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Abstract: Using 5 mol% of proline as a recoverable catalyst, 9-
phenanthrols react with formaldehyde at room temperature, through
Mannich bases and 10-methylene-9-phenanthrone intermediates, to
form a new class of spirophenanthrones.

Key words: polymethoxyaromatics, Mannich bases, hetero Diels–
Alder reaction, 10-methylene-9-phenanthrone, dimerization

Several groups of natural products with polymethoxyaro-
matic structure are known to have important biological ac-
tivities.1–4 Recently, we are interested in a new class of
polymethoxyaromatics 1 (Figure 1) with a spiro structure.
Herein we wish to report a new synthesis of these
spirophenanthrones in combination with an efficient one-
pot phenanthrol synthesis.

Figure 1

Recently, Bilgic and Mohinder found that o-quinone me-
thide precursor reacted with 1,3-thiazine or substituted
styrenes via the Diels–Alder reaction to give chroman
derivatives 2a and 2b,5 On the other hand, 1,2-naphtho-
quinone-1-methide dimerized to form a spirodimer 3.6 We
also found that o-quinone methide 4 could be prepared
from o-dimethylaminomethylphenol or o-methoxymeth-
ylphenol (Scheme 1).7

Based on these previous reports, we present here a conve-
nient and efficient synthetic approach of spirophenan-
throne 1. In this approach, 9-phenanthrol 5 was used as a
precursor. Compound 5 was prepared from o-bromo-
benzaldehyde using the method developed by our group
(Scheme 2).8

Condensation of 5 with formaldehyde catalyzed by pro-
line at room temperature gave directly the target product
spirophenanthrone 1. The substrate 9-phenanthrol 5 first
underwent a Mannich reaction affording the expected

Mannich base 6, which proved to be very unstable. Elim-
ination of proline then produced the 10-methylene-9-
phenanthrone intermediate 7 which was highly reactive
and readily dimerized via a hetero Diels–Alder reaction
(Scheme 3).

The Mannich reaction and the subsequent decomposition
of the Mannich base were both promoted by acids and the
Mannich reaction also required the participation of a sec-
ondary amine, thus a catalytic quantity of proline was
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used as the promoter which served both as a secondary
amine and an acidic catalysis. With this promoter, the en-
tire reaction could be completed within 2–4 hours at room
temperature and reasonable yields (60–85%) were ob-
tained. Moreover, the proline could be recovered expedi-
ently.

For a better understanding of the scope and efficiency of
above reactions, various substituted 9-phenanthrols were
tested (Table 1).10 As shown in Table 1, when the substit-
uent was electron donating, moderate to good yield was
obtained (entries 1–5). Among these substrates,
2,3,4,5,6,7-hexamethoxyl-9-phenanthrol gave the highest
yield (85%, entry 1).When the substituent was electron
withdrawing, the yield decreased (entry 7). This was due
to the fact that the Mannich reaction occurred more readi-
ly with electron-rich aromatic rings. An unexpected result
was found from picen-13-ol substrate (entry 8), from
which no expected product was obtained. This might be
due to its highly steric hindrance.

Scheme 3 Synthesis of spirophenanthrones
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Table 1 Results of the Synthesis of the Dimers of 10-Methylene-9-phenanthrones9,10

Entry Substrate Product Isolated yield (%)
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10-Methylene-9-phenanthrone may react in either a dipo-
lar form (8) or a diradical form (9).6 In the 1H NMR sig-
nals of compound 1a–g, the methylene protons in the
dihydropyran ring appear as four trebles of doublets at d =
2.1–3.2 ppm. This can support the [4+2] cycloaddition
process as the mode A and indicates a diradical
mechanism6 (Figure 2).

Although the catalyst proline used in the reaction was
levorotatory, all products formed were racemic. A
byproduct 10 could also been isolated, and its structure
was identified (Scheme 4). Presumably, this compound
was formed by Michael addition of 9-phenanthrol to10-
methylene-9-phenanthrone.
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Table 1 Results of the Synthesis of the Dimers of 10-Methylene-9-phenanthrones9,10 (continued)

Entry Substrate Product Isolated yield (%)
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Scheme 4 Michael addition of 9-phenanthrol to10-methylene-9-
phenanthrone

In conclusion, using proline as a recoverable catalyst, we
have conveniently synthesized a new class of
spirophenanthrones from 9-phenanthrols. Further biolog-
ical activity testing of these compounds is in progress.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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(10) Selective Spectroscopic Data of the Dimer of 
10-Methylene-9-phenanthrones
Compound 1a: 1H NMR (300 MHz, CDCl3): d = 2.29 (m, 1 
H), 2.54–2.60 (m, 2 H), 2.92 (m, 1 H), 3.72 (s, 3 H), 3.74 (s, 
3 H), 3.77 (s, 3 H), 3.87 (s, 3 H), 3.89 (s, 3 H), 3.91 (s, 3 H), 
3.96 (s, 6 H), 4.00 (s, 3 H), 4.02 (s, 3 H), 4.03 (s, 3 H), 4.06 
(s, 3 H), 6.83 (s, 1 H), 7.11 (s, 1 H), 7.26 (s, 1 H), 7.68 (s, 1 
H). 13C NMR (75 MHz, CDCl3): d = 20.6, 32.8, 55.9, 55.9, 
56.1, 56.3, 61.0, 61.1, 61.1, 61.2, 61.2, 61.3, 61.4, 61.5, 83.1, 
97.4, 98.0, 103.6, 105.2, 107.7, 113.1, 116.3, 117.7, 121.5, 
123.1, 124.9, 132.4, 140.3, 142.3, 142.5, 146.7, 151.7, 
151.8, 152.0, 152.2, 152.3, 152.4, 153.2, 153.6, 197.6. 
HRMS–FAB: m/z [M + H]+ calcd for C42H44O14: 773.2809; 
found: 773.2810. Anal. Calcd for C42H44O14: C, 65.28; H, 
5.74; O, 28.98. Found: C, 65.41; H, 5.72; O, 28.92.
Compound 1b: 1H NMR (300 MHz, CDCl3): d = 2.27 (m, 1 
H), 2.51 (m, 1 H), 2.82 (m, 1 H), 3.04 (m, 1 H), 3.83 (s, 3 H), 
3.93 (s, 3 H), 3.96 (s, 3 H), 3.99 (s, 3 H), 4.00 (s, 3 H), 4.04 
(s, 3 H), 4.10 (s, 3 H), 4.11 (s, 3 H), 4.14 (s, 3 H), 7.14 (s, 1 
H), 7.24 (s, 1 H), 7.29 (s, 1 H), 7.36 (s, 1 H), 7.42 (s, 1 H), 
7.52 (s, 1 H), 7.83 (m, 3 H). 13C NMR (75 MHz, CDCl3): 
d = 19.6, 34.1, 55.8, 55.8, 56.0, 56.1, 56.2, 56.2, 56.3, 56.5, 
82.3, 102.5, 103.1, 103.3, 103.9, 104.7, 106.9, 107.4, 108.7, 
109.2, 119.7, 119.9, 121.5, 122.5, 124.6, 126.1, 131.6, 
133.8, 146.6, 147.1, 148.7, 148.9, 149.0, 149.1, 149.2, 
149.9, 154.5, 198.1. HRMS–FAB: m/z [M + H]+ calcd for 
C38H36O10: 653.2387; found: 653.2389. Anal. Calcd for 
C38H36O10: C, 69.93; H, 5.56; O, 24.51. Found: C, 69.77; H, 
5.50; O, 24.60.
Compound 1c: 1H NMR (300 MHz, CDCl3): d = 2.27 (m, 1 
H), 2.54 (m, 1 H), 2.60 (m, 1 H), 2.91 (m, 1 H), 3.89 (s, 3 H), 
3.94 (s, 3 H), 3.99 (s, 3 H), 4.02 (s, 3 H), 6.03 (d, 2 H), 6.14 
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(d, 2 H), 6.17 (d, 2 H), 6.21 (d, 2 H), 6.80 (s, 1 H), 7.12 (s, 1 
H), 7.17 (s, 1 H), 7.70 (s, 1 H). 13C NMR (75 MHz, CDCl3): 
d = 20.9, 33.9, 56.2, 56.3, 56.6, 56.7, 83.3, 97.4, 98.0, 101.2, 
101.3, 101.8, 102.4, 102.8, 103.8, 106.1, 108.1, 115.1, 
116.2, 117.9, 122.1, 123.4, 125.2, 132.6, 141.3, 142.3, 
142.6, 145.0, 151.6, 151.8, 152.0, 152.2, 152.4, 152.5, 
153.6, 154.2, 197.0. HRMS–FAB: m/z [M + H]+ calcd for 
C38H28O14: 709.1557; found: 709.1554. Anal. Calcd for 
C38H28O14: C, 64.41; H, 3.98; O, 31.61. Found: C, 64.19; H, 
3.41; O, 31.55.
Compound 1d: 1H NMR (300 MHz, DMSO-d6): d = 2.24 (m, 
1 H), 2.33 (m, 1 H), 2.68 (m, 1 H), 3.42 (m, 1 H), 5.92 (s, 1 
H), 6.06 (s, 2 H), 6.08 (s, 1 H), 6.09 (s, 1 H), 6.10 (s, 1 H), 
6.19 (s, 1 H), 6.24 (s, 1 H), 7.02 (d, 1 H), 7.12 (d, 1 H), 7.26 
(d, 1 H), 7.28 (d, 1 H), 7.55 (d, 1 H), 7.58 (d, 1 H), 8.16 (s, 1 
H), 8.19 (s, 1 H). 13C NMR (75 MHz, DMSO-d6): d = 20.0, 
28.9, 80.2, 100.6, 101.1, 101.6, 108.8, 109.4, 111.8, 113.8, 
116.4, 117.1, 117.4, 118.1, 120.0, 122.1, 124.1, 126.2, 
129.7, 141.9, 144.9, 145.3, 145.7, 146.6, 147.9, 148.2, 
193.7. HRMS–FAB: m/z [M + H]+ calcd for C34H20O10: 
589.1135; found: 589.1136. Anal. Calcd for C34H20O10: C, 
69.39; H, 3.43; O, 27.19. Found: C, 69.54; H, 3.52; O, 27.05.
Compound 1e: 1H NMR (300 MHz, CDCl3): d = 2.22 (m, 1 
H), 2.46 (s, 3 H), 2.49 (m, 1 H), 2.52 (s, 3 H), 2.58 (s, 3 H), 
2.63 (s, 3 H), 2.76 (m, 1 H), 3.01 (m, 1 H), 7.22 (m, 2 H), 
7.38 (d, 1 H), 7.45 (d, 1 H), 7.65–7.83 (m, 5 H), 8.38 (m, 3 
H). 13C NMR (75 MHz, CDCl3): d = 19.3, 21.4, 22.1, 22.2, 

22.3, 34.0, 83.2, 108.5, 122.2, 122.4, 122.8, 123.6, 124.0, 
125.0, 126.0, 126.3, 126.8, 127.9, 128.1, 128.3, 129.4, 
129.9, 130.1, 133.0, 136.0, 136.8, 137.2, 137.7, 138.2, 
145.3,  198.1. HRMS–FAB: m/z [M + H]+ calcd for 
C34H28O2: 469.2168; found: 469.2165. Anal. Calcd for 
C34H28O2: C, 87.15; H, 6.02; O, 6.83. Found: C, 87.06; H, 
5.98; O, 6.79.
Compound 1f: 1H NMR (300 MHz, CDCl3): d = 2.28 (td, 1 
H), 2.55 (d, 1 H), 2.80 (td, 1 H), 3.09 (d, 1 H), 7.25–7.89 (m, 
13 H), 8.52 (d, 1 H), 8.68 (t, 2 H). 13C NMR (75 MHz, 
CDCl3): d = 19.5, 33.8, 83.2, 108.5, 122.4, 122.5, 123.0, 
123.3, 124.0, 124.6, 126.0, 126.7, 128.8, 129.6, 130.1, 
130.7, 132.0, 134.8, 136.9, 140.1, 148.0, 198.6. HRMS–
FAB: m/z [M + H]+ calcd for C30H20O2: 413.1542; found: 
413.1544. Anal. Calcd for C30H20O2: C, 87.36; H, 4.89; O, 
7.76. Found: C, 86.92; H, 4.88; O, 7.73.
Compound 1g: 1H NMR (300 MHz, CDCl3): d = 2.26 (m, 1 
H), 2.50 (m, 1 H), 2.76 (m, 1 H), 3.01 (m, 1 H), 7.17 (m, 2 
H), 7.37 (m, 2 H), 7.55 (m, 2 H), 7.74–7.85 (m, 2 H), 7.97 
(m, 1 H), 8.15 (m, 2 H), 8.44 (m, 1 H). 13C NMR (75 MHz, 
CDCl3): d = 19.4, 33.9, 82.6, 102.2, 107.4, 107.9, 108.3, 
108.6, 110.3, 110.6, 110.7, 111.5, 111.8, 115.8, 116.0, 
116.2, 116.4, 116.7, 117.1, 117.4, 124.5, 124.6, 125.0, 
125.1, 128.2, 128.3, 131.0, 131.1, 196.3. HRMS–FAB: m/z 
[M + H]+ calcd for C30H16F4O2: 485.1165; found: 485.1169. 
Anal. Calcd for C30H16F4O2: C, 74.38; H, 3.33; F, 15.69; O, 
6.61. Found: C, 74.55; H, 3.39; F, 15.58; O, 6.66.
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