ORIGINAL ARTICLE

A Phenylamine-Oligothiophene-Based Fluorescent Chemosensor for Selective Detection of Hg(II)

Qingfen Niu¹ · Xingxing Wu¹ · Tianduo Li¹ · Yuezhi Cui¹ · Shanshan Zhang¹ · Qiuchen Su¹

Received: 19 November 2015 / Accepted: 27 March 2016 / Published online: 7 April 2016 © Springer Science+Business Media New York 2016

Abstract A phenylamine-oligothiophene-based fluorescent chemosensor I3TEA was reported. This sensor exhibited highly selective and fast detection of Hg²⁺ ion in MeCN/H₂O (8/2, ν/ν) solution through fluorescence quenching. The detection was unaffected by the other competitive metal cations. The low detection limit was found to be 5.92×10^{-7} M. In addition, the recognition process is reversible and confirmed by EDTA experiment.

Keywords Fluorescence chemosensor · Mercury ion · Phenylamine-oligothiophene · Quenching

Introduction

The development of sensitive imaging instruments capable of detecting heavy and transition metal (HTM) ions has attracted much attention due to the wide use of these metal ions and their subsequent impact on the environmental and biological

Highlights

- A phenylamine-oligothiophene-based fluorescent chemosensor I3TEA was reported.
- The sensor exhibited highly selective and sensitive detection of Hg^{2+} .
- This sensor could rapidly detect Hg²⁺ ion in real time.

Electronic supplementary material The online version of this article (doi:10.1007/s10895-016-1793-4) contains supplementary material, which is available to authorized users.

Qingfen Niu qf_niu1216@qlu.edu.cn systems. Mercury is considered a great health threat because both elemental and ionic mercury can be converted into highly toxic organo-mercury compounds by bacteria in the environment, which subsequently bio-accumulates through the food chain [1, 2]. Mercury can cause many serious health issues since it can easily and quickly pass through the outer skin, respiratory and cell membranes, leading to DNA damage, mitosis impairment, and permanent damage to the central nervous system [3, 4]. Therefore, the development of more efficient chemosensors which can monitor Hg²⁺ ions is very important.

In recent years, fluorescent sensors are very useful tools to monitor HTM ions because of their superior sensitivity and selectivity, low cost, facile operation, non-destructive analysis, instant response, local observation and the wide spread availability of equipment for analysis [5–7]. To date, many fluorescent chemosensors for selective detection of Hg^{2+} and other HTM ions have been reported [8–28], but some practical applications are limited. Therefore, the development of more efficient fluorescent chemosensors for detecting HTM ions is still a challenge.

Our previous studies reported the synthesis, electrochemical and photophysical properties of a phenylamineoligothiophene-based derivative I3TEA [29] (Scheme 1). Today, in order to further expand our interest to the fluorescent chemosensor for metal-ion screening studies, we continue to investigate its cation-sensing properties. In this paper, the experimental results demonstrated that I3TEA exhibited an obvious fluorescence turn-off response to Hg^{2+} with high selectivity and sensitivity over other metal cations such as Mn^{2+} , Cr^{6+} , Na^+ , K^+ , Ag^+ , Ca^{2+} , Al^{3+} , Co^{2+} , Cu^{2+} , Ni^{2+} , Zn^{2+} , Pb^{2+} , Cd^{2+} , Fe^{2+} and Cr^{3+} in MeCN/H₂O (8/2, ν/ν) solution. In addition, this sensor showed low detection limit and rapid response time.

¹ Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353, People's Republic of China

Scheme 1 The synthetic route for the sensor I3TEA

Experimental

Reagents

Unless otherwise stated, solvents and reagents were of analytical grade from commercial suppliers, and were used without further purification. Metal salts were purchased from Sigma-Aldrich and used as received. MeCN was spectrometric grade and purchased from Qingdao Yage Chemical Reagent Company. Water was deionized with a Milli-OSP reagent water system (Millipore) to a specific resistivity of 18.4 M Ω cm. MeCN and deionized water were used in all of the experiments. All other reagents are analytical grade and also from Beijing Chemical works. The salts used in stock solutions of metal ions were MnCl₂·4H₂O, K₂Cr₂O₇, NaNO₃, Ca(NO₃)₂·4H₂O, Al(NO₃)₃·9H₂O, Pb(NO₃)₂, Cu(NO₃)₂·3H₂O, AgNO₃, Zn(NO₃)₂·6H₂O, Cd(NO₃)₂·4H₂O, Fe(NO₃)₃·9H₂O, Co(NO₃)₂·6H₂O, Ni(NO₃)₂·6H₂O, KNO₃, Hg(NO₃)₂·H₂O, FeCl₂·4H₂O and CrCl₃·6H₂O. I3TEA was prepared as reported previously [29].

Apparatus

All UV-visible absorption spectra were recorded with a Shimadzu UV-2600 spectrophotometer at room temperature. All fluorescence measurements were carried out on a Hitachi F-4600 fluorescence spectrophotometer with a scan rate at 1200 nm/min. The excitation wavelength was set at 320 nm. The slits for excitation and emission were set at 5 nm/5 nm, respectively.

General Procedures for Spectral Determination

All tests described in this paper were carried out at room temperature. All the metal salts of Mn^{2+} , Cr^{6+} , Na^+ , K^+ , Ag^+ , Ca^{2+} , Fe^{3+} , Al^{3+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Pb^{2+} , Cd^{2+} , Hg^{2+} , Fe^{2+} and Cr^{3+} were dissolved in water to prepare the stock solution with the concentration of 1.0×10^{-3} M. I3TEA was dissolved in MeCN to give the stock solution (5.0×10^{-3} M) and diluted with a mixed solution of MeCN/H₂O to prepare the analytical solution (5.0×10^{-6} M) in MeCN/H₂O (8/2, ν/ν) solution. The stock solution of the metal cations and I3TEA was used directly in the spectroscopic measurement. For the sensitivity measurement, different concentrations of Hg^{2+} ions were added to the assay solution, and the fluorescence spectra were recorded. The selectivity was checked by addition of Mn^{2+} , Cr^{6+} , Na^+ , K^+ , Ag^+ , Ca^{2+} , Fe^{3+} , Al^{3+} , Co^{2+} , Ni^{2+} , Cd^{2+} , Zn^{2+} , Pb^{2+} , Cu^{2+} , Fe^{2+} and Cr^{3+} in to the stock solution.

Results and Discussion

To explore the sensing ability of I3TEA, 17 metal cations including Mn^{2+} , Cr^{6+} , Na^+ , K^+ , Ca^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Fe^{3+} , Pb^{2+} , Ag^+ , Cd^{2+} , Hg^{2+} , Al^{3+} , Cr^{3+} and Fe^{2+} has been studied using both UV–Vis and fluorescence techniques. The UV-Vis absorption spectrum of sensor I3TEA (5 μ M) was investigated in the presence of metals cations (10 μ M) in MeCN/ H_2O (8:2, ν/v) solution. As is shown in Fig. 1, sensor I3TEA exhibited strong absorption in the range 300–450 nm, however, almost no remarkable changes were observed in absorption spectra upon the addition of various metal cations such as Mn^{2+} , Cr^{6+} , Na^+ , K^+ , Ca^{2+} , Co^{2+} , Ni^{2+} , Zn^{2+} , Fe^{3+} , Pb^{2+} , Cd^{2+} , Al^{3+} , Cr^{3+} and Fe^{2+} ions. Surprisingly, the strong absorption intensity of peak of sensor I3TEA highly quenched upon addition of Hg^{2+} to the solution. These obvious observations indicate that sensor I3TEA shows high selectivity towards Hg^{2+} in MeCN/H₂O (8:2, ν/v) solution.

To further research the availability of I3TEA as a highly selective sensor for Hg^{2+} , the selectivity studies were performed by recording the fluorescence spectra of I3TEA after the addition of representative metal cations in MeCN/H₂O (8:2, v/v) solution. All the results indicated that the fluorescence intensity of I3TEA strongly quenched in the presence of the Hg^{2+} ion (2.0 equiv.) (Fig. 2), accompanied by a green-yellow color fluorescence turn-off response (Fig. 2, inset), while, other metal cations induced no or small significant change in the fluorescence emission spectra relative to the free I3TEA. These dramatical observations also indicate that sensor I3TEA displays considerably high selectivity toward Hg^{2+} in MeCN/H₂O (8:2, v/v) solution over other competitive metal cations.

Fig. 1 Fluorescence spectra of I3TEA (5.0×10^{-6} M) in aqueous solution (MeCN/H₂O, 8/2, ν/ν) in the presence of various cations (2.0 equiv). Inset: Photos of I3TEA without and with addition of Hg²⁺ under the irradiation of UV light at 365 nm

Fig. 2 UV-vis absorption spectra of I3TEA (5 μ M) in the presence of 2.0 equiv. of different metal ions

The binding stoichiometry between the sensor and metal cation is very important in relation to the sensing properties. The fluorescence titration of I3TEA (5 μ M) with Hg²⁺ (0–2.0 equiv) was therefore carried out in MeCN/H2O (8/2, v/v) solution shown in Fig. 3. Upon addition of Hg^{2+} ion, the fluorescence intensity decreased gradually at 498 nm and then tended to be saturated with 1.0 equiv. of Hg²⁺. However, when more Hg²⁺ solution was titrated, the fluorescence intensity showed negligible changes and the curve (Fig. 3, inset) remained relatively constant, indicating the formation of a 1:1 binding between I3TEA and Hg²⁺. From the fluorescence titration experimental results (Fig. 4), a good liner relationship between the fluorescence intensity and the Hg²⁺ concentration was found in the concentration range $(0-5 \mu M)$ with corresponding correlation coefficient (R) of 0.99651. The "R" value demonstrated a 1:1 stoichiometric ratio between I3TEA and the binding metal cation Hg^{2+} . In addition, the fluorometric titration data was used to obtain the detection limit of I3TEA for Hg²⁺. The detection limit was calculated to be

Fig. 3 Fluorescence emission spectra of I3TEA (5 μM) was titrated with Hg^{2+} (0–2.0 equiv) in aqueous solution (MeCN/H₂O, 8/2, ν/v). Inset: Plot of the fluorescence intensity at 498 nm as a function of Hg^{2+} concentration

Fig. 4 Calibration curve of I3TEA–Hg $^{2+}$ in MeCN/H2O (8/2, $\nu/\nu)$ solution

 5.92×10^{-7} M for Hg²⁺ ion based on the equation DL = K × SD/S, where K = 3, SD is the standard deviation of the blank solution, and S is the slope of the calibration curve [30, 31]. The DL was sufficiently low to detect submillimolar concentration of the Hg²⁺ ion, which belongs to the range found in many chemical and biological systems. To further determine the stoichiometry of the I3TEA–Hg²⁺ complex, the fluorescence intensity of sensor I3TEA at 498 nm were plotted as a function of their molar fraction under a constant total concentration (5.0 µM). Figure 5 shows the result of Job's plot analysis, the maximum emission intensity was reached at a molar fraction of 0.5, which further gave solid evidence for the formation of a 1:1 complex of I3TEA-Hg²⁺.

Sensor I3TEA likely chelates metal ion via the amine N atom of the aniline moiety, as other reported [32–34]. Mercury nitrate has structure in which covalent bonding is important

Fig. 5 Job's plot for determining the stoichiometry for I3TEA and Hg²⁺ in MeCN/H₂O (8/2, ν /v). The total concentration was 5 μ M

and easily form amine-mercury(II) salt π -complexes with amine ligand, specially primary amine I3TEA. The proposed binding model between I3TEA and Hg²⁺ was suggested in Scheme S1. The IR spectra of I3TEA was recorded in the presence of Hg²⁺ ion (Fig. S1). IR spectra of I3TEA and I3TEA-Hg²⁺ complex exhibited that the peak at 3332 and 3411 cm^{-1} corresponding to the characteristic NH₂ group stretching vibration absorption of I3TEA was shifted to a higher wavenumber (3534 and 3589 cm⁻¹) upon addition of Hg²⁺ (1.0 equiv). A substantial blue shift upon coordination of the N-donor atom of the amine group indicates electron transfer from oligothiophene to phenylamine after coordination to the mercury center in the case of I3TEA. Our experimental results presented are in good agreement with the reported literature. Thus, the changes above can be explained by the amine group of I3TEA participated in the formation of aminemercury(II) salt π -complex.

High selectivity for the analyte of interest over a complex background of various competitive metal cations is an important feature for an effective sensor. To further gauge selectivity of the sensor I3TEA toward Hg^{2+} , the competition experiments were carried out by recording the fluorescence spectra of I3TEA (5 μ M) with Hg^{2+} (2.0 equiv.) in the presence of other competing metal cations (2.0 equiv.) shown in Fig. 6. No significant variation in the fluorescence was observed in the presence and absence of other metal cations, and the relative error was less than \pm 5 %. These results above indicate that the recognition of Hg^{2+} by I3TEA is almost uninfluenced by other coexisting metal cations.

The reversibility of the chemosensor is particularly attractive properties for practical application. The EDTA experiments were conducted to examine the reversibility of I3TEA

Fig. 6 Fluorescence intensity of I3TEA (5 μ M) compared to various metal cations in MeCN/H₂O (8/2, ν/v) solution. The *red bars* represent the emission of the MeCN in the presence of 2.0 equiv. of metal ions; the *black bars* represent the emission of the above solution upon the addition of 2.0 equiv. of Hg²⁺

Fig. 7 Fluorescence spectra of I3TEA in the absence and presence of Hg^{2+} and EDTA. $[Hg^{2+}] = 10 \ \mu M$, $[I3TEA] = 5 \ \mu M$, $[EDTA] = 50 \ \mu M$

toward Hg^{2+} ion in MeCN/H₂O (8/2, ν/ν) solution as shown in Fig. 7, the solution changed from colorless to green-yellow when EDTA (5.0 equiv) was added to the solution of I3TEA/Hg²⁺, and the fluorescence was turned on in several seconds. These obvious results indicate that the coordination process is reversible and thus I3TEA is a reversible chemosensor for Hg²⁺ ion in aqueous solutions.

Reaction time is an important factor for sensors, thus the effect of the reaction time on the binding process of Hg^{2+} ion to I3TEA was investigated (Fig. 8). Following the addition of Hg^{2+} ion (10 μ M) to I3TEA (5 μ M), the fluorescence intensity of I3TEA was quenched rapidly, reaching a stable value within 3 min and then remaining constant from 3 to 10 min. Thus the rapid, stable complexation of Hg^{2+} ion by I3TEA and the resulting fast response profile are important features for robust, real time detection of Hg^{2+} ion by portable device in field.

Fig. 8 Fluorescence quenching profile of addition Hg^{2+} (10 μ M) to I3TEA (5 μ M) in MeCN/H₂O (8/2, ν /v) solution from 1 to 10 min

Conclusions

In summary, a phenylamine-oligothiophene-based fluorescent sensor I3TEA was reported, and its sensing ability toward metal cations was investigated. I3TEA exhibited highly selective, sensitive and rapid fluorescence turn-off response to Hg^{2+} ion in aqueous solution (MeCN/H₂O, 8/2, ν/ν). The quite low detection limit was found to be 5.92×10^{-7} M. The coordination process of sensor I3TEA and Hg^{2+} was chemically reversible with EDTA. In addition, this sensor could detect Hg^{2+} ion in real time, permitting its incorporation into a portable mercury detection kit in aqueous environment.

Acknowledgment We gratefully acknowledge the support by NSF China Nos. 21376125/21276149 and Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

References

- Zhang T, Kim B, Levard C, Reinsch BC, Lowry GV, Deshusses MA, Hsu-Kim H (2012) Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 46:6950–6958
- Fitzgerald WF, Lamgorg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662
- Gutknecht J (1981) Inorganic mercury (Hg²⁺) transport through lipid bilayer membranes. J Membr Biol 61:61–66
- Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175
- Wright AT, Anslyn EV (2006) Differential receptor arrays and assays for solution-based molecular recognition. Chem Soc Rev 35: 14–28
- Liu J, Lu Y (2004) Colorimetric biosensors based on DNAzymeassembled gold nanoparticles. J Fluoresc 14:343–354
- Lee JH, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric sensors for Uranyl (UO2²⁺): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226
- Piyanuch P, Watpathomsub S, Lee VS, Nienaber HA, Wanichacheva N (2016) Highly sensitive and selective Hg²⁺chemosensor based on dithia-cyclic fluorescein for optical and visual-eye detections in aqueous buffer solution. Sens Actuators B Chem 224:201–208
- Kim D-H, Seong J, Lee H, Lee K-H (2014) Ratiometric fluorescence detection of Hg(II) in aqueous solutions at physiological pH and live cells with a chemosensor based on tyrosine. Sens Actuators B Chem 196:421–428
- Jing S, Zheng C, Pu S, Fan C, Liu G (2014) A highly selective ratiometric fluorescent chemosensor for Hg²⁺ based on a new diarylethene with a stilbene-linked terpyridine unit. Dyes Pigments 107:38–44
- Zhang D, Li M, Wang M, Wang J, Yang X, Ye Y, Zhao YF (2013) A rhodamine-phosphonate off-on fluorescent sensor for Hg²⁺ in natural water and its application in live cell imaging. Sens Actuators B Chem 177:997–1002
- Zhang S, Niu Q, Wu X, Li T, Cui Y, Li X (2015) A Fast-Responsive fluorescent sensor for Hg²⁺ with high selectivity and sensitivity in aqueous media. J Fluores 25:1543–1548

- Wang M, Yan FY, Zou Y, Chen L, Yang N, Zhou XG, Recognition of Cu²⁺ and Hg²⁺ in physiological conditions by a new rhodamine based dual channel fluorescent probe. Sens Actuators B Chem 192: 512–521
- Niu Q, Wu X, Zhang S, Li T, Li X (2016) A highly selective and sensitive fluorescent sensor for the rapid detection of Hg²⁺ based on phenylamine-oligothiophene derivative. Spectrochim Acta Part A Mol Biomol Spectrosc 153:143–146
- Roy R, Rakshit S, Bhar S, Chandra Bhattacharya S (2015) A colorimetric and turn-on fluorescent chemosensor for selective detection of Hg²⁺: theoretical studies and intracellular applications. RSC Adv 5:67833–66784
- Park J, In B, Lee K-H (2015) Highly selective colorimetric and fluorescent detection for Hg²⁺ in aqueous solutions using a dipeptide-based chemosensor. RSC Adv 5:56356–56361
- Erdemir S, Kocyigit O, Malkondu S (2015) Detection of Hg²⁺ ion in aqueous media by new fluorometric and colorimetric sensor based on triazole-rhodamine. J Photoch Photobio A Chem 309: 15–21
- Pan J-T, Zhu F, Kong L, Yang L-M, Tao X-T, Tian Y-P, Lu H-B, Yang J-X (2015) A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye. Chem Pap 69:527–535
- Ni J, Li B, Zhang L, Zhao H, Jiang H (2015) A fluorescence turn-on probe based on rhodamine derivative and its functionalized silica material for Hg²⁺-selective detection. Sens Actuators B Chem 215:174–180
- Patil R, Fegade U, Kaur R, Sahoo SK, Singh N, Kuwar A (2015) Highly sensitive and selective determination of Hg²⁺ by using 3-((2-(1H-benzo[d]imidazol-2-yl)phenylimino)methyl)benzene-1,2diol as fluorescent chemosensor and its application in real water sample. Supramol Chem 27:527–532
- Angupillai S, Hwang J-Y, Lee J-Y, Rao BA, Son Y-A (2015) Efficient rhodamine-thiosemicarbazide-based colorimetric/ fluorescent 'turn-on' chemodosimeters for the detection of Hg²⁺ in aqueous samples. Sens Actuators B Chem 214: 101–110
- Jiang B, Li F, Yang C, Xie J, Xiang Y, Yuan R (2015) Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin e in human serum. Anal Chem 87:3094–3098
- 23. Zhang H, Huang Y, Hu S, Huang Q, Wei C, Zhang W, Kang L, Huang Z, Hao A (2015) Fluorescent probes for "off–on" sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets. J Mater Chem C 3:2093–2100
- Huang Q, Lin X, Lin C, Zhang Y, Hu S, Wei C (2015) A high performance electrochemical biosensor based on Cu₂O–carbon dots for selective and sensitive determination of dopamine in human serum. RSC Adv 5:54102–54108
- Lin X, Li S, Zheng F (2016) An integrated system for field analysis of Cd(II) and Pb(II) via preconcentration using nano-TiO₂/cellulose paper composite and subsequent detection with a portable X-ray fluorescence spectrometer. RSC Adv 6:9002–9006
- Niu L-Y, Jia M-Y, Chen P-Z, Chen Y-Z, Zhang Y, Wu L-Z, Duan C-F, Tung C-H, Guan Y-F, Feng L, Yang Q-Z (2015) Colorimetric sensors with different reactivity for the quantitative determination of cysteine, homocysteine and glutathione in a mixture. RSC Adv 5:13042–13045
- Afshani J, Badiei A, Karimi M, Lashgari N, Ziarani GM (2016) A Single fluorescent sensor for Hg²⁺ and Discriminately detection of Cr³⁺ and Cr(VI). J Fluoresc 26:263–270
- Helal A, Kim HS, Yamani ZH, Shaikh MN (2016) Fluorescein-N-Methylimidazole conjugate as Cu²⁺ sensor in mixed aqueous media through electron transfer. J Fluoresc 26:1–9

- Niu Q, Lu Y, Sun H, Li X (2014) Novel planar and star-shaped molecules: synthesis, electrochemical and photophysical properties. Spectrochim Acta Part A Mol Biomol Spectrosc 107:377–385
- Shortreed M, Kopelman R, Kuhn M, Hoyland B (1996) Fluorescent fiber-optic calcium sensor for physiological measurements. Anal Chem 68:1414–1418
- 31. Lin W, Yuan L, Cao Z, Feng Y, Long L (2009) A sensitive and selective fluorescent thiol probe in water based on the conjugate 1, 4-Addition of thiols to α , β -Unsaturated ketones. Eur J Chem 15: 5096–5103
- Barluenga J, Bayon AM, Perez-Prieto J, Asensio G (1984) The Actual Mercurating Species in the Mercuration of Aromatic Amines and the Aminomercuration of Olefins. Tetrahedron 40: 5053–5061
- Bahgat K, Orabi AS (2002) Physical characteristics, vibrational spectroscopy and normal-coordinate analysis of 2-aminophenol and 2-phenylenediamine complexes. Polyhedron 21:987–996
- Gustafsson B, Håkansson M, Hutton AT, Moss JR, Jagner S (2005) Complexes between copper(I) halides and 1,2-phenylenediamine. Inorg Chim Acta 358:1327–1330