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Substituted pyrrolidine-2,4-dicarboxylic acid amides as potent
dipeptidyl peptidase IV inhibitors
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Abstract—A series of substituted pyrrolidine-2,4-dicarboxylic acid amides were synthesized as potential antidiabetic agents, and
many of them showed good in vitro DPP-IV inhibition (IC50 = 2–250 nM) with selectivity over DPP-II, DPP8, and FAP enzymes.
Selected compounds 8c and 11a showed in vivo plasma DPP-IV inhibition after oral administration in Wistar rats.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. DPP-IV inhibitors.
Dipeptidyl peptidase IV (DPP-IV; CD26; E.C. 3.4.14.5)
inhibition is a new and promising approach for the
treatment of type-II diabetes.1,2 Inhibition of DPP-IV
results in elevated circulating levels of endogenously
secreted glucagon-like peptide-1 (GLP-1),3 which is pro-
duced by L-cells of the small intestine in response to
food.4 GLP-1 stimulates the secretion of insulin in a glu-
cose dependent fashion, inhibits glucagon release, slows
gastric emptying, and induces satiety, each a benefit in
the control of glucose homeostasis in patients with
type-II diabetes. But the active form of GLP-1 is rapidly
inactivated (t1/2 � 1 min) by the plasma DPP-IV,
through the cleavage of the dipeptide from the N-termi-
nus, thereby limiting its duration of action.5,6 Thus,
inhibition of DPP-IV could lead to longer-lasting
GLP-1 levels, which in turn enhance insulin secretion
and improve the glucose tolerance. In fact human
clinical trials proved unequivocally the benefits of
DPP-IV inhibition in type-II diabetes patients.7 Several
DPP-IV inhibitors are under late-stage clinical develop-
ment, including NVP-LAF237 (1),8 MK-0431 (2),9 and
BMS-477118 (3)10 (Fig. 1).
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DPP-IV is a serine protease that preferentially hydro-
lyzes N-terminal dipeptide from proteins having pro-
line or alanine in the penultimate position. Design
of small molecule inhibitors of DPP-IV has mainly re-
volved around investigation of compounds which
resemble the P2-P1 dipeptide substrate cleavage prod-
uct with the P1 site occupied by a proline mimic.11–13

Based on this strategy, various groups have success-
fully reported the use of (2S)-cyanopyrrolidine as
the P1 portion to mimic the proline in the develop-
ment of potent DPP-IV inhibitors. Some of these
workers emphasized the development of selective
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DPP-IV inhibitors over other related prolyl peptidase
such as DPP-II, DPP8, DPP9, and FAP (fibroblast
activation protein).12,14 Achieving selective inhibition
of DPP-IV becomes very important, as inhibition of
DPP-II results in the apoptosis of quiescent T-cells
and DPP8/9 inhibition causes toxicities in animal
studies.15,16

In continuation to our efforts to develop selective
DPP-IV inhibitors,17 we have reported compound 4,
a potent DPP-IV inhibitor (IC50 = 15 nM) with high
selectivity over DPP8 (IC50 >100 lM) and DPP-II
(IC50 >100 lM).18 To further explore the structure–
activity relationships (SAR), and to develop potent
and selective DPP-IV inhibitors, introduction of ring-
constraint in the P2 portion of lead compound (4)
as depicted in Figure 2 was contemplated. Sakashita
et al. improved DPP-IV potency by conformationally
constraining NVP-DPP728.19 Thus, by conformation-
ally constraining the P2 portion of 4, a better binding
with DPP-IV was envisaged. Herein, we report the
synthesis, DPP-IV inhibition, selectivity profile, and
in vivo efficacies of substituted pyrrolidine-2,4-dicar-
boxylic acid amides.
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The general synthetic route for the preparation of vari-
ous substituted pyrrolidine-2,4-dicarboxylic acid amides
is shown in Scheme 1. Compound 5 was prepared
according to the literature procedure20,21 and was cou-
pled with the required amine (R1H) using DCC and
HOBt in 1,4-dioxane to give 6. Saponification, followed
by coupling with the required amine (R2H) and Cbz
deprotection with HBr/AcOH mixture, gave the desired
compounds 8a–m in 36–55% overall yields. For the syn-
thesis of compounds with (2S)-cyanopyrrolidine as the
P1 portion, the Cbz protection of 6 was changed to
Boc protection in 9. DCC coupling of 9 with LL-prolin-
amide yielded carboxamide 10. Dehydration of com-
pound 10 using POCl3 gave the corresponding nitrile,10

and then removal of Boc protection by treatment with
trifluoroacetic acid gave the desired compounds 11a,b
in 24–32% yields. Substituted isoindolines were synthe-
sized starting from corresponding phthalic anhydride
by reaction with formamide to obtain phthalimide deriv-
atives, followed by reduction with borane–THF accord-
ing to the literature procedure.22,23

For the SAR explorations of the ring-constrained
analogues, pyrrolidine ring without the dimethyl
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substitution was selected, as the synthesis was easy com-
pared to that of the 5,5-dimethyl pyrrolidine core. First,
the requirements of S2 pocket were explored, by keeping
pyrrolidine as the 2-position substituent and varying the
4-position substituent. The data shown in Table 1 com-
pare DPP-IV, DPP-II, DPP8, and FAP inhibitory prop-
erties of these compounds.24 Use of isoindoline (bicyclic
system) as the 4-position substituent (8a) led to a potent
DPP-IV inhibition (IC50 = 109 nM), with a high selectiv-
ity over other enzymes assayed. Introduction of a mono-
substitution at the 5-position of isoindoline ring (8b–e)
only slightly increased the inhibitory activity at DPP-
IV, and most of the compounds retained their selectivity
over other enzymes. Maximum of 2-fold increase in
DPP-IV inhibition was observed for 8c analogue with
a chlorine substituent (IC50 = 50 nM), which also
showed a weak FAP inhibition. However, 4,5-dichloro
substituted compound 8f showed a drop in activity. This
compound is less selective compared to 8a and mono-
Table 1. Inhibition of DPP-IV, DPP8, DPP-II, and FAP by substi-

tuted 2-(pyrrolidine-1-carbonyl)-pyrrolidine-4-carboxylic acid amides

N
H

R

O

O

N2
4

Compound R IC50
a (lM)

DPP-IVb DPP8 DPP-II FAP

8a NN 0.109 >20 >20 16.985

8b N

F
0.073 >20 >20 13.609

8c N

Cl
0.050 >20 >20 7.951

8d N

F C
0.073 >20 >20 >20

8e 0.072 >20 >20 8.803

8f N

Cl

Cl

0.144 12.210 >20 5.129

8g
NH

4.130 >20 >20 >20

8h
NH

1.957 >20 >20 >20

8i
NH

2.587 >20 >20 >20

4 0.015 >20 >20 >20

1 (LAF237) 0.051 14.219 >20 >20

2 (MK-0431) 0.030 >20 >20 >20

a See Ref. 24.
b Values are expressed as means of three independent determinations.
substituted compounds 8b–e. As monocyclic system,
aniline 8g, benzylamine 8h, and phenylethylamine 8i
were tested. All these modifications led to a minimum
of 20-fold decrease in DPP-IV potency. The most potent
compound 8c in this series showed similar range of
activity to that of LAF237 (1) and MK-0431 (2).

After optimizing the P2 portion, we turned our attention
to the P1 portion of the molecule. The requirements of
the S1 pocket for DPP-IV inhibition were explored by
keeping isoindoline as the 4-position substituent and
varying the 2-position substituent. Their inhibitory
properties are shown in Table 2. Changing the 2-posi-
tion substituent from pyrrolidine 8a to thiazolidine 8j
showed a slight improvement in potency. Introduction
of electron-withdrawing fluorine atom into the pyrroli-
dine ring (8k–m) did not improve the activity. When
(2S)-cyano group was introduced in the pyrrolidine ring
(11a), more than 50-fold increase in DPP-IV inhibitory
activity was observed compared to that of unsubstituted
pyrrolidine 8a. Even though 11a showed a potent DPP-
IV inhibition (IC50 = 1.7 nM), it also exhibited strong
inhibitory activity against FAP (IC50 = 175 nM) and
moderate inhibition against DPP8 (IC50 = 2.7 lM).
Next, the effect of introduction of gem-dimethyl substi-
tuent adjacent to the P2-site amine was investigated.
Compound 11b showed a 500-fold loss of DPP-IV inhib-
itory potency in comparison to its unsubstituted ana-
Table 2. Inhibition of DPP-IV, DPP8, DPP-II, and FAP by substi-

tuted 4-(isoindolin-2-carbonyl)-pyrrolidine-2-carboxylic acid amides

R

O

O

N

N
H

2
4

X

X

Compound X R IC50
a (lM)

DPP-IVb DPP8 DPP-II FAP

8a H N 0.109 >20 >20 16.985

8j H
S

N 0.084 >20 >20 10.352

8k H
N

F
0.245 >20 >20 >20

8l H N

F
0.228 >20 >20 >20

8m H
N

F
F 0.129 >20 19.250 19.478

11a H
N

NC

0.0017 2.727 >20 0.175

11b CH3

N

NC

0.984 >20 >20 >20

4 0.015 >20 >20 >20

a See Ref. 24.
b Values are expressed as means of three independent determinations.



Figure 3. Effects of 8c and 11a on the plasma DPP-IV activity in

Wistar rat. Each compound was orally administered at a single dose of

10 mg/kg to rat at 0 h. Data are expressed as means ± SEM (n = 4/

group).
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logue 11a. The results show that gem-dimethyl substitu-
ent adjacent to the P2-site amine is not essential for
activity in this series of compounds, but rather detrimen-
tal to the activity. In the lead compound (4) series,
gem-dimethyl substituent is essential for potent and selec-
tive DPP-IV activity.18 The difference could be due to
unfavorable steric interactions by the introduction of
gem-dimethyl substituent in the P2-site pyrrolidine ring.
Thus, by introducing ring-constraint in lead compound
4 and carrying out SAR studies in a series of substituted
pyrrolidine-2,4-dicarboxylic acid amides, we obtained
11a with a 10-fold improvement in the in vitro DPP-IV
inhibition.

Two of the most potent compounds 8c and 11a were
tested for in vivo DPP-IV inhibition. The compounds
were orally administered to Wistar rats at 10 mpk and
the plasma DPP-IV inhibition was assessed ex vivo,
and shown in Figure 3.25 Both compound showed max-
imum plasma DPP-IV inhibition around 30 min after
oral dosing, with similar inhibition onset and duration
of action. For both compounds, more than 50% of inhi-
bition lasts up to 12 h after oral dosing. Plasma DPP-IV
inhibition by the compounds could be considered as an
indicator of down stream antihyperglycemic activity and
oral bioavailability. Compound 8c is a better candidate
for further evaluation, since 11a exhibits FAP and DPP8
inhibitory activity. Moreover, in 11a, the amino func-
tion could undergo intramolecular cyclization with the
nitrile group resulting in inactive cyclic amidine or dike-
topiperazine product as reported for other DPP-IV
inhibitors containing 2(S)-cyanopyrrolidine portion.8,26

An aqueous solution of 11a analyzed by LC–MS
revealed the formation of the diketopiperazine, but 8c
analogue was stable due to the absence of (2S)-cyano
function.

In summary, by introducing ring-constraint in the lead
compound 4 and carrying out SAR studies in a series
of substituted pyrrolidine-2,4-dicarboxylic acid amides,
compound 11a with 10-fold improvement in the
in vitro DPP-IV inhibition was synthesized. The
SAR suggests that incorporation of the gem-dimethyl
substituent in the pyrrolidine ring is detrimental to
potency relative to the unsubstituted analogue. Com-
pounds 8c (DPP-IV IC50 = 50 nM) and 11a (DPP-IV
IC50 = 1.7 nM) were orally bioavailable and showed
in vivo plasma DPP-IV inhibition in Wistar rats. Fur-
ther work is in progress to improve the selectivity and
stability of 11a.
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