–1330.
- [53] T. Li, X. Qu, Y. Zhu, P. Sun, H. Yang, Y. Shan, H. Zhang, D. Liu, X. Zhang, J. Mao, *Adv. Synth. Catal.* **2011**, *353*, 2731–2738.
- [54] A. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7727–7729.
- [55] S. Haneda, Y. Adachi, M. Hayashi, *Tetrahedron* 2009, 65, 10459–10462.
- [56] H. Zhang, Q. Cai, D. Ma, J. Org. Chem. 2005, 70, 5164– 5173.
- [57] R. Zhu, L. Xing, X. Wang, C. Cheng, D. Su, Y. Hu, Adv. Synth. Catal. 2008, 350, 1253–1257.
- [58] F. A. Neugebauer, H. Fischer, Chem. Ber. 1971, 104, 886–894.
- [59] Y. Feng, H. Wang, F. Sun, Y. Li, X. Fu, K. Jin, *Tetrahe*dron 2009, 65, 9737–9741.
- [60] X.-Y. Zhang, X.-Y. Zhang, S.-R. Guo, J. Sulfur Chem. 2011, 32, 23–35.
- [61] D. J. C. Prasad, G. Sekar, Org. Lett. 2011, 13, 1008– 1011.
- [62] W. Deng, Y. Zou, Y.-F. Wang, L. Liu, Q.-X. Guo Synlett 2004, 1254–1258.

438