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Figure 1. Biologically active chroman-4-amine-
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Starting from a variety of substituted chroman-4-ones, a highly enantioselective CBS reduction using
in situ-generated B–H catalyst gave (S)-chroman-4-ols. Azide inversion and reduction gave crude (R)-
chroman-4-amines, which could be purified without chromatography by isolation as the (R)-mandelic
or D-tartaric acid salts with good yields and excellent ee.

� 2010 Elsevier Ltd. All rights reserved.
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Chiral chroman-4-amines have been utilized as core scaffolds in
an increasing number of recent drug discovery programs (Fig. 1).
For example, chroman-4-amine sulfonamide 1 was found to be a
potent Kv1.5 potassium channel blocker (IC50 = 0.11 lM) with good
selectivity over the block of hERG.1 Also, diaminochroman carbox-
amide 2 is a 0.8 nM inhibitor of the human bradykinin B1 receptor
showing in vivo efficacy against hypotension and inflammatory
pain.2

We required an efficient, general, scalable, and highly enantio-
selective synthesis of an array of structurally diverse (R)-chro-
man-4-amines 3 for our own drug discovery efforts (Fig. 2). We
hoped to obtain these from readily available chroman-4-ones 4.3

Conceptually, an imine (i.e., 5) or enamine (i.e., 6) derived from 4
could be reduced enantioselectively to give 3. Alternatively, enan-
tioselective ketone reduction to (S)-chroman-4-ol 7 followed by
amine inversion would also yield 3.

Several recently disclosed methods for 2-unsubstituted chro-
man-4-amine preparation were initially investigated,4 but 2,2-
disubstituted chromans (Fig. 2, R = alkyl) were unsuitable substrates
for these methods in our hands. Initial results with asymmetric
enamine hydrogenation were encouraging and could provide a gen-
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eral route upon further optimization.5 Finally, we decided to inves-
tigate the previously reported asymmetric ketone reduction/azide
inversion route disclosed by Gerlach and co-workers,6 aware that
low reduction ee was observed with electron-withdrawing aryl
substituents. Of equal concern, low azide inversion yield and ee were
reported in several examples. These drawbacks would need to be
overcome to provide a practical and general route.

Initially, the published CBS reduction7 conditions for chroman-
4-one 8 were employed (Table 1, entry 1, Scheme 1), using the
commercially available B–Me CBS catalyst (5 mol %) and borane–
methyl sulfide (1 equiv).6 These conditions gave (S)-chroman-4-ol
9 with the reported 96% ee and quantitative yield. Aware that other
substrates were more problematic under these conditions, we
sought to further optimize the reaction. Without changing the sol-
vent, the in situ-generated B–H CBS catalyst derived from the free
aminoalcohol ligand (5 mol %) and N,N-diethylaniline borane (also
serving as stoichiometric reducing agent) gave comparable results
(Table 1, entry 2).8 Finally, switching to methyl t-butyl ether (10
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Figure 2. Chroman-4-amines (3) from chroman-4-ones (4).
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Table 1
Asymmetric chroman-4-one reduction according to Scheme 1

Entry Conditionsa %eeb Yieldc (%)

1 (R)-2-Me-CBS-oxazaborolidine (5 mol %), BH3�SMe2 (1 equiv), toluene, 0 �C 96 >99
2 (R)-Diphenyl(pyrrolidin-2-yl)methanol (5 mol %), BH3�NEt2Ph (1.2 equiv), toluene, 45 �C 96 >99
3 (R)-Diphenyl(pyrrolidin-2-yl)methanol (5 mol %), BH3�NEt2Ph (1.2 equiv), MTBE, 45 �C 99 >99

a Slow inverse addition (30–75 min) of substrate to reagent for all reactions.
b Enantiomeric excess was determined by chiral HPLC.
c Isolated yield.
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Scheme 1. Asymmetric reduction of chroman-4-one 8.
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Scheme 2. Preparation of (R)-chroman-4-amine salt 13.

Table 2
CBS reduction, n-Bu4NN3 inversion, (R)-mandelic acid salt formation according to
Schemes 1 and 2 (substrates in Fig. 3)

Entry Substrate Reduction
%eea

Crude amine
yield % (%ee)a

Amine salt
yield % (%ee)a

1 14 >99 67 (87) 82 (>99)
2 15 >99 71 (95) 65 (99)
3 16 97 59 65 (>99)
4 17 99 68 (94) 80 (98)
5 18 >99 56 (98) 75 (>99)
6 19 >99 79 64 (98)

a Enantiomeric excess was determined by chiral HPLC.
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Figure 3. Chromanone substrates for Scheme 2 procedure.
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volumes) as the solvent under the same conditions increased the
ee to 99% and was conveniently carried out on a large scale (Table
1, entry 3). Besides increasing the ee, this procedure displayed no
moisture sensitivity, avoided the safety and volume productivity
concerns associated with conventional CBS reductions,8 and re-
quired no product purification beyond conventional aqueous
workup.9

From (S)-chroman-4-ol 9, the published procedure was fol-
lowed, generating mesylate 10 at �25 �C in THF followed by the
addition of tetra-N-butylammonium azide to produce inverted
(R)-azide 11 (Scheme 2).6 Azide reduction under Staudinger condi-
tions gave (R)-chroman-4-amine 12 in 74% overall yield from 9.10

Chiral HPLC versus a racemic reference demonstrated that 12
was produced in 91% ee, a degradation we expected based on the
published result. In order to upgrade the ee and to avoid chroma-
tography, salt crystallization conditions were explored (Scheme 3).
A patent procedure described a racemate resolution with low
recovery and good ee using (R)-mandelic acid.11 From crude amine
12 (after acid/base workup), the (R)-mandelic acid salt of 12 was
formed in i-PrOH (10 volumes) at 50 �C. Addition of hexanes (10
volumes) as an antisolvent and slow cooling to room temperature
allowed the filtration of 13 in 77% yield and high purity. Chiral
HPLC of this material was not able to detect the minor enantiomer.

This chromatography-free process was applied successfully to
chroman-4-ones 14–19, efficiently providing (R)-chroman-4-
amine salts (Table 2, Fig. 3). Both 2-unsubstituted (entries 1 and
2) and 2,2-dimethyl (entries 3–6) chromans were tolerated, as well
as a variety of aryl substituents. In all cases, ee degradation in the
azide inversion step was observed to some extent, however, the
(R)-mandelic acid salt isolation improved the ee and provided good
recovery and purity. All reactions were carried out on a 5–10 g
scale and required no chromatography. In comparison to the Ger-
lach procedure,6 this method provided modest improvements in
overall yield while significantly improving ee and scalability.

While this procedure worked well for all substrates in Figure 3,
more lipophilic chroman-4-amine mandelic acid salts often formed
oils instead of crystalline solids. A screen of several chiral and achi-
ral acids identified D-tartaric acid as a suitable alternative. Also, the
acid/base workup employed for the crude amines to reject the
phosphine oxide reduction byproduct was unsuccessful, since lipo-
philic HCl salts did not show sufficient water solubility. Azide
hydrogenation provided an alternative. Finally, a diphenylphos-
phoryl azide procedure was identified to improve the azide inver-
sion step for some substrates.12 An example of this procedure
starting from chromanone 20 is shown in Scheme 3, providing
amine salt 24 in 76% overall yield from 20 and 98% ee.13

With this modified method in hand, several (R)-chroman-4-
amine D-tartaric acid salts were prepared in good overall yield
and excellent ee (Fig. 4). In addition to 2,2-bis(monofluoromethyl)
substitution (Scheme 3), 2,2-diethyl (25–28), 2,2-dipropyl (29),
and 2,2-dimethyl (30) chroman substitution were well tolerated.
Chromans with aryl substitution at the 6, 7, or, 8 position were
all good substrates for this chemistry, reliably providing (R)-chro-



O

O

F

O

O
F

O

O

51%, 98% ee
25

65%, 99% ee
26

72%, 99% ee
27

O

O

F
54%, >99% ee

29

O

O
OCF3

61%,* 98% ee
28

O

O

58%, 99% ee
30

OCF3

Figure 4. Chromanone substrates for Scheme 3 procedure (* = Ms2O/n-Bu4NN3

inversion protocol).

O

O

20 F

O

21 F

HO

NH
OH

H Ph
Ph

O

22 F

N3
H2

Pd/C
MeOH

O

23 F

H2N

O

24 F

H3N

O

O
HO

F F F F

(5 mol%)

BH3 NEt2Ph
MTBE

(PhO)2P(O)N3

DBU, THF

HO CO2H

D-tartaric
acid

i-PrOH

F F F F F F

Scheme 3. Alternative procedure to D-tartaric acid salt 24.

5906 E. A. Voight et al. / Tetrahedron Letters 51 (2010) 5904–5907
man-4-amine D-tartaric acid salts on multigram scale without
chromatography from chroman-4-ones 25–30.

In conclusion, a known method for the preparation of chiral
chroman-4-amines from chroman-4-ones was optimized to pro-
vide a general, scalable, and highly enantioselective route. Alterna-
tive procedures for each step of the synthesis were identified to
make the approach more practical, including an improved CBS
reduction protocol, a DPPA azide inversion, azide hydrogenation,
and chiral salt isolation. The (R)-mandelic and D-tartaric acid salt
isolation procedures provided convenient and reliable methods
for chemical and chiral purification. The modified procedure
(Scheme 3) has been carried out successfully on kilogram scale,
highlighting the utility of this route.
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