An Expeditious Enantiospecific Total Synthesis of (+)-7-epi-Goniofufurone

Kavirayani R. Prasad,* Shivajirao L. Gholap

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India Fax +91(80)23600529; E-mail: prasad@orgchem.iisc.ernet.in *Received 27 April 2005*

Abstract: Stereoselective synthesis of styryl lactone, (+)-7-*epi*-goniofufurone was achieved in high yield via simple transformations from tartaric acid. The key step involves the successive stereoselective reduction of ketones with borohydride and selectride.

Key words: styryl lactones, (+)-goniofufurone, stereoselective reduction

Trees of genus Goniothalamus of the plant family Annonaceae have been known for a long time as a source of potent biologically active styryl lactones.¹ Due to their proven use in folk medicine in Taiwan, Malaysia, and India to treat rheumatism, edema, as an abortifacient, and as a mosquito repellant, there has been an interest in the active ingredients as potential therapeutic targets. This resulted in the isolation by McLaughlin et al. of a series of styryl lactones which were reported to show cytotoxic, antitumor, pesticidal, ratogenic, and embryotoxic activities.² The styryl lactones isolated can be mainly classified into two groups related to the size of the lactone ring. The first group consists of the five-membered lactone moiety for e.g. 7-epi-(+)-goniofuturone (1) and goniofuturone (2). The second group consists of the six-membered lactones such as, goniotriol (3), etharvendiol (4), altholactone (5), and goniopyrone (6). Amongst these, goniofufurones containing a furanofurone bicyclic structure has exhibited significant cytotoxic activities against several human tumor cell lines.³ Coupled with their unique and intriguing structures as well as their broad spectrum of activity, these compounds have attracted the attention of several synthetic groups.⁴

Of the several syntheses reported for 7-*epi*-goniofufurone and its derivatives, most of them utilized carbohydrates such as D-glucose and D-mannose, as well as other chiral pool sources. For example Shing et al. reported the first synthesis of the title compound from D-glycero-D-guloheptano- γ -lactone.⁵ An elegant strategy involving a Wittig reaction of a lactol derived from glucose was described by Prakash and Rao.⁶ Mukai et al.⁷ utilized a chiral arene chromium(0) complex, while unstable chiral lactonic aldehydes as the key intermediates were employed by Tsubuki et al⁸ in their synthesis. Mereyala et al.⁹ described the synthesis of 7-*epi*-goniofufurone and its analogues involving a Pd(0)-mediated cyclization. Recently Su et al.

SYNLETT 2005, No. 14, pp 2260–2262 Advanced online publication: 13.07.2005 DOI: 10.1055/s-2005-871965; Art ID: D11205ST © Georg Thieme Verlag Stuttgart · New York

Figure 1 Bioactive styryllactones

recently disclosed a multi-step synthesis starting from a chiral aldehyde derived from D- and L-tartaric acid.¹⁰

During the course of the synthesis of symmetrical 1,4-diaryl diones from **7**, we observed that careful addition of Grignard reagent furnished the mono-addition product, keto amide **8**, which can be further elaborated. Thus, we envisaged that the known intermediate **14** for the synthesis of 7-*epi*-gonifufurone can easily be accessed via the reduction of the keto amide, as depicted in the retrosynthesis (Scheme 1).

Scheme 1 Retrosynthesis for (+)-epi-goniofufurone

Our synthesis of **1** began with the D-(–)-isopropylenedioxy tartaric amide **7**,¹¹ which on reaction with two equivalents of PhMgBr cleanly produced the mono-addition product keto amide **8** in 92% yield along with traces of the diketone. Stereoslective reduction of ketone **8** with NaBH₄/CeCl₃ resulted in the alcohols forming in a 94:6 ratio, with 9 being the major isomer.¹² Protection of the benzylic alcohol 9 as the corresponding TBDMS ether was realized in almost quantitative yield. Addition of 4butenylmagnesium bromide¹³ proceeded smoothly to give the ketone 10 in 91% yield. Stereoselective reduction of ketone 10 was accomplished with L-selectride to furnish the alcohol 11 in 86% yield after flash chromatography. Ozonolysis of alcohol 11 produced the corresponding lactol, which was oxidized to lactone 12 in 92% combined yield. Phenylselenation of the lactone followed by elimination of the phenylselenyl moeity furnished α , β -unsaturated ketone 13 in 65% isolated yield. On treatment with HCl/AcOH in THF the known triol 14 { $[\alpha]_D$ -83 (c 0.3, MeOH) [lit.⁵ -85 (c 0.3, MeOH)]}, was obtained in 70% yield, which upon treatment with DBU in THF produced 7-epi-(+)-goniofuturone (Scheme 2). All the physical constants and spectral data¹⁴ are in complete agreement with those reported in the literature. Similarly, starting from L-(+)-isopropylenedioxy tartaric amide (7), we synthesized the corresponding (-)-enantiomer in 19% overall vield.

In summary, we have shown that the rapid assembly of the pivotal intermediate containing four contiguous stereogenic centers en route to (+)-7-*epi*-goniofufurone is achieved in a short synthetic sequence. The strategy is

Scheme 2 Stereoselective synthesis of (+)-7-*epi*-goniofufurone a) PhMgBr (2 equiv), THF, -10 °C, 0.5 h; b) (i) NaBH₄ (1.2 equiv)/ CeCl₃ (1.2 equiv), -78 °C, 2 h; (ii) TBDMSCl (1.5 equiv), imidazole (3 equiv), DMAP (20 mol%), DMF, r.t., 6 h; c) butenylMgBr (2 equiv), THF, -10 °C, 0.5 h; d) L-Selectride (1.2 equiv), THF, -78 °C, 1 h; e) (i) O₃/Me₂S, MeOH–CH₂Cl₂, -78 °C to 0 °C, 4 h; (ii) PCC (2 equiv)/NaOAc/Celite/CH₂Cl₂, 1 h; f) (i) LiHMDS (2.5 equiv)/THF, -78 °C to -50 °C; PhSeCl (1.5 equiv) or PhSeSePh (1.5 equiv); (ii) 30% H₂O₂, CH₂Cl₂, 0 °C, 0.5 h; g) HCl–THF–AcOH (1:1:1), r.t., 6 h); cat. DBU/THF, r.t., 24 h.

general and is quite suitable for creating a pool of analogues in addition to the synthesis of other bioactive styryllactones. Further work in this direction is currently in progress.

Acknowledgment

We thank DST, New Delhi for funding of this project. SLG thanks IISc, Bangalore and CSIR, New Delhi for a research fellowship.

References

- For a review on styryllactones from *Goniothalamus* species see: Blàzquez, M. A.; Bermejo, A.; Zafra-Polo, M. C.; Cortes, D. *Phytochem. Anal.* **1999**, *10*, 161.
- (2) (a) Fang, X. P.; Anderson, J. E.; Chang, C. J.; Fanwick, P. E.; McLaughlin, J. L. J. Chem. Soc., Perkin. Trans. 1 1990, 1655. (b) Fang, X. P.; Anderson, J. E.; Chang, C. J.; McLaughlin, J. L.; Fanwick, P. E. J. Nat. Prod. 1991, 54, 1034. (c) Fang, X. P.; Anderson, J. E.; Chang, C. J.; McLaughlin, J. L. Tetrahedron 1991, 47, 9751.
- (3) For a review on the cytotoxic activity and other bioactivity of styryl lactones, see: Mereyala, H. B.; Joe, M. Curr. Med. Chem.: Anti-Cancer Agents 2001, 1, 293.
- (4) (a) Ye, J.; Bhatt, R. K.; Falck, J. R. *Tetrahedron Lett.* 1993, *34*, 8007. (b) Murphy, P. J.; Dennison, S. T. *Tetrahedron* 1993, *49*, 6695. (c) Gracza, T.; Jäger, V. *Synthesis* 1994, 1359. (d) Xu, D.; Sharpless, K. B. *Tetrahedron Lett.* 1994, *35*, 4685. (e) Yang, Z. C.; Zhou, W. S. *Tetrahedron 1995*, *51*, 1429. (f) Ko, S. Y.; Lerpiniere, J. *Tetrahedron Lett.* 1995, *36*, 2101. (g) Yi, X.-H.; Meng, Y.; Hua, X.-G.; Li, C.-J. *J. Org. Chem.* 1998, *63*, 7472. (h) Fernandez de la Pradilla, R.; Montero, C.; Priego, J.; Martinez-Cruz, L. A. *J. Org. Chem.* 1998, *63*, 9612. (i) Bruns, R.; Wernicke, A.; Koll, P. *Tetrahedron* 1999, *55*, 9793. (j) Surivet, J.-P.; Vatele, J.-M. *Tetrahedron* 1999, *55*, 13011.
- (5) Shing, T. K. M.; Tsui, H. C.; Zhou, Z. H. J. Org. Chem. **1995**, 60, 3121.
- (6) (a) Prakash, K. R. C.; Rao, S. P. *Tetrahedron* 1993, 49, 1505. (b) Prakash, K. R. C.; Rao, S. P. *Synlett* 1993, 123.
- (7) Mukai, C.; Kim, I. J.; Kido, M.; Hanaoka, M. *Tetrahedron* 1996, 52, 6547.
- (8) Tsubuki, M.; Kanai, K.; Nagase, H.; Honda, T. *Tetrahedron* 1999, 55, 2493.
- (9) (a) Mereyala, H. B.; Gadikota, R. R. *Indian J. Chem., Sect.* B: Org. Chem. Incl. Med. Chem. 2000, 39, 166.
 (b) Mereyala, H. B.; Gadikota, R. R.; Joe, M.; Arora, S. K.; Dastidar, S. G.; Agarwal, S. *Bioorg. Med. Chem.* 1999, 7, 2095.
- (10) Su, Y.-L.; Yang, C.-S.; Teng, S.-J.; Zhao, G.; Ding, Y. *Tetrahedron* **2001**, *57*, 2147.
- (11) (a) Toda, F.; Tanaka, K. J. Org. Chem. 1988, 53, 3607.
 (b) Seebach, D.; Hidber, A. Org. Synth., Coll. Vol. 7; Wiley: New York, 1990, 447.
- (12) The minor isomer was removed by simple crystallization from hexane–EtOAc.
- (13) We anticipated that the addition of vinyl magnesiumbromide to 9 followed by a stereoselective reduction of the ketone and RCM would yield the intermediate 14. However, addition of vinyl magnesium bromide to 9 proceeded with low yield. Full details of this strategy will be discussed in a future article.
- (14) All new compounds exhibited satisfactory spectral data. **8**: $[\alpha]_D + 23 (c \ 1, CHCl_3)$. ¹H NMR (300 MHz, CDCl_3): $\delta = 1.41$ (s, 3 H), 1.50 (s, 3 H), 3.00 (s, 3 H), 3.17 (s, 3 H), 5.16 (d, J = 5.7 Hz, 1 H), 5.934 (d, J = 5.4 Hz, 1 H), 7.40–7.65 (m,

Synlett 2005, No. 14, 2260-2262 © Thieme Stuttgart · New York

3 H), 8.05–8.15 (m, 2 H). ¹³C NMR (75 MHz): δ = 26.40, 35.97, 37.13, 75.04, 76.59, 77.43, 79.45, 112.56, 128.55, 129.41, 133.69, 134.94, 168.25, 196.38. Anal. calcd for C₂₁H₃₄NO₄Si: C, 64.97; H, 6.91. Found: C, 65.28; H, 7.02. **9**: $[\alpha]_{D}$ +67.5 (*c* 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = -0.14 (s, 3 H), -0.04 (s, 3 H), 0.84 (s, 9 H), 1.26 (s, 3 H), 1.34 (s, 3 H), 2.84 (s, 3 H), 2.99 (s, 3 H), 4.44 (d, *J* = 6.6 Hz, 1 H), 4.72-4.88 (m, 2 H), 7.15-7.40 (m, 5 H). 13C NMR (75 MHz): δ = -5.15, -4.85, 18.21, 25.71, 26.43, 26.71, 35.78, 36.96, 73.23, 74.14, 82.03, 110.97, 127.29, 127.52, 127.71, 140.59, 169.04. Anal. calcd for $C_{21}H_{35}NO_4Si: C, 64.08; H$, 8.96. Found: C, 64.10; H, 9.21. **11**: [α]_D +38.9 (*c* 1.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = -0.12$ (s, 3 H), 0.00 (s, 3 H), 0.82 (s, 9 H), 1.10 (s, 3 H), 1.32 (s, 3 H), 1.33-1.50 (m, 1 H), 1.85-2.15 (m, 3 H), 3.09 (br s, 1 H), 3.64 (dd, *J* = 8.1 Hz, 2.4 Hz 1 H), 4.10 (dd, *J* = 8.1 Hz, 5.4 Hz 1 H),

4.76 (d, J = 5.1 Hz, 1H), 4.80–5.00 (m, 2 H), 5.67 (ddt, J = 16.8 Hz, 10.2 Hz, 6.9 Hz, 1 H), 7.15–7.30 (m, 5 H). ¹³C NMR (75 MHz): $\delta = -4.99$, -4.85, 18.26, 25.79, 27.04, 27.39, 29.87, 33.87, 69.33, 75.54, 79.25, 80.57, 109.13, 114.79, 127.40, 127.78, 127.88, 138.14, 139.97. **13**: $[a]_D$ +11.7 (c 0.6, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.00$ (s, 3 H), 0.11 (s, 3 H), 0.90 (s, 9 H), 1.17 (s, 3 H), 1.34 (s, 3 H), 3.87 (dd, J = 8.1, 2.4 Hz, 1 H), 4.46 (dd, J = 8.1, 5.7 Hz, 1 H), 4.52 (q, J = 2.0 Hz, 1 H), 4.94 (d, J = 5.7 Hz, 1 H), 6.07 (dd, J = 5.7 Hz, 1.8 Hz, 1 H), 7.26 (dd, J = 5.7, 1.8 Hz, 1 H), 7.25–7.45 (m, 5 H). ¹³C NMR (75 MHz): $\delta = -4.97$, -4.94, 18.27, 25.79, 26.27, 26.99, 75.08, 75.11, 80.03, 81.47, 110.23, 122.14, 127.27, 128.03, 139.38, 153.10, 172.82. Anal. calcd for C₂₂H₃₃O₅Si: C, 65.31; H, 7.97. Found: C, 65.26; H, 7.80.