

Novel Routes to 1,2,3,4-Tetrahydropyrrolo[1,2-*a*]pyrazines and 5,6,9,10,11,11a-Hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-c]pyrazines

Alan R. Katritzky,^{*,‡} Ritu Jain,[‡] Yong-Jiang Xu,[‡] and Peter J. Steel[§]

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, and Department of Chemistry, University of Canterbury, Christchurch, New Zealand

katritzky@chem.ufl.edu

Received June 3, 2002

Condensation reactions of benzotriazole and 2-(pyrrol-1-yl)-1-ethylamine (1) with formaldehyde and glutaric dialdehyde, respectively, afforded intermediates 2 and 6. Subsequent nucleophilic substitutions of the benzotriazole group in 2 and 6 with Grignard reagents, sodium cyanide, and sodium borohydride gave 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines 3a-e, 4, 5 and 5,6,9,10,11,11ahexahydro-8*H*-pyrido[1,2-*a*]pyrrolo[2,1-*c*]pyrazines $7\mathbf{a}-\mathbf{c}$, **8**, **9**, respectively, in good yields.

Introduction

1,2,3,4-Tetrahydropyrrolo[1,2-a]pyrazines are of considerable interest because of their antiamnesic, antihypoxic,¹ psychotropic,² antihypersensitive,³ and aldose reductase inhibitor activities.⁴ Pyrrolopyrazines also selectively bind to GABAa receptors⁵ and are useful starting materials for the synthesis of octahydropyrrolo-[1,2-a]pyrazine-based coronary-dilators and neuroleptics.⁶

1,2,3,4-Tetrahydropyrrolo[1,2-a]pyrazines were previously synthesized via selective hydrogenation or reduction of 3,4-dihydropyrrolo[1,2-*a*]pyrazines.^{3,6-8} However, 5,6,9,10,11,11a-hexahydro-8*H*-pyrido[1,2-*a*]pyrrolo[2,1-*c*]pyrazines were previously unknown. We now describe novel and convenient approaches to 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines 3a-e, 4, 5 and 5,6,9,10,11,11ahexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-c]pyrazines 7ac, 8, 9 using benzotriazole methodology.⁹⁻¹⁴

- (1) Seredenin, S. B.; Voronina, T. A.; Beshimov, A.; Peresada, V. P.; Likhosherstov, A. M. RU 2,099,055, 1997; Chem. Abstr. 1998, 128, 290245j.
- (2) Seredenin, S. B.; Voronina, T. A.; Likhosherstov, A. M.; Peresada, V. P.; Molodavkin, G. M.; Halikas, J. A. US 5,378,846, 1995; Chem. Abstr. 1995, 123, 83350w
- (3) Peresada, V. P.; Medvedev, O. S.; Likhosherstov, A. M.; Skoldinov, A. P.Khim.-Farm. Zh. 1987, 21, 1054; Chem. Abstr. 1988, 108, 68298g
- (4) Negoro, T.; Murata, M.; Ueda, S.; Fujitani, B.; Ono, Y.; Kuromiya, A.; Komiya, M.; Suzuki, K.; Matsumoto, J.-i. J. Med. Chem. 1998, 41, 4118.

(5) Blum, C.; Hutchison, A. US 5,668,283, 1997; *Chem. Abstr.* **1997**, *127*, 293247b.

- (6) Skoldinov, A. P.; Likhosherstov, A. M.; Peresada, V. P. Brit. UK (b) Skoldinov, A. P., Endosherstov, A. M., Peresada, V. P. Ger.
 (7) Skoldinov, A. P.; Likhosherstov, A. M.; Peresada, V. P. Ger.
- Offen. 2,832,488, 1980; Chem. Abstr. 1980, 93, 46720h.
- (8) Skoldinov, A. P.; Likhosherstov, A. M.; Peresada, V. P. USSR
 798,104, 1981; *Chem. Abstr.* 1981, *95*, 7337k.
 (9) Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. *Chem. Rev.*
- 1998 98 409

(10) Katritzky, A. R.; Qi, M. Tetrahedron Lett. 1998, 54, 2647.

(11) Katritzky, A. R.; Qi, M. Collect. Czech. Chem. Commun. 1998, 63. 599.

Results and Discussion

1-[3,4-Dihydropyrrolo[1,2-a]pyrazin-2(1H)-ylmethyl]-1H-1,2,3-benzotriazole (2). Condensation of benzotriazole, 2-(pyrrol-1-yl)-1-ethylamine (1),¹⁵ and formaldehyde in aqueous methanol at 20 °C formed 2 in 74% yield (Scheme 1). Compound 2 was fully characterized by ¹H, ¹³C NMR spectra and microanalysis. In the aliphatic region of the ¹H NMR spectra, signals ascribed to Bt*CH*₂N (δ = 5.59 ppm) and pyrrole *CH*₂N (δ = 3.89 ppm), respectively, supported structure 2.

Syntheses of 1,2,3,4-Tetrahydropyrrolo[1,2-a]pyrazines 3a-e, 4 and 5 Using Grignard Reagents, Sodium Cyanide and Sodium Borohydride as Nucleophiles. Diverse nucleophiles smoothly substituted the benzotriazole moiety in compound 2. Reactions of compound **2** with a variety of Grignard reagents gave 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines **3a**-e in 70-92% yields (Scheme 1).

Treatment of compound 2 with sodium cyanide and sodium borohyride at 20 °C afforded 2-[3,4-dihydropyrrolo[1,2-*a*]pyrazin-2(1*H*)-yl]acetonitrile (**4**) and the 2-methyl-1.2.3.4-tetrahydropyrrolo[1.2-a]pyrazine boron complex (5) in 80% and 65% yields, respectively (Scheme 1).

8-Benzotriazolyl-5,6,9,10,11,11a-hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-a]pyrazine (6). Condensation of 2-(pyrrol-1-yl)ethylamine (1), benzotriazole, and glutaric dialdehyde formed the fused ring compound 6 as a mixture of Bt¹ (benzotriazol-1-yl) **6a** and Bt² (benzotriazol-2-yl) **6b** isomers in a 6:1 ratio (determined by ¹H NMR spectroscopy) in 67% total yield. The ¹H and ¹³C NMR data of the major Bt¹ isomer **6a** are reported in the Experimental Section. The structure and stereochemistry

[‡] University of Florida.

[§] University of Canterbury.

⁽¹²⁾ Katritzky, A. R.; Belyakov, S. A. Aldrichimica Acta 1998, 31, 35.

⁽¹³⁾ Katritzky, A. R.; Li, J.; Xie, L. Tetrahedron 1999, 55, 8263.

⁽¹⁴⁾ Katritzky, A. R.; Denisko, O. V. Pure Appl. Chem. 2000, 72, 1597

⁽¹⁵⁾ de Pablo, M. S.; Gandásegui, T., Vaquero, J. J.; Navìo, J. L. G.; Alvarez-Builla, J. Tetrahedron 1992, 48, 8793.

SCHEME 1

of **6a** were unambiguously established by single-crystal X-ray crystallography. Figure 1 (Supporting Information) shows a perspective view of the structure of **6a**, which shows that the sp³ nitrogen is hybridized such that the pyridopyrazine ring system has a trans ring fusion. The adjacent Bt¹ substituent occupies an equatorial position in the chair conformation of its attached six-membered ring. According to our previous work,^{9,16,17} Bt¹ and Bt² are both good leaving groups, and removal of benzotriazolyl groups from the Bt¹ and Bt² isomers results in the same iminium cation. Therefore, compound **6** was used as a mixture of isomers **6a** and **6b** for the subsequent reactions.

Syntheses of 5,6,9,10,11,11a-Hexahydro-8*H*-pyrido-[1,2-*a*]pyrrolo[2,1-*c*]pyrazines 7a–c, 8 and 9 Using Grignard Reagents, Sodium Cyanide and Sodium Borohydride as Nucleophiles. Reactions of compound 6 with appropriate Grignard reagents (4- ClC_6H_4MgCl , 4- $CH_3C_6H_4MgBr$, and CH_3CH_2MgBr) in THF at 20 °C gave products 7a–c in 66–80% yield (Scheme 2).

Treatment of compound **6** with sodium cyanide and sodium borohydride resulted in substitution of the benzotriazolyl group (both Bt¹ and Bt²) with cyanide and hydride to give 5,6,9,10,11,11a-hexahydro-8*H*-pyrido[1,2-*a*]pyrrolo[2,1-*c*]pyrzine-8-carbonitrile (**8**) and 5,6,9,10,11,11a-hexahydro-8*H*-pyrido[1,2-*a*]pyrrolo[2,1-*c*]-pyrzine (**9**) in 75% and 63% yields, respectively (Scheme 2).

Configurational Analysis of Compounds 7a-c and 8. Initially, the configurations of **7a-c**, **8** were determined by NOE experiments. For compounds **7a-c** and **8**, when H(8) (a broad singlet at 4.41 ppm for **7a**, 4.42 ppm for **7b** and a doublet at 3.63 ppm (J = 11.1 Hz)

for **8** and a multiplet in the range of 2.73-2.69 ppm for **7c**) was irradiated, no NOE effect was observed for H(11a) (multiplet in the range of 4.07-3.97 ppm) and vice versa. When H(11a) in **7a,b** was irradiated, a distinct positive NOE effect was observed for the phenyl ring. Thus, H(8) and H(11a) are in a mutually trans orientation. It is difficult to get a distinct NOE effect between H(11a) and the ethyl protons in **7c** because the protons of the ethyl group merged with the protons of the sixmembered rings.

The structure of **7b** was unambiguously confirmed by X-ray crystallography (Figure 1, Supporting Information). The single-crystal X-ray structure determination revealed that, in contrast to the precursor **6**, the pyridopyrazine ring system in **7b** has a cis ring fusion. Once again the adjacent aryl substituent occupies an equatorial position. This diastereoisomer has H(8) and H(11a) on opposite sides of the pyridopyrazine ring system, and hence they would not be expected to show mutual NOE enhancements.

The predominance of the observed isomers can be explained on the basis of the reaction mechanism. Compound **6** can easily form the pyrazinium cation since Bt⁻ is a good leaving group.^{10–12} Nucleophiles could attack the iminium cation from either face of the CH₂CH=N– plane. However, attack from above the plane is more favorable, compared to attack from below the plane, because of less steric hindrance from the 1,2,3,4-tetra-hydropyrrolo[1,2-*a*]pyrazine ring system (Scheme 3). Thus products **7a**–**c** and **8** are formed by kinetic control. By contrast, in intermediate **6**, easy reversible ionization leads to the thermodynamically more stable configuration.

To summarize, 1,2,3,4-tetrahydropyrrolo[1,2-*a*]pyrazines **3a**-**e**, **4**, **5**, and 5,6,9,10,11,11a-hexahydro-8*H*pyrido[1,2-*a*]pyrrolo[2,1-*c*]pyrazines **7a**-**c**, **8**, **9** were synthesized via nucleophilic substitutions of the benzotriazolyl moieties in **2** and **6**, themselves readily obtained from condensations of benzotriazole and 2-pyrrol-1-ylethylamine (**1**) with formaldehyde and glutaric dialdehyde,

⁽¹⁶⁾ Katritzky, A. R.; Xu, Y.-J.; He, H.-Y.; Mehta, S. *J. Org. Chem.* **2001**, *66*, 5590.

⁽¹⁷⁾ Katritzky, A. R.; Xu, Y.-J.; He, H.-Y. J. Chem. Soc., Perkin Trans. 1 2002, 592.

SCHEME 3

respectively, in good yields. Trans isomers 7a-c and 8 were obtained as the major products.

Experimental Section

Procedure for the Synthesis of 1-[3,4-Dihydropyrrolo-[1,2-a]pyrazin-2(1H)-ylmethyl]-1H-1,2,3-benzotriazole (2). 2-(Pyrrol-1-yl)ethylamine (1, 1.1 g, 10 mmol) and benzotriazole (1.19 g, 10 mmol) were dissolved in methanol/water (v/v = 4/1) (50 mL). Formaldehyde (1.7 g, 20 mmol, 37% aqueous solution) was added dropwise to the solution. The resulting mixture was stirred at 20 °C for 12 h. Then the precipitate was filtered off, washed with cold Et₂O, and dried in vacuo. Colorless plates (methanol/water); yield 74%; mp 125–126 °C; ¹H NMR δ 8.09 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.53 (t, J = 7.6Hz, 1H), 7.40 (t, J = 7.3 Hz, 1H), 6.52 (br s, 1H), 6.11 (t, J =3.0 Hz, 1H), 5.83 (br s, 1H), 5.59 (s, 2H), 3.99 (t, J = 5.6 Hz, 2H), 3.89 (s, 2H), 3.06 (t, J = 5.6 Hz, 2H); ¹³C NMR δ 145.9, 133.6, 127.7, 125.3, 124.1, 120.0, 118.6, 109.9, 108.3, 103.1, 68.7, 48.3, 48.2, 44.6. Anal. Calcd for $C_{14}H_{15}N_5$: C, 66.38; H, 5.97; N, 27.65. Found: C, 66.49; H, 6.12; N, 27.75.

General Procedure for Syntheses of 1,2,3,4-Tetrahydropyrrolo[1,2-a]pyrazines 3a–e. Compound **2** (0.5 g, 2 mmol) was dissolved in dry THF (15 mL) at 0 °C. The corresponding Grignard reagent (3 mmol, 1.5 equiv) was added dropwise. The mixture was stirred at 20 °C for 12 h. Then, the reaction was quenched with water, washed with 2 M NaOH, and extracted with ether. After being dried over MgSO₄, the solvent was removed in vacuo. The product obtained was further purified by column chromatography (eluent: hexanes/EtOAc = 8/1-4/1).

2-(4-Chlorobenzyl)-1,2,3,4-tetrahydropyrrolo[**1**,2-*a*]**pyrazine (3a):** colorless plates (EtOAc/hexanes); yield 92%; mp 90–91 °C; ¹H NMR δ 7.31 (br s, 4H), 6.55 (br s, 1H), 6.13 (t, J = 3.3 Hz, 1H), 5.80 (br s, 1H), 3.98 (t, J = 5.5 Hz, 2H), 3.63 (s, 2H), 2.82 (t, J = 5.5 Hz, 2H); ¹³C NMR δ 136.5, 133.0, 130.2, 128.5, 126.9, 118.4, 108.1, 102.7, 61.6, 51.3, 50.5, 44.7. Anal. Calcd for C₁₄H₁₅ClN₂: C, 68.15; H, 6.13; N, 11.35. Found: C, 68.06; H, 6.26; N, 11.33.

2-Phenethyl-1,2,3,4-tetrahydropyrrolo[1,2-*a***]pyrazine** (**3b**): yellow crystals (hexanes/EtOAc); yield 80%; mp 49–50 °C; ¹H NMR δ 7.32–7.21 (m, 5H), 6.54 (br s, 1H), 6.14 (t, J = 3.1 Hz, 1H), 5.84 (br s, 1H), 4.01 (t, J = 5.4 Hz, 2H), 3.73 (s, 2H), 2.91–2.85 (m, 4H), 2.80–2.74 (m, 2H); ¹³C NMR δ 140.1, 128.7, 128.4, 126.8, 126.1, 118.3, 108.1, 102.7, 59.8, 51.2, 51.0, 44.6, 34.0. Anal. Calcd for C₁₅H₁₈N₂: C, 79.60; H, 8.02; N, 12.38. Found: C, 79.61; H, 8.44; N, 11.93.

2-(4-Methylbenzyl)-1,2,3,4-tetrahydropyrrolo[1,2-*a*]**py-razine (3c):** orange plates (hexanes/EtOAc); yield 85%; mp 42–43 °C; ¹H NMR δ 7.25 (d, J=7.8 Hz, 2H), 7.14 (d, J=7.8 Hz, 2H), 6.53 (br s, 1H), 6.12 (t, J=3.2 Hz, 1H), 5.78 (br s, 1H), 3.97 (t, J=5.6 Hz, 2H), 3.63 (br s, 4H), 2.82 (t, J=5.6

Hz, 2H), 2.35 (s, 3H); ^{13}C NMR δ 136.8, 134.7, 128.9, 128.8, 127.0, 118.1, 107.9, 102.5, 62.0, 51.2, 50.2, 44.6, 21.0. Anal. Calcd for $C_{15}H_{18}N_2$: C, 79.60; H, 8.02; N, 12.38. Found: C, 79.21; H, 8.28; N, 12.38.

2-(3-Butenyl)-1,2,3,4-tetrahydropyrrolo[1,2-*a*]**pyrazine** (**3d**): yellow oil; yield 70%; ¹H NMR δ 6.53 (br s, 1H), 6.13 (t, J = 3.1 Hz,1H), 5.91–5.77 (m, 2H), 5.09 (d, J = 17.1 Hz, 1H), 5.03 (d, J = 9.9 Hz, 1H), 3.99 (t, J = 5.6 Hz, 2H), 3.66 (s, 2H), 2.84 (t, J = 5.9 Hz, 2H), 2.59 (t, J = 6.9 Hz, 2H), 2.34 (t, J =7.2 Hz, 2H); ¹³C NMR δ 136.2, 126.9, 118.3, 115.9, 108.0, 102.7, 57.3, 51.1, 50.9, 44.5, 37.7. Anal. Calcd for C₁₁H₁₆N₂: C, 74.96; H, 9.15; N, 15.89. Found: C, 75.10; H, 9.56; N, 16.14.

2-Allyl-1,2,3,4-tetrahydropyrrolo[**1**,**2**-*a*]**pyrazine (3e):** brown oil; yield 75%; ¹H NMR δ 6.55 (br s, 1H), 6.14 (t, J = 3.1 Hz, 1H), 5.93–5.84 (m, 2H), 5.24 (dd, J = 18.0, 11.1 Hz, 2H), 4.00 (t, J = 5.6 Hz, 2H), 3.65 (s, 2H), 3.18 (d, J = 6.6 Hz, 2H), 2.84 (t, J = 5.6 Hz, 2H); ¹³C NMR δ 134.8, 126.9, 118.3, 118.2, 108.0, 102.7, 61.0, 51.1, 50.4, 44.6. HRMS calcd for C₁₀H₁₅N₂ (M + 1) 163.1235, found 163.1212.

2-[3,4-Dihydropyrrolo[1,2-*a*]**pyrazin-2(1***H***)-yl]acetonitrile (4).** Compound **2** (0.5 g, 2 mmol) and sodium cyanide (0.2 g, 4 mmol) were stirred in dimethyl sulfoxide (10 mL) at 20 °C for 12 h. Then the reaction was quenched with water and extracted with ether. The organic layer was washed with 2 M NaOH and brine, and then dried over MgSO₄. Evaporation of solvent gave the crude product, which was purified using a neutral alumina column (eluent: hexanes/EtOAc = 10/1-5/1), yellow oil; yield 80%; ¹H NMR δ 6.56 (br s, 1H), 6.15 (br s, 1H), 5.88 (br s, 1H), 4.03 (t, J = 5.4 Hz, 2H), 3.81 (s, 2H), 3.67 (s, 2H), 2.96 (t, J = 5.3 Hz, 2H); ¹³C NMR δ 125.0, 118.7, 114.3, 108.4, 103.3, 49.8, 49.6, 45.6, 44.3. Anal. Calcd for C₉H₁₁N₃: C, 60.99; H, 6.26; N, 23.71. Found: C, 61.10; H, 6.64; N, 23.64.

2-Methyl-1,2,3,4-tetrahydropyrrolo[1,2-*a*]**pyrazine Boron Complex (5).** Compound **2** (0.5 g, 2 mmol) and NaBH₄ (0.15 g, 4 mmol) were stirred at 20 °C overnight in dry THF (20 mL). THF was then removed in vacuo. The residue was dissolved in EtOAc and washed with 2 M NaOH and water and dried over anhydrous Na₂SO₄. After the removal of EtOAc in vacuo, the crude product obtained was purified by column chromatography (eluent: hexanes/EtOAc = 9/1-4/1), white flakes (hexanes/EtOAc); mp 111–112 °C; yield 65%; ¹H NMR δ 6.65 (br s, 1H), 6.21 (t, *J* = 3.1 Hz, 1H), 5.96 (br s, 1H), 4.22–4.14 (m, 2H), 4.10–3.91 (m, 2H), 3.46–3.36 (m, 1H), 3.27–3.20 (m, 1H), 2.67 (s, 3H); 2.42–1.08 (m, 3H, BH₃) ¹³C NMR δ 122.6, 119.7, 109.3, 105.6, 57.7, 56.3, 47.0, 40.3. Anal. Calcd for C₈H₁₅BN₂: C, 64.48; H, 10.15; N, 18.80. Found: C, 64.27; H, 10.33; N, 18.85.

8-Benzotriazolyl-5,6,9,10,11,11a-hexahydro-8H-pyrido-[1,2-*a*]pyrrolo[2,1-*c*]pyrazine (6). 2-(Pyrrol-1-yl)ethylamine (1, 1.1 g, 10 mmol) and benzotriazole (1.19 g, 10 mmol) were dissolved in methanol (40 mL) at 0 °C. Glutaric dialdehyde (2.0 g, 10 mmol, 50% aqueous solution) was added dropwise to the solution during 4 h. Then, the solid obtained was filtered off, washed with cold Et₂O, and dried in vacuo. Brown plates (hexanes/EtOAc); yield 67%. Data for 6a: mp 104-105 °C; 1H NMR δ 8.07 (d, J = 7.8 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.40–7.25 (m, 2H), 6.51 (br s, 1H), 6.18 (t, J = 2.9 Hz, 1H), 5.97 (br s, 1H), 5.44 (dd, J = 10.8, 3.4 Hz, 1H), 3.80–3.72 (m, 2H), 3.62 (d, J = 8.1 Hz, 1H), 2.61 (td, J = 11.7, 4.6 Hz, 1H), 2.43–2.04 (m, 5H), 1.86–1.80 (m, 2H); $^{13}\mathrm{C}$ NMR δ 146.9, 131.2, 130.3, 127.2, 124.2, 120.0, 118.7, 112.3, 108.3, 102.4, 78.4, 60.1, 47.4, 44.6, 31.5, 29.8, 22.4. Anal. Calcd for C₁₇H₁₉N₅: N, 23.87. Found: N, 23.59. Crystal data for 6a: see Supporting Information.

General Procedure for Syntheses of 5,6,9,10,11,11a-**Hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-c]pyrazines 7ac.** Compound **6** (0.59 g, 2 mmol) was dissolved in dry THF (15 mL) at 0 °C. The corresponding Grignard reagent (3 mmol, 1.5 equiv) was added dropwise. The mixture was stirred for 12 h at 20 °C. Then, the reaction was quenched with water, washed with 2 M NaOH, and extracted with ether. The organic solution was dried over MgSO₄, and the solvent was removed in vacuo. The product obtained was purified using column chromatography (eluent: hexanes/EtOAc = 8/1-4/1).

8-(4-Chlorophenyl)-5,6,9,10,11,11a-hexahydro-8*H***-pyrido-[1,2-***a***]pyrrolo[2,1-***c***]pyrazine (7a):** colorless needles (hexanes/EtOAc); yield 70%; mp 136–137 °C; ¹H NMR δ 7.31 (br s, 4H), 6.61 (br s, 1H), 6.20 (t, J = 3.1 Hz, 1H), 5.93 (br s, 1H), 4.41 (br s, 1H), 3.98 (td, J = 12.4, 5.6 Hz, 1H), 3.59–3.50 (m, 2H), 3.14–2.95 (m, 2H), 2.27 (d, J = 13.8 Hz, 1H), 2.03–1.90 (m, 1H), 1.66–1.49 (m, 4H); ¹³C NMR δ 142.6, 132.7, 129.5, 128.8, 128.6, 119.5, 107.6, 103.3, 58.4, 55.1, 46.9, 38.7, 36.0, 27.8, 20.1. Anal. Calcd for C₁₇H₁₉ClN₂: C, 71.19; H, 6.68; N, 9.77. Found: C, 71.49; H, 7.01; N, 9.48.

8-(4-Methylphenyl)-5,6,9,10,11,11a-hexahydro-8*H*-pyrido-[1,2-*a*]pyrrolo[2,1-*c*]pyrazine (7b): colorless needles (hexanes/EtOAC); yield 66%; mp 106–107 °C; ¹H NMR δ 7.26 (d, J = 7.4 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 6.61 (br s, 1H), 6.19 (t, J = 2.9 Hz, 1H), 5.93 (br s, 1H), 4.42 (br s, 1H), 4.07–3.97 (m, 1H), 3.55–3.48 (m, 2H), 3.08–3.01 (m, 2H), 2.34 (s, 3H), 2.29–2.25 (m, 1H), 2.04–1.97 (m, 1H), 1.66–1.55 (m, 4H); ¹³C NMR δ 140.9, 136.8, 129.7, 129.2, 127.2, 119.4, 107.5, 103.2, 58.7, 55.1, 46.9, 38.8, 35.9, 27.9, 21.1, 20.3. Anal. Calcd for C₁₈H₂₂N₂: C, 81.16; H, 8.32; N, 10.52. Found: C, 81.45; H, 8.68; N, 10.43. **Crystal data for 7b:** see Supporting Information.

8-Ethyl-5,6,9,10,11,11a-hexahydro-8H-pyrido[**1,2**-*a*]**pyrrolo**[**2,1**-*c*]**pyrazine (7c):** brown oil; yield 80%; ¹H NMR δ 6.51 (br s, 1H), 6.13 (t, J = 3.1 Hz, 1H), 5.84 (br s, 1H), 4.11–4.02 (m, 1H), 3.92 (dd, J = 7.5, 3.3 Hz, 1H), 3.83 (dt, J = 11.5, 2.9 Hz, 1H), 3.10 (dd, J = 8.2, 3.0 Hz, 2H), 2.73–2.69 (m, 1H), 2.05–1.98 (m, 1H), 1.76–1.48 (m, 6H), 1.28–1.24 (m, 1H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR δ 131.5, 118.3, 107.7, 102.2, 58.9, 53.2, 48.1, 43.0, 30.5, 27.8, 19.0 (2), 10.9. HRMS calcd for C₁₃H₂₁N₂ (M + 1) 205.1704, found 205.1723.

5,6,9,10,11,11a-Hexahydro-8*H*-pyrido[1,2-*a*]pyrrolo[2,1-*c*]pyrazine-8-carbonitrile (8). A mixture of compound 6 (0.59 g, 2 mmol) and NaCN (0.2 g, 4 mmol) in dimethyl sulfoxide (10 mL) was reacted for 12 h at 20 °C, followed by the same workup procedure as that for **4**. The product **8** was obtained after neutral alumina column chromatography (eluent: hexanes/EtOAc = 10/1-5/1) as white needles (hexanes/EtOAc); mp 52–53 °C; yield 75%; ¹H NMR δ 6.53 (br s, 1H), 6.15 (t, *J* = 3.1 Hz, 1H), 5.88 (br s, 1H), 4.08 (td, *J* = 11.8, 4.7 Hz, 1H), 4.00 (br s, 1H), 3.95 (dd, *J* = 11.7, 4.3 Hz, 1H), 3.63 (d, *J* = 11.1 Hz, 1H), 3.07 (td, *J* = 11.8, 4.7 Hz, 1H), 1.99–1.92 (m, 2H), 1.89–1.78 (m, 2H), 1.59–1.49 (m, 1H); ¹³C NMR 130.1, 118.6, 116.2, 108.4, 102.5, 55.2, 54.5, 50.6, 44.4, 30.2, 28.6, 20.1. Anal. Calcd for C₁₂H₁₅N₃ : C, 71.61; H, 7.51; N, 20.88. Found: C, 71.31; H, 7.60; N, 20.93.

5,6,9,10,11,11a-Hexahydro-8*H***-pyrido[1,2-***a***]pyrrolo**[2,1-*c*]**-pyrazine (9).** Compound **6** (0.59 g, 2 mmol) and NaBH₄ (0.15 g, 4 mmol) were stirred overnight in THF (20 mL) at 20 °C. Following the same procedure as that for **5**, product **9** was obtained after column chromatography (eluent: hexanes/EtOAc = 9/1-4/1) as a brown oil; yield 63%; ¹H NMR δ 6.51 (br s, 1H), 6.13 (t, *J* = 2.9 Hz, 1H), 5.84 (br s, 1H), 4.13 (td, *J* = 12.0, 4.6 Hz, 1H), 3.91 (dd, *J* = 11.4, 3.9 Hz, 1H), 3.04 (dd, *J* = 12.0, 4.6 Hz, 1H), 2.30-2.13 (m, 2H), 1.84 (d, *J* = 4.2 Hz, 1H), 1.71-1.64 (m, 2H), 1.60-1.38 (m, 2H); ¹³C NMR δ 131.6, 118.4, 108.0, 101.5, 60.7, 55.8, 52.8, 44.6, 30.4, 25.6, 23.9. Anal. Calcd for C₁₁H₁₆N₂: C, 74.96; H, 9.15; N, 15.89. Found: C, 75.30; H, 9.51; N, 16.25.

Supporting Information Available: Crystal data and structure refinement for compounds **6a** and **7b**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO020371T