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Abstract: Novel pyrrolidinium salts based on L-(+)-tartaric acid
were designed and synthesized in very good yields with a simple
and practical strategy. Twelve new chiral ionic potential task-
specific catalysts, two of which are room-temperature chiral ionic
liquids (RTCIL), were obtained, and their properties are discussed.
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The interest in using room-temperature ionic liquids
(RTIL) as alternative solvents for organic synthesis, ex-
tractions, electrochemistry, and material science has in-
creased tremendously in recent years.1 Among them,
chiral ionic liquids (CIL) are of special interest, and their
use as reaction media for asymmetric organic reactions,
chiral discrimination, analytical chemistry, as well as op-
tical resolution of racemic mixtures has increased dramat-
ically.2 However, to date, there are only few chiral ionic
liquids that have been designed, synthesized, and used as
solvents3 or organocatalysts4 for asymmetric reactions
achieving high ee. Therefore, the search for new CIL is
still demanding, the main target being the synthesis of
functionalized CIL which may work as task-specific cata-
lysts or mediators. Considering that ionic liquids are re-
garded as green solvents, particularly promising are those
obtained from renewable sources rather than from chemi-
cals derived from petroleum.5 In this context, compounds
from the chiral pool constitute a low cost source for new
CIL.

Figure 1

In this Letter we report the synthesis of compounds 1–12
(Figure 1), constituting a novel class of enantiopure pyr-

rolidinium chiral ionic materials based on L-(+)-tartaric
acid as starting material. A few examples of ionic liquids
based on L-tartaric acid have been previously reported,
but in all cases an imidazolium moiety was always intro-
duced.6 Recently, syntheses of some ionic liquids embod-
ying the tartaric acid skeleton in the anion were also
reported.7

Our synthetic strategy started from low-cost L-tartaric ac-
id, which was reacted with benzylamine in refluxing xy-
lene to afford pyrrolidindione 138 (Scheme 1) in 57%
yield. Upon reduction with LiAlH4 in dry THF the ben-
zylpyrrolidine 149 was obtained in 51% yield on a multi-
gram scale.10,11

Scheme 1

Quaternization of pyrrolidine 14 was achieved using a
slight excess of benzyl or n-dodecyl bromide in aceto-
nitrile at 90 °C (Scheme 2). The reaction was performed
either with traditional and microwave (MW) heating. Tra-
ditional heating gave the best results in most cases; how-
ever, excellent yields under MW heating were obtained
for bromide salt 1 with reduced reaction times (10 min).12

When using MW, prolonging the reaction times did not
further increase the isolated yields.

Good yields of the tetrabenzyl pyrrolidinium bromide 5
were obtained by slow addition (10 h, syringe pump) of
4.5 equivalents of BnBr in the presence of an excess of po-
tassium carbonate (Scheme 2). This reaction is quite pe-
culiar, considering that O-benzylations of tartaric acid
derivatives generally proceed with low yields, and require
the use of silver salts13 or a phase-transfer catalyst.14 Like-
ly the success of the reported mild procedure can be as-
cribed to the early formation of the quaternary ammonium
salt 5 (or its mono-O-benzylated parent), which autocata-
lyzes the reaction, being soluble in the reaction mixture
and acting as a phase-transfer catalyst.

Bromides 1, 5, and 9 readily crystallized from the reaction
mixture or by addition of diethyl ether and were recovered
by simple filtration. Protection of the hydroxy groups pro-
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vided a means for lowering the melting point of the salt.
Indeed, on passing from [dibenpyr]Br (1) to the tetraben-
zylated [tetrabenpyr]Br (5), the melting point dropped
considerably (205–206 °C vs. 169–172 °C, entries 1 and
5, Table 1), despite the sharp increase of molecular
weight, presumably due to the lack of hydrogen-bonding
interactions between cations. Indeed, this was also ob-
served in the X-ray structures of compounds 1 and 5
(Figure 2), collected after crystallization from a solution
in MeCN by slow addition of diethyl ether. Crystals of 115

showed hydrogen bonding between one oxygen atom with
an oxygen atom of another molecule (distance O1–
O2 = 2.69 Å, Figure 2, a). The distance N–Br was found
to be 4.105 Å. No p-stacking between the aromatic rings
was observed. In crystals of 5,16 no interactions (hydrogen

bonding or p-stacking) were observed between two cat-
ions (Figure 2, b). The distance N–Br was found to be
4.017 Å.

Alternatively, disrupting the C2-symmetry of the mole-
cule resulted a more effective way for obtaining low-
melting-point salts. Indeed, for [dodebenpyr]Br (9), a
melting point of 111–112 °C was observed (entry 9,
Table 1), approaching the conventional limit (100 °C)1c

for a salt to be regarded as a ionic liquid.

Anion exchange was straightforward, occurring simply by
suspending the solid material at the interphase of a bipha-
sic mixture of water and ethyl acetate. Upon addition of
one equivalent of the appropriate potassium or lithium salt
(KBF4, KPF6, or LiNTf2), the two phases became trans-
parent within five minutes and evaporation of the organic
phase afforded the corresponding ionic compounds 2–4
and 6–8 (Table 1), always in quantitative yields.17 Titra-
tion of the collected aqueous phases with a standard solu-
tion of AgNO3 (using K2CrO4 as indicator) proved that
substitution of the bromide ions was quantitative.18 These
ionic compounds were easily prepared in multigram scale.
Anion exchange to give products 10–12 was better per-
formed in water.19

Among the twelve novel chiral ionic materials obtained,
only the bis(triflyl)amide salts were truly ionic liquids:
two of them (820 and 1221) were liquid at room tempera-
ture and [dibenpyr]NTf2 (422) showed a very low melting
point. They all showed an excellent thermal stability,
showing no sign of decomposition upon heating at 120 °C
for 15 hours.

A preliminary evaluation of the chiral recognition ability
of these novel pyrrolidinium salts was carried out in at-

Scheme 2 Reagents and conditions: (a) oil bath: 1 (30 min, 93%); 9
(72 h, 70%); 5 (10 h, 87%); (b) microwaves: 1 (10 min, 150 W, 94%);
9 (10 min, 150 W, 25%); 5 (10 min, 150 W, 35%).
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Table 1 Melting Points or Glass-Transisition Temperatures of 
Compounds 1–12

Entry Name Compd Mp or Tg (°C)

1 [dibenpyr]Br 1 205–206

2 [dibenpyr]BF4 2 140–142

3 [dibenpyr]PF6 3 107–108

4 [dibenpyr]NTf2 4 50–53

5 [tetrabenpyr]Br 5 169–172

6 [tetrabenpyr]BF4 6 126–127

7 [tetrabenpyr]PF6 7 154–156

8 [tetrabenpyr]NTf2 8 +1a

9 [dodebenpyr]Br 9 111–112

10 [dodebenpyr]BF4 10 99–100

11 [dodebenpyr]PF6 11 waxy solid

12 [dodebenpyr]NTf2 12 –31a

a Glass-transition temperature (Tg).
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tempting to detect diastereomeric interactions between
the enantiopure cations 1–12 and the racemic Mosher acid
anion.23

We used the potassium salt 15 and recorded the NMR
spectra in CDCl3 with the addition of 18-crown-6 to facil-
itate solubilization and dissociation. Interaction between
salt 10 and Mosher acid salt 15 induced a shift of the flu-
orine atom signals in the 19F NMR spectrum recorded at
188 MHz (Figure 3). The CF3 groups of the two enantio-
mers of carboxylate 15 (Figure 3, a) split into two signals
with a slight difference in the chemical shift that depended
on the 10:15 ratio as previously observed.23f Varying the
10:15 ratio from 1 to 3 the shift passed from 6.1 Hz
(Figure 3, b) to 7.6 Hz (Figure 3, c). Splitting of the sig-
nals for the R- and S-configured anions indicates the for-
mation of diastereomeric salts and the ability of the chiral
cation to influence the anion response.

Figure 3

In conclusion, we have reported a straightforward strategy
for the synthesis of a series of novel pyrrolidinium ionic
liquids and ionic materials based on tartaric acid. Their
potential in asymmetric synthesis as solvents, catalysts, or
ligands is currently under investigation in our laborato-
ries.
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