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Abstract—3-O-b-Chacotriosyl-26-O-b-DD-glucopyranosyl-(25R)-furost-5-en (1), a mimic of the antitumor active proto-dioscin, was
concisely synthesized from diosgenin in a linear nine steps and in 17% overall yield. Its congeners with a a-LL-rhamnopyranosyl, b-
lactosyl, or without a substituent at the 26-OH (13–15) were also prepared. Compound 1, as well as 13–15, did not show any

inhibition against tumor cells, implying that proto-dioscin might be also inactive, but readily converted into the antitumor active

dioscin.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A quite common feature of spirostan saponins is their

inhibitory activities against the growth of tumor cells,

with the potency being highly dependent of the 3-O-

sugar residue. Those bearing a chacotriosyl residue at

the 3-OH are among the most active examples.1 Dioscin

(diosgenin 3-O-b-chacotrioside), one of the most abun-
dant spirostan saponins occurring in plants, represents a
well-studied example, showing promising antitumor

activities both in vitro and in vivo.1;2 The furostan

proto-dioscin, 3-O-b-chacotriosyl-26-O-b-DD-glucopyr-
anosyl-22-hydroxyl-(25R)-furost-5-en, and its 22-meth-

oxyl derivative are as potent as dioscin in inhibition of

the growth of tumor cells (IC50s at the lM level).1;3

Interestingly, the cytotoxicity pattern of proto-dioscin
Abbreviations: TBDMS, tert-butyldimethylsilyl-; TBDPS, tert-butyl-

diphenylsilyl-; 1-BBTZ, 1-(benzoyloxy)benzotriazole; TBAF, tetra-

butylammonium fluoride; DMAP, 4-(dimethylamino)pyridine; SRB,

sulforhodamine B
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was found unique against the 60 tumor cell lines in the
NCI’s anticancer screening.3a Furostan saponins are

difficult to obtain from natural sources; enzymatic or

acidic cleavage of the 26-O-glucopyranosyl residue,

followed by an intramolecular acetalization, converts

furostan saponins readily into the corresponding spiro-

stan saponins. In fact, furostan saponins are regarded as
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the biosynthetic precursors of the spirostan saponins.4

Recently, a synthetic approach toward proto-dioscin
has been reported,5 but a practical access still awaits

elaboration. Thus, compound 1, namely 3-O-b-chaco-
triosyl-26-O-b-DD-glucopyranosyl-(25R)-furost-5-en, a

synthetically easily accessible mimic of proto-dioscin

attracts attention.6 Here we report a facile synthesis of 1

as well as its congeners with different substituents at the

26-OH (13–15) for antitumor evaluation.
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Scheme 1. Reagents and conditions: (a) LiAlH4, AlCl3, Et2O–CH2Cl2,

0 �Cfi rt, 1 h, 95%; (b) TBDPSCl, imidazole, DMAP, CH2Cl2, rt, 1 h,

82%; (c) TMSOTf (0.1 equiv), CH2Cl2, 4�A MS, 0 �Cfi rt, 97%; (d)

NaOMe, MeOH, rt, 2 h, 97%; (e) 1-BBTZ, CH2Cl2, Et3N, rt, 48 h,

61%; (f) TMSOTf (0.2 equiv), CH2Cl2, 4�A MS, )30 �Cfi rt; (g)

TBAF, HOAc, THF, rt, 16 h, 72% (two steps); (h) TMSOTf

(0.1 equiv), CH2Cl2, 4�A MS, 0 �Cfi rt, 62%; (i) NaOMe, MeOH, rt,

overnight, 86%.
2. Results and discussion

In the recent synthesis of compound 1,6 Oscarson and
co-workers subjected the 3-O-TBDMS protected dios-

genin to a mild reductive procedure (BH3ÆMe3N/AlCl3)
to provide the 3-O-TBDMS-dihydrodiosgenin. Sub-

sequent glucosylation of the 26-OH, deprotection of the

3-OTBDMS, assembly of the 3-O-chacotriosyl moiety,

and final removal of the benzyl protecting groups on the

sugar residues afforded the target compound 1. We in-

tended to assemble the 3-O-chacotriosyl linkage before
the attachment of the 26-O-glucosyl residue; thus the

synthetic route would be applicable to the preparation

of the 3-O-chacotrioside congeners with different sugar

residues at the 26-OH. For assembly of the 3-O-chaco-

trioside, we planed to adopt the procedure we developed

for the synthesis of dioscin, where acyl-protected glu-

cosyl and rhamnosyl imidates were employed to ensure

formation of the 1,2-trans glycosidic bonds and a facile
final deprotection.7

The synthetic route toward 1 is depicted in Scheme 1.

Reductive opening of the spiroketal of diosgenin with

LiAlH4/AlCl3 gave dihydrodiosgenin 2 in 95% yield.8

Selective protection of the primary 26-OH was achieved

with a TBDPS group to provide 3 (82%). Compound 3

was treated with 2,3,4,6-tetra-O-benzoyl-DD-glucopyr-

anosyl trichloroacetimidate (4) in the presence of
TMSOTf (0.1 equiv) in CH2Cl2, affording the 3-O-b-
glucopyranoside 5 in an excellent yield (97%).9 Removal

of the benzoyl groups with NaOMe in MeOH readily

gave 6, which was subjected to 1-BBTZ (1-(benzoyl-

oxy)benzotriazole) in the presence of Et3N in CH2Cl2 to

selectively protect the 3,6-OHs of the glucopyranosyl

residue, affording 2,4-diol 7 in a satisfactory 61%

yield.7;10 Glycosylation of 7 with 2,3,4-tri-O-acetyl-LL-
rhamnopyranosyl trichloroacetimidate (8) under ‘inverse

addition’ conditions11 provided a crude 9. After cleavage

of the 26-OTBDPS with TBAF in the presence of HOAc

in THF, the desired key intermediate 10 was then con-

veniently purified in 72% yield (two steps). Similar con-

ditions as those used for the glucosylation of the 3-OH of

4were applied to the coupling of the 26-OH of 10, but led

to only moderate yield of the desired 11 (62%). Finally,
ready removal of the acetyl and benzoyl groups (Na-

OMe, MeOH) furnished the target 1 in 86% yield.
Starting from the readily available 3-O-peracylchaco-
triosyl-26-OH derivative 10, the desired congeners with

a different substituent at 26-OH were easily prepared

(Scheme 2). Glycosylation of the 26-OH of 10 with per-

O-acetyl-LL-rhamnopyranosyl and per-O-benzoyllactosyl

trichloroacetimidate (8 and 1212) under common con-

ditions (0.1 equiv of TMSOTf, CH2Cl2), followed by
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two steps); 62% (for 14, two steps); 76% (for 15).
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removal of the acetyl and benzoyl groups with NaOMe

in MeOH, readily provided the bidesmosidic saponins

13 and 14, after silica gel column chromatography, in

18% and 64% yield, respectively. Direct cleavage of the

acetyl and benzoyl groups on 10 provided the 26-OH

derivative 14.

Compounds 1 and 13–15 were examined for their

inhibitory activity against the human lung adenocarci-
noma A-549, a proto-dioscin-sensitive cell line (IC50¼
1.64 lM), following the standard SRB (sulforhodamine

B) assay procedure.3c Unfortunately, little inhibition

was observed at and below the concentration of 10 lM.
These results imply that proto-dioscin (generally furo-

stan saponins) might be also inactive, but could be

readily convert into the antitumor active dioscin (gen-

erally spirostan saponins).
3. Experimental

3.1. General methods

Solvents were purified in the usual way. TLCs were

performed on precoated E. Merck Silica Gel 60 F254
plates. Flash column chromatography was performed

on silica gel (100–200mesh, Qingdao, China). Optical

rotations were determined with a Perkin–Elmer Model

241 MC polarimeter. Melting points were determined

with a ‘Yanaco’ apparatus and were uncorrected. 1H
NMR and 13C NMR spectra were taken on a JEOL

JNM-ECP 600MHz spectrometer with tetramethyl-

silane (TMS) as an internal standard, and chemical shifts

are recorded in d values. Mass spectra were obtained on
a HP5989A or a VG Quatro mass spectrometer.
3.1.1. 3b,26-Dihydroxy-(25R)-furost-5-en (2). To a stir-
red ice-cold solution of AlCl3 (14.0 g, 0.10mol) in

anhydrous Et2O (40mL) was carefully added LiAlH4

(0.95 g, 0.025mol). Then a solution of diosgenin (1.04 g,
2.5mmol) in anhydrous Et2O (40mL) was added with

stirring over a period of 15min. Stirring was continued
for 15min at 0 �C and then 1 h at rt. The mixture was

treated cautiously with water and 10% H2SO4. The

resulting mixture was extracted with Et2O, and the

combined extracts were washed with dilute NaHCO3

solution, dried over Na2SO4, and then concentrated.

The residue was purified by column chromatography

(1:2:1 EtOAc–petroleum ether–CHCl3) to give 2 as a

white solid (0.99 g, 95%): Rf 0.25 (1:1:1 EtOAc–petro-
leum ether–CHCl3); mp 164–166 �C (lit.8c 166–169 �C);
½a�20D )48.8 (c 0.65, CHCl3); 1H NMR (DMSO-d6): d 5.26
(d, 1H, J ¼ 5.5Hz, H-6), 4.60 (d, 1H, J 4.7Hz, 3-OH),
4.36 (t, 1H, J 5.5Hz, 26-OH), 4.20 (m, 1H, H-16), 3.25–
3.16 (m, 4H, H-3, H-26, H-22), 2.16–2.06 (m, 2H), 1.93–

1.88 (m, 2H), 1.76 (m, 1H), 1.68 (m, 3H), 1.56–1.31 (m,

10H), 1.19–1.03 (m, 4H), 0.99 (m, 1H), 0.96 (m, 6H, H-

19, H-21), 0.87 (m, 1H), 0.81 (d, 3H, J 6.6Hz, H-27),
0.75 (s, 3H, H-18); ESIMS (m=z): 439.318 [M+Naþ];

calcd 439.318.

3.1.2. 26-O-tert-Butyldiphenylsilyl-3b-hydroxy-(25R)-fu-
rost-5-en (3). TBDPSCl (0.2mL, 0.79mmol) was added

dropwise to a stirred mixture of 2 (0.3 g, 0.72mmol),

imidazole (0.12 g, 1.8mmol), and DMAP (catalytic

amount) in CH2Cl2 (25mL) at 10 �C. The mixture was
stirred for 20min at rt. Removal of solvent afforded a

residue that was subjected to column chromatography
(1:6:1 EtOAc–petroleum ether–CHCl3) to give 3 as a

buff solid (0.39 g, 82%): Rf 0.20 (1:6:1 EtOAc–petroleum
ether–CHCl3); mp 47.5–49.0 �C; ½a�20D )34.2 (c 0.61,

CHCl3);
1H NMR (DMSO-d6): d 7.61–7.60 (m, 4H,

ArH), 7.47–7.41 (m, 6H, ArH), 5.26 (d, 1H, J 5.2Hz, H-
6), 4.61 (d, 1H, J 4.7Hz, 3-OH), 4.20 (m, 1H, H-16),

3.48 (m, 2H), 3.26–3.19 (m, 2H), 2.16–2.06 (m, 2H),

1.92–1.88 (m, 2H), 1.75 (m, 1H), 1.67–1.61 (m, 4H),
1.56–1.45 (m, 7H), 1.38–1.02 (m, 6H), 1.00 (s, 9H), 0.96

(m, 1H), 0.95 (m, 6H, H-19, H-21), 0.90 (m, 1H), 0.88 (d,

3H, J 6.6Hz, H-27), 0.73 (s, 3H, H-18). 13C NMR

(DMSO-d6): d 141.3, 135.0, 133.2, 129.8, 127.8, 120.3,

89.3, 82.3, 79.2, 69.9, 68.1, 64.6, 56.2, 49.6, 42.2, 40.1,

39.1, 37.3, 36.9, 36.2, 35.1, 31.9, 31.3 (2C), 31.2, 30.3,

29.5, 26.6, 20.2, 19.1, 18.9, 18.8, 16.7, 16.1; ESIMS

(m=z): 677.437 [M+Naþ]; calcd 677.436.

3.1.3. 26-O-tert-Butyldiphenylsilyl-3b-O-(2,3,4,6-tetra-O-
benzoyl-b-DD-glucopyranosyl)-(25R)-furost-5-en (5). To a

mixture of compound 3 (2.88 g, 4.4mmol), 4 (4.0 g,

5.4mmol), and powdered 4�A molecular sieves in dried

CH2Cl2 (70mL) at 0 �C was added TMSOTf (78 lL,
0.44mmol). After stirring at 0 �C for 0.5 h and then at rt
for 1 h, the reaction was quenched with Et3N. The solid

was then filtered off. The filtrate was concentrated under

vacuum to give a yellow oil that was purified by column
chromatography (1:10:1 EtOAc–petroleum ether–

CHCl3) to give compound 5 as a buff solid (5.23 g, 96%):
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Rf 0.15 (1:10:1 EtOAc–petroleum ether–CHCl3); mp

127.5–129 �C. ½a�20D +7.3 (c 0.81, CHCl3);
1H NMR

(DMSO-d6): d 7.96–7.42 (m, 30H, ArH), 5.98–5.95 (m,
1H, H-30), 5.56 (t, 1H, J 9.5Hz, H-40), 5.32 (m, 2H, H-20,
H-10), 5.19 (d, 1H, J 4.0Hz, H-6), 4.53–4.46 (m, 3H, H-
60, H-50), 4.20 (m, 1H, H-16), 3.49–3.44 (m, 3H), 3.20

(m, 1H), 2.26–1.03 (m, 23H), 0.99 (s, 9H), 0.94 (d, 3H, J
6.6Hz, H-21), 0.87 (d, 3H, J 6.6Hz, H-27), 0.85 (m,

1H), 0.84 (s, 3H, H-19), 0.70 (s, 3H, H-18). 13C NMR

(DMSO-d6): d 165.3, 165.1, 164.7, 164.6, 139.8, 135.0,
133.8, 133.7, 133.4, 133.3, 133.2, 129.8, 129.2, 129.1,

129.0, 128.8, 128.7 (2C), 128.4, 127.8, 121.4, 98.4, 89.3,

82.3, 79.0, 73.2, 71.9, 70.8, 69.6, 68.1, 64.5, 62.7, 56.2,

49.4, 40.1, 38.8, 38.4, 37.3, 36.5, 36.1, 35.1, 31.9, 31.4,

31.0, 30.3, 29.4, 29.1, 26.6, 20.1, 18.9, 18.8, 16.7, 16.1.

ESIMS (m=z): 1256.3 [M+1+Naþ].

3.1.4. 26-O-tert-Butyldiphenylsilyl-3b-O-(b-DD-glucopyr-
anosyl)-(25R)-furost-5-en (6). Compound 5 (200mg)

was dissolved in 1:1 CH3OH–CHCl3 (15mL), and then
NaOMe (100mg) was added. After stirring at rt for 2 h,

the solution was neutralized with ion-exchange resin

(Hþ) and then filtered and concentrated. The residue

was purified by column chromatography (8:1 CHCl3–

MeOH) to afford 6 as a white solid (128mg, 97%): Rf
0.41 (5:1 CHCl3–MeOH); mp 157–158 �C. ½a�20D )39.1 (c
0.77, CHCl3);

1H NMR (DMSO-d6): d 7.61 (m, 4H,

ArH), 7.47–7.41 (m, 6H, ArH), 5.33 (d, 1H, J 5.2Hz, H-
6), 4.90 (d, 1H, J 4.7Hz, 30-OH), 4.87 (t, 2H, J 5.5Hz,
20-OH, 40-OH), 4.43 (t, 1H, J 5.8Hz, 60-OH), 4.22 (d,

1H, J 7.7Hz, H-10), 4.19 (m, 1H, H-16), 3.65 (dd, 1H, J
5.5, 9.9Hz, H-60), 3.20 (m, 1H, H-22), 3.12 (td, 1H, J
4.7, 8.4Hz, H-30), 3.07 (m, 1H, H-50), 3.02 (td, 1H, J 5.2,
9.2Hz, H-40), 2.89 (td, 1H, J 4.7, 8.0Hz, H-20), 2.37 (dd,
1H, J 2.9, 13.6Hz), 2.14–1.05 (m, 23H), 1.00 (s, 9H),

0.97 (s, 3H, H-19), 0.94 (d, 3H, J 6.6Hz, H-21), 0.88 (d,
3H, J 6.6Hz, H-27), 0.74 (s, 3H, H-18). 13C NMR

(DMSO-d6): d 140.5, 135.0, 133.3, 129.8, 127.8, 121.1,

100.7, 89.3, 82.3, 76.8 (2C), 73.5, 70.1, 68.1, 64.6, 61.1,

56.2, 49.6, 40.2, 38.8, 37.3, 36.8, 36.4, 35.1, 31.9, 31.5,

31.2, 30.3, 29.5, 29.3, 20.2, 19.1, 18.9, 18.8, 16.8, 16.1.

ESIMS (m=z): 839.473 [M+Naþ]; calcd 839.470.

3.1.5. 26-O-tert-Butyldiphenylsilyl-3b-O-(3,6-di-O-ben-
zoyl-b-DD-glucopyranosyl)-(25R)-furost-5-en (7). To a

stirred solution of compound 6 (1.49 g, 1.83mmol) and
1-BBTZ (1.09 g, 4.53mmol) in CH2Cl2 (30mL) at rt was

added Et3N (0.63mL, 4.55mmol). The reaction mixture

was stirred at rt for 48 h. Removal of the solvent affor-

ded a residue that was subjected to column chroma-

tography (1:3 EtOAc–petroleum ether) to give 7 as a

buff solid (1.15 g, 61%): Rf 0.14 (1:3 EtOAc–petroleum
ether); mp 82–83 �C. ½a�20D )17.9 (c 0.62, CHCl3);

1H

NMR (CDCl3): d 8.10–7.37 (m, 20H, ArH), 5.35 (d, 1H,
J 5.1Hz, H-6), 5.21 (t, 1H, J 9.2Hz, H-30), 4.70–4.63 (m,
2H, H-60), 4.55 (d, 1H, J 7.7Hz, H-10), 4.30 (q, 1H, J
7.7, 13.2Hz, H-16), 3.77–3.74 (m, 2H, H-40, H-50), 3.68

(dd, 1H, J 8.0, 9.5Hz, H-20), 3.58 (m, 1H, H-3), 3.52 (dd,
1H, J 5.5, 9.8Hz, H-26), 3.45 (dd, 1H, J 6.2, 9.9Hz, H-
26), 3.34 (br s, 1H, 40-OH), 3.30 (td, 1H, J 4.0, 7.7Hz,
H-22), 2.49 (br s, 20-OH), 2.37–1.28 (m, 22H), 1.10 (m,

1H), 0.88 (m, 1H), 1.04 (s, 9H), 1.00 (s, 3H, H-19), 0.99

(d, 3H, J 6.2Hz, H-21), 0.93 (d, 3H, J 6.6Hz, H-27),

0.79 (s, 3H, H-18). 13C NMR (CDCl3): d 167.9, 166.9,
140.3, 135.7, 134.2, 133.6, 133.3, 130.1, 130.0, 129.9,

129.6, 129.5, 128.6, 128.5, 127.7, 122.1, 101.6, 90.5, 83.2,
79.9, 78.7, 77.3, 77.1, 76.9, 74.4, 72.2, 69.9, 68.8, 65.4,

63.9, 57.1, 50.2, 40.8, 39.6, 38.9, 38.0, 37.2, 36.9, 36.1,

32.3, 32.1, 32.0, 31.7, 31.2, 30.2, 29.8, 29.5, 27.0, 22.8,

20.8, 19.4, 19.2, 17.0, 16.5, 14.2. ESIMS (m=z): 1047.540
[M+Naþ]; calcd 1047.541.

3.1.6. 26-O-tert-Butyldiphenylsilyl-3b-O-[2,4-di-O-(2,3,4-
tri-O-acetyl-a-LL-rhamnopyranosyl)-3,6-di-O-benzoyl-b-DD-
glucopyranosyl]-(25R)-furost-5-en (9). To a mixture of 7
(1.10 g, 1.07mmol) and powdered 4�A molecular sieves

in dried CH2Cl2 (20mL) at )30 �C, TMSOTf (43 lL,
0.25 mmol) was added, followed by dropwise addition
of a solution of 8 (2.33 g, 5.35mmol) in CH2Cl2 (15mL).

After stirring at )30 �C for 0.5 h and then at 0 �C for 1 h,
the reaction was quenched with Et3N. The solid was

then filtered off, and the filtrate was concentrated under

vacuum to give a yellow oil. The oil was subjected to

column chromatography (1:3 EtOAc–petroleum ether to

1:2 EtOAc–petroleum ether) to give crude 9 that was

directly subjected to the next reaction. Part of the crude
product (50mg) was purified with precoated plates of

Silica Gel GF254 (0.25mm, Qingdao) to afford pure 9 for

analysis: Rf 0.15 (EtOAc–petroleum ether–CHCl3,

1:10:1) mp 69–70 �C. ½a�20D )33.6 (c 0.22, CHCl3); 1H

NMR (CDCl3): d 8.06–7.36 (m, 20H, ArH), 5.62 (t, 1H,
J 9.1Hz, H-30), 5.35 (d, 1H, J 5.0Hz, H-6), 5.16 (d, 1H,
J 3.7Hz, H-3(rha)), 5.15 (d, 1H, J 3.7Hz, H-3(rha)),

5.12 (m, 1H, H-2(rha)), 4.98 (dd, 1H, J 1.9, 3.7Hz, H-
2(rha)), 4.91 (t, 1H, J 10.1Hz, H-4(rha)), 4.88 (t, 1H, J
10.1Hz, H-4(rha)), 4.85 (d, 1H, J 1.9Hz, H-1(rha)), 4.79
(dd, 1H, J 10.1Hz, H-60), 4.76 (d, 1H, H-1(rha)), 4.67 (d,
1H, J 7.8Hz, H-1(rha)), 4.51 (dd, 1H, J 5.5, 12.4Hz, H-
60), 4.36–4.34 (m, H-5(rha)), 4.32–4.29 (m, H-16), 3.97

(t, 1H, J 9.2Hz, H-40), 3.86 (ddd, 1H, J 1.8, 5.0, 7.3Hz,
H-50), 3.79 (t, 1H, J 9.2Hz, H-20), 3.72 (m, 1H, H-

5(rha)), 3.58 (m, 1H, H-3), 3.52 (dd, 1H, J 5.5, 9.7Hz,
H-26), 3.45 (dd, 1H, J 6.4, 9.6Hz, H-26), 3.30 (td, 1H, J
4.1, 7.8Hz, H-22), 2.41–0.82 (m, 24H), 1.99, 1.95, 1.92,

1.89, 1.74 (s each, 3H each, OAc�6), 1.16 (d, 3H, J
6.4Hz, CH3(rha)), 1.05 (s, 9H), 0.99 (d, 3H, J 6.4Hz, H-
21), 0.96 (s, 3H, H-19), 0.93 (d, 3H, J 6.8Hz, H-27), 0.79
(s, 3H, H-18), 0.68 (d, 3H, J 6.4Hz, CH3(rha)).

13C

NMR (CDCl3): d 170.0 (2C), 169.9, 169.7, 168.9, 165.8,
165.0, 140.0, 135.6, 134.1, 133.3, 133.0, 130.1, 129.9,
129.8, 129.5, 129.1 (2C), 128.4 (2C), 127.6, 122.1, 99.6,

99.0, 98.0, 90.4, 83.1, 79.5, 76.2, 76.0, 73.0, 71.0, 70.5,
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70.0, 69.1, 68.8, 68.7, 68.5, 67.5, 66.5, 65.2, 62.8, 56.9,

50.2, 40.7, 39.4, 38.4, 37.9, 37.0, 36.8, 36.0, 32.2, 32.0,
31.5, 31.1, 30.1, 29.7, 26.9, 22.7, 20.8, 20.7, 20.6, 20.3,

19.3, 19.2, 19.1, 17.2, 16.9 (2C), 16.4, 14.1. ESIMS

(m=z): 1591.722 [M+Naþ]; calcd 1591.721.

3.1.7. 26-Hydroxy-3b-O-[2,4-di-O-(2,3,4-tri-O-acetyl-a-
LL-rhamnopyranosyl)-3,6-di-O-benzoyl-b-DD-glucopyranosyl]-
25(R)-furost-5-en (10). A solution of the above crude

compound 9 (1.44 g) in anhyd THF (10mL) was treated

with 1:1 TBAF–HOAc (1.0M in THF, 10mL). After

stirring for 12 h at rt, the solution was diluted with
EtOAc and washed with water. The organic layer was

dried and concentrated. The residue was purified by

column chromatography (4:5 EtOAc–petroleum ether to

1:1 EtOAc–petroleum ether) to afford 10 as a buff foam

solid (0.87 g, 72% yield for two steps): Rf 0.27 (1:1

EtOAc–petroleum ether); mp 116–117 �C. ½a�20D )44.2 (c
0.64, CHCl3);

1H NMR (CDCl3): d 8.05 (m, 4H, ArH),
7.59–7.55 (m, 2H, ArH), 7.47–7.42 (m, 4H, ArH), 5.62
(t, 1H, J 9.1Hz, H-30), 5.35 (d, 1H, J 5.1Hz, H-6), 5.16
(d, 1H, J 3.7Hz, H-3(rha)), 5.15 (d, 1H, J 3.7Hz, H-

3(rha)), 5.12 (m, 1H, H-2(rha)), 4.98 (dd, 1H, J 1.9,

3.7Hz, H-2(rha)), 4.91 (t, 1H, J 9.9Hz, H-4(rha)), 4.88
(t, 1H, J 9.9Hz, H-4(rha)), 4.85 (d, 1H, J 1.5Hz, H-

1(rha)), 4.80 (dd, 1H, J 1.8, 12.1Hz, H-60), 4.76 (d, 1H,
H-1(rha)), 4.67 (d, 1H, J 7.7Hz, H-10), 4.51 (dd, 1H, J
5.5, 12.4Hz, H-60), 4.37–4.30 (m, 2H, H-5(rha), H-16),
3.97 (t, 1H, J 9.2Hz, H-40), 3.86 (ddd, 1H, J 2.2, 5.5,
9.5Hz, H-50), 3.80 (t, 1H, J 7.7Hz, H-20), 3.74–3.69 (m,
1H, H-5(rha)), 3.58 (m, 1H, H-3), 3.51 (dd, 1H, J 6.2,
10.6Hz, H-26), 3.45 (dd, 1H, J 5.9, 10.6Hz, H-26), 3.34
(td, 1H, J 4.4, 8.1Hz, H-22), 2.67 (br s, 1H, 26-OH),

2.41–0.86 (m, 24H), 1.99, 1.99, 1.95, 1.92, 1.89, 1.74 (s

each, 3H each, OAc�6), 1.16 (d, 3H, J 6.2Hz,

CH3(rha)), 1.01 (d, 3H, J 7.0Hz, H-21), 0.95 (s, 3H, H-
19), 0.92 (d, 3H, J 6.5Hz, H-27), 0.80 (s, 3H, H-18), 0.68
(d, 3H, J 6.2Hz, CH3(rha)).

13C NMR (CDCl3): d 170.0,
169.9, 169.7, 168.9, 165.8, 165.0, 140.0, 133.3, 133.0,

130.1, 129.9, 129.8, 129.1, 128.4 (2C), 122.1, 99.5, 99.0,

98.0, 90.4, 83.2, 79.5, 76.2, 73.0, 71.0, 70.5, 70.0, 69.1,

68.8, 68.5, 68.1, 67.5, 66.5, 65.1, 62.8, 56.9, 52.6, 50.0,

40.7, 39.4, 38.4, 37.9, 37.0, 36.7, 35.7, 32.2, 32.0, 31.5,

30.4, 30.2, 29.7, 20.8, 20.7, 20.6, 20.3, 19.2, 18.9, 17.2,
16.9, 16.6, 16.5, 13.9. ESIMS (m=z): 1353.597 [M+Naþ];
calcd 1353.603.

3.1.8. 26-O-(2,3,4,6-Tetra-O-benzoyl-b-DD-glucopyrano-
syl)-3b-O-[2,4-di-O-(2,3,4-tri-O-acetyl-a-LL-rhamnopyrano-
syl)-3,6-di-O-benzoyl-b-DD-glucopyranosyl]-(25R)-furost-5-
en (11). To a mixture of 10 (100mg, 0.075mmol), 4

(100mg, 0.135mmol), and powdered 4�A molecular

sieves in dried CH2Cl2 (10mL) at 0 �C was added

TMSOTf (2.5 lL). After stirring for 0.5 h at 0 �C and
then 1 h at rt, the reaction was quenched with Et3N. The

solid was then filtered off, and the filtrate was concen-
trated under vacuum to give a yellow oil that was

purified by column chromatography (2:3 EtOAc–
petroleum ether to 4:5 EtOAc–petroleum ether) to give

11 as a white solid (89mg, 62%): Rf 0.37 (1:1 EtOAc–
petroleum ether); mp 121.0–121.5 �C. ½a�20D )30.1 (c 0.77,
CHCl3);

1H NMR (CDCl3): d 8.06–7.27 (m, 30H, ArH),
5.89 (t, 1H, J 9.8Hz, H-300), 5.68 (t, 1H, J 9.5Hz, H-400),
5.62 (t, 1H, J 9.2Hz, H-30), 5.54 (dd, 1H, J 8.0, 9.8Hz,
H-200), 5.35 (d, 1H, J 5.1Hz, H-6), 5.16 (d, 1H, J 3.3Hz,
H-3(rha)), 5.15 (d, 1H, J 3.7Hz, H-3(rha)), 5.12 (m, 1H,
H-2(rha)), 4.98 (dd, 1H, J 1.8, 3.7Hz, H-2(rha)), 4.92 (t,
1H, J 9.9Hz, H-4(rha)), 4.88 (t, 1H, J 9.9Hz, H-4(rha)),
4.86 (d, 1H, J 1.8Hz, H-1(rha)), 4.86–4.79 (m, 2H, H-60,
H-100), 4.76 (d, 1H, H-1(rha)), 4.68 (d, 1H, J 7.7Hz, H-
10), 4.62 (dd, 1H, J 3.3, 12.1Hz, H-600), 4.51 (m, 2H, H-
60, H-600), 4.35 (m, 1H, H-5(rha)), 4.21 (m, 1H, H-16),

4.14 (m, 1H, H-500), 3.97 (t, 1H, J 9.2Hz, H-40), 3.86

(ddd, 1H, J 1.9, 5.1, 7.3Hz, H-50), 3.80 (t, 1H, J 8.8Hz,
H-20), 3.74–3.70 (m, 2H, H-5(rha), H-26), 3.57 (m, 1H,

H-3), 3.36 (dd, 1H, J 6.2, 9.5Hz, H-26), 3.05 (td, 1H, J
3.7, 8.4Hz, H-22), 2.41–0.80 (m, 24H), 1.98, 1.95, 1.92,

1.89, 1.74 (s each, 3H each, OAc�6), 1.16 (d, 3H, J
6.2Hz, CH3(rha)), 0.95 (s, 3H, H-19), 0.87 (d, 3H, J
6.6Hz, H-21), 0.78 (d, 3H, J 6.6Hz, H-27), 0.74 (s, 3H,
H-18), 0.68 (d, 3H, J 6.2 Hz, CH3(rha)).

13C NMR

(CDCl3): d 170.0 (2C), 169.9, 169.6, 168.9, 166.1, 165.8,
165.2, 165.0 (2C), 140.0, 133.4, 133.3, 133.2, 133.1 (2C),

133.0, 130.0–128.2, 122.0, 101.4, 99.5, 99.0, 98.0, 90.1,

83.0, 79.5, 77.4, 76.2, 75.3, 72.9, 72.9, 72.0, 71.9, 71.0,

70.4, 70.0, 69.8, 69.1, 68.7, 68.5, 67.5, 66.4, 65.1, 63.2,

62.8, 56.9, 50.0, 40.6, 39.3, 38.4, 37.8, 36.9, 36.7, 33.4,

32.2, 32.0, 31.5, 30.7, 30.3, 29.6, 20.8, 20.7 (2C), 20.6,

20.3, 17.1, 16.8, 16.4, 16.3; ESIMS (m=z): 1931.761
[M+Naþ]; calcd 1931.760.

3.1.9. 26-O-b-DD-Glucopyranosyl-3b-O-[2,4-di-O-(a-LL-
rhamnopyranosyl)-b-DD-glucopyranosyl]-(25R)-furost-5-en
(1). Compound 11 (89mg) was dissolved in 1:1 CH3OH–
CHCl3 (15mL), and then NaOMe (100mg) was added.

After stirring at rt for 12 h, the solution was neutralized

with ion-exchange resin (Hþ), filtered, and concentrated.

The residue was purified by column chromatography

(60:20:1 CHCl3–MeOH–H2O) to afford 1 as a white

solid (41mg, 86%): Rf 0.25 (60:20:1 CHCl3–MeOH–

H2O), mp 209–211 �C. ½a�20D )67.3 (c 0.63, CH3OH);
1H

NMR (CD3OD): d 5.38 (d, 1H, J 5.2Hz, H-6), 5.19 (d,
1H, J 1.4Hz, H-1(rha)), 4.83 (d, 1H, J 1.5 Hz, H-

1(rha)), 4.49 (d, 1H, J 8.1Hz, H-1(glc)), 4.31 (m, 1H, H-
16), 4.22 (d, 1H, J 7.7, H-1(glc)), 4.12 (m, 1H), 3.92 (m,
2H), 3.85 (dd, 1H, J 1.9, 11.7Hz), 3.82 (dd, 1H, J 1.4,
2.9Hz), 3.78 (dd, 1H, J 2.2, 12.5Hz), 3.72 (dd, 1H, J
6.6, 9.5Hz), 3.67–3.56 (m, 6H), 3.51 (t, 1H, J 9.5Hz),
3.41–3.22 (m, 9H), 3.17 (dd, 1H, J 7.7, 9.2Hz), 2.45–

0.95 (m, 24H), 1.25 (d, 3H, J 6.2Hz, CH3(rha)), 1.23 (d,
3H, J 6.2Hz, CH3(rha)), 1.04 (s, 3H, H-19), 1.01 (d, 3H,

J 6.5Hz, H-21), 0.93 (d, 3H, J 6.6Hz, H-27), 0.83 (s,
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3H, H-18). 13C NMR (CD3OD): d 141.9, 122.6, 104.6,
103.0, 102.3, 100.4, 91.7, 84.6, 80.0, 79.3, 79.2, 78.1,
78.0, 77.9, 76.6, 76.1, 75.2, 73.9, 73.7, 72.5, 72.4, 72.2,

71.7, 70.7, 69.8, 66.5, 62.8, 61.9, 58.2, 51.7, 41.8, 40.6,

39.5, 39.1, 38.6, 38.0, 34.7, 33.2, 33.1, 32.9, 31.7, 31.4,

30.7, 21.8, 19.8, 19.2, 18.0, 17.9, 17.2, 17.0. ESIMS

(m=z): 1055.539 [M+Naþ]; calcd 1055.540.
3.1.10. 26-O-a-LL-Rhamnopyranosyl-3b-O-[2,4-di-O-(a-LL-
rhamnopyranosyl)-b-DD-glucopyranosyl]-(25R)-furost-5-en
(13). Compound 13 was synthesized from 10 by the same

procedure as that used for compound 1. Compound 13

was purified by column chromatography (2:1 CHCl3–

MeOH to 1:1 CHCl3–MeOH) to give a white solid

(18%): Rf 0.42 (1:2 CHCl3–MeOH); mp 184–187 �C. ½a�20D
)69.6 (c 0.68, CH3OH);

1H NMR (CD3OD): d 5.37 (d,
1H, J 5.2Hz, H-6), 5.19 (d, 1H, J 1.1Hz, H-1(rha)), 4.83
(d, 1H, J 1.5Hz, H-1(rha)), 4.76 (d, 1H, J 1.4Hz, H-

1(rha)), 4.49 (d, 1H, J 8.1Hz, H-1(glc)), 4.31 (m, 1H, H-
16), 4.13 (m, 1H), 3.96 (dd, 1H, J 1.8, 3.3Hz), 3.93–3.32
(m, 19H), 3.25 (dd, 1H, J 5.9, 9.5Hz), 2.44 (dd, 1H, J
10.6Hz), 2.29 (t, 1H, J 10.6Hz), 2.03–1.26 (m, 19H),

1.25–1.23 (m, 9H, CH3·3(rha)), 1.18–1.06 (m, 2H), 1.04
(s, 3H, H-19), 1.01 (d, 3H, J 6.6Hz, H-21), 0.97 (m, 1H),
0.94 (d, 3H, J 6.6Hz, H-27), 0.83 (s, 3H, H-18). 13C

NMR (CD3OD): d 141.9, 122.6, 103.0, 102.3, 100.5,

100.4, 91.6, 84.6, 80.4, 80.0, 79.3, 79.2, 78.0, 76.6, 74.3,

73.9, 73.7, 72.5, 72.4, 72.3, 72.2, 72.0, 70.7, 70.2, 69.9,

69.8, 66.5, 61.9, 58.2, 51.7, 41.8, 40.6, 39.5, 39.1, 38.6,

38.0, 34.7, 33.2, 33.1, 32.9, 32.0, 31.6, 30.7, 21.8, 19.8,

19.3, 18.2, 19.0, 17.9, 17.5, 17.0.
3.1.11. 26-O-(4-O-b-DD-Galactopyranosyl)-b-DD-glucopyr-
anosyl-3b-O-[2,4-di-O-(a-LL-rhamnopyranosyl)-b-DD-gluco-
pyranosyl]-(25R)-furost-5-en (14). Compound 14 was

synthesized from 10 by the same procedure as that used
for compound 1. Compound 14 was purified by column

chromatography (2:1 CHCl3–MeOH to 1:1 CHCl3–

MeOH) to give a white solid (62%): Rf 0.48 (1:1 CHCl3–
MeOH); mp 230–232 �C. ½a�20D )44.7 (c 0.52, CH3OH);
1H NMR (CD3OD): d 5.37 (d, 1H, J 5.2Hz, H-6), 5.19
(d, 1H, J 1.4Hz, H-1(rha)), 4.82 (d, 1H, J 1.5Hz, H-

1(rha)), 4.49 (d, 1H, J 7.7Hz, H-1(glc)), 4.35 (d, 1H, J
7.7Hz, H-1(glc)), 4.31 (m, 1H, H-16), 4.26 (d, 1H, J
7.7Hz, H-1(gal)), 3.94–3.31 (m, 29H), 3.24 (dd, 1H, J
7.7, 9.2Hz), 2.44 (dd, 1H, J 2.6, 13.2Hz), 2.29 (t, 1H, J
11.3Hz), 2.03–0.95 (m, 22H), 1.25 (d, 3H, J 6.2Hz,

CH3(rha)), 1.23 (d, 3H, J 6.2Hz, CH3(rha)), 1.04 (s, 3H,

H-19), 1.01 (d, 3H, J 6.5 Hz, H-21), 0.93 (d, 3H, J
6.6Hz, H-27), 0.83 (s, 3H, H-18). 13C NMR (CD3OD): d
141.9, 122.6, 105.1, 104.5, 103.0, 102.3, 100.4, 91.6, 84.6,

80.7, 80.0, 79.3, 79.2, 78.0, 77.1, 76.6, 76.5, 76.4, 76.2,
74.8, 73.9, 73.7, 72.6 (2C), 72.5, 72.4, 72.2, 70.7, 70.3,

69.8, 66.5, 62.5, 61.9, 58.2, 51.7, 41.8, 40.6, 39.5, 39.1,

38.6, 38.0, 34.7, 33.2, 33.1, 32.9, 31.7, 31.4, 30.7, 21.8,
19.8, 19.2, 18.0, 17.9, 17.2, 17.0. ESIMS (m=z): 1217.590
[M+Naþ]; calcd 1217.593.

3.1.12. 3b-O-[2,4-Di-O-(a-LL-rhamnopyranosyl)-b-DD-gluco-
pyranosyl]-26-hydroxy-(25R)-furost-5-en (15). Com-

pound15 was synthesized from 10 by the same

procedure as that used for 1. Compound 15 was purified

by column chromatography (5:1 CHCl3–MeOH to 1:1

CHCl3–MeOH) to give a white solid (76%): Rf 0.32 (2:1
CHCl3–MeOH); mp 211–213.5 �C. ½a�20D )71.1 (c 0.63,
CH3OH);

1H NMR (CD3OD): d 5.37 (d, 1H, J 5.2Hz,
H-6), 5.19 (d, 1H, J 1.4Hz, H-1(rha)), 4.83 (d, 1H, J
1.5Hz, H-1(rha)), 4.49 (d, 1H, J 8.1Hz, H-1(glc)), 4.33–
4.29 (m, 1H, H-16), 4.15–4.10 (m, 1H), 3.93–3.91 (m,

2H), 3.81 (dd, 1H, J 1.8, 3.3Hz), 3.78 (dd, 1H, J 2.2,
12.5Hz), 3.66–3.56 (m, 5H), 3.51 (t, 1H, J 9.5Hz), 3.42–
3.30 (m, 7H), 2.45–0.92 (m, 24H), 1.25 (d, 3H, J 6.2Hz,
CH3(rha)), 1.23 (d, 3H, J 6.2Hz, CH3(rha)), 1.04 (s, 3H,
H-19), 1.01 (d, 3H, J 6.5Hz, H-21), 0.91 (d, 3H, J
6.6Hz, H-27), 0.83 (s, 3H, H-18). 13C NMR (CD3OD): d
142.0, 122.6, 103.0, 102.3, 100.4, 91.7, 84.6, 80.0, 79.3,

79.2, 78.0, 76.6, 73.9, 73.7, 72.5, 72.4, 72.2, 70.7, 69.8,

68.3, 66.5, 61.9, 58.2, 51.7, 41.8, 40.6, 39.5, 39.1, 38.6,

38.0, 37.0, 33.2, 33.1, 32.9, 31.9, 31.2, 30.7, 21.8, 19.8,

19.2, 18.0, 17.9, 17.0. ESIMS (m=z): 893.490 [M+Naþ];
calcd 893.487.
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