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A rapid and convenient synthesis of b-proline
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Abstract—A short, reliable, and cheap synthesis of both enantiomers of b-proline, an efficient organocatalyst and an important
building block in medicinal chemistry, has been developed in four steps (overall yield: 72%) from the diasteromeric adducts of
methyl itaconate and (R)-a-methylbenzylamine. The key step involves the chemoselective reduction of a lactam group in the pres-
ence of a benzyl ester.
� 2007 Elsevier Ltd. All rights reserved.
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Pyrrolidine-3 carboxylic acid or b-proline 1 is a con-
strained b-aminoacid commonly used as a building
block for the design of peptides with an enhanced stabil-
ity toward hydrolysis by proteases.1 However it is inter-
esting to point out that no designed functional b-peptide
has incorporated a b-proline residue, despite the obvious
value and wide usage of proline in the conformational
control of a-peptides. b-Proline could be exceptionally
useful in increasing the structure and function of beta-
peptides.2 These applications have not been exploited
significantly to date due to poor synthetic access. b-Pro-
line 1 is also frequently used in the synthesis of ligands
of receptors,3 in compounds of medicinal interest4 and
in fluorescent agents.5 Additionally, this analogue of
proline 2 has recently displayed valuable properties as
organocatalyst for anti-selective Mannich reactions
between unmodified ketones and activated imines.6 In
our continuing interest for the use of 3-substituted
pyrrolidines7 we needed both enantiomers of b-proline
1 (see Fig. 1).
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Figure 1. a- and b-prolines.
Few syntheses of the nonproteinogenic amino-acid 1
have been reported during the last decade. In the late
nineties, an elegant synthesis starting from aspartic acid,
easily transformed into alcohol 3, used the rearrange-
ment of an aziridinium intermediate.8 However, the suc-
cess of this route relied on a chromatography at low
temperature (�20 �C). An enantiodivergent synthesis9

from lactone 4 (produced by a biocatalyzed oxidation
of a cyclobutanone) allowed the preparation of both
enantiomers (R)- and (S)-1. Fmoc-protected b-proline
has been synthesized in seven steps, including an initial
decarboxylative step, from LL-4-hydroxyproline 510

(Fig. 2).
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Figure 2. Previously reported precursors to b-proline 1. a Overall yield.
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It has also been prepared in seven steps from a (R)-gly-
cidol derivative 6.11 Boc-b-proline was prepared from
the diester 7 in a diastereoselective synthesis using
Evans’s oxazolidinone.12

All these methods used either advanced precursors or
poorly available starting materials and required tedious
multistep syntheses. Moreover, most of them lead to
only one of the enantiomers. b-Proline 1 is commercially
available, but its price is prohibitive with uses on large
scale.13 We herein wish to report a convenient, reliable,
and cheap access to both enantiomers of b-proline 1
from a single synthesis.

The Michael addition of a primary amine on methyl
itaconate 8 followed by a condensation is a powerful
method for the rapid generation of pyrrolidin-2-
ones.14,15 When (R)-a-methylbenzylamine was used, a
mixture of lactams 9 and 10 (d.r. 1.16:1 from 1H
NMR of the crude mixture, Scheme 1) was obtained
in high yield.16 These diastereoisomers were easily sepa-
rated by column chromatography on silica gel.17 The
whole process can be conveniently carried out on a mul-
tigram scale.

Attempts to reduce efficiently the lactam function of
compound 9 or 10 were not satisfying using BH3ÆDMS
or 9-BBN according to a well-documented method18

previously applied to closely related structures.15,19 Such
problematic selective reduction of lactam in the presence
of an ester group by borane reagents has already been
observed.20 Pyrrolidine 11 was obtained from 10 in
moderate 38–47% yields (Scheme 2).

Exhaustive reduction of both carbonyl functionalities by
LiAlH4 followed by the selective oxidation of the pri-
mary alcohol 12 to acid was next envisaged. Under the
conditions described in Scheme 2 (a–e), b-proline 1
was prepared in five steps and an acceptable 59% overall
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Scheme 1. Reagents and conditions: (a) 8 (20 mmol, 1 equiv), (R)-a-
methylbenzylamine (1.3 equiv), MeOH, 100 �C, 97%; (b) column
chromatography (40–35% for 9 and 37–32% for 10).
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Scheme 2. Reagents and conditions: (a) LiAlH4, THF, reflux, 87%; (b)
Pd(OH)2/C, H2, MeOH, rt; (c) CbzCl, K2CO3, THF/H2O, 0 �C, 76%
for 2 steps; (d) Jones oxidation 89%; (e) Pd/C, H2, MeOH, rt, 24 h,
100%; (f) BH3ÆDMS, THF, rt 38–47%.
yield from 10. However, the synthesis required two dis-
tinct palladium catalysts for the hydrogenolysis steps, a
deprotection–protection step before the oxidation and
finally a stoechiometric amount of CrO3.

In order to develop a shorter, more efficient, and
eco-friendly synthesis of b-proline 1, we decided to
reinvestigate the reduction of the lactam ring using a
chemoselective thionylation-desulfurization sequence.
Thiolactam 13 was obtained from methyl ester 10 using
a substoechiometric amount of Lawesson’s reagent in
toluene21 (Scheme 3).

The reduction of the thiocarbonyl moiety of 13 using
Raney nickel was next studied.22 Erratic results obtained
from commercially available Raney nickel led us to try
different qualities of the reagent. The results are summa-
rized in Table 1.

When using a large excess of Raney nickel from a com-
mercially available source (quality ‘A’), no reduction of
the model thiolactam 14 occurred in EtOH at room tem-
perature (Table 1, entry 1). Upon refluxing in ethanol, a
complex mixture of unidentified products was obtained
(entry 2). No reaction was observed in THF at room
temperature or at 60 �C (entry 3). When the reagent
was carefully washed (water, ethanol then THF) to elim-
inate any residual hydroxide ions, yields around 54–77%
were reached. These yields were improved to 80% when
using a freshly opened flask of Ra Ni (entry 5). The
reduction of thiolactam 13 led to similar results in EtOH
(entry 6) but lower yields in THF (45–31% entries 7 and
8) of the expected pyrrolidine 15.
1310

Scheme 3. Reagents and conditions: (a) Lawesson’s reagent 0.8 equiv,
toluene, 94 �C, 2 h, 98%.

Table 1. Reduction of lactams 13 and 14 using Raney nickela

conditionsN

RPh

S

CO2Me

N

RPh

CO2Me

13 R = Me
14 R = H

15 R = Me
16 R = H

Entry R Conditionsa Isolated yield (%)

1 H A, EtOH, rt No reaction
2 H A, EtOH, reflux Complex mixture
3 H A, THF, rt or 60 �C No reaction
4 H B, THF, rt 54–77
5 H C, THF, rt 80
6 Me A, EtOH, reflux Complex mixture
7 Me B, THF, reflux 45
8 Me C, THF, rt 31

a Qualities: A = commercially available; B = Raney Ni washed with
H2O, EtOH and THF; C = Raney Ni from a freshly opened flask
then washed with H2O, EtOH and THF.
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Scheme 4. Optimized method: (a) BnOH, APTS, toluene, reflux, 18 h,
98%; (b) Lawesson’s reagent, toluene, 95 �C, 2 h, 98%; (c) MeI,
CH2Cl2, rt, 24 h; (d) NaBH4, MeOH, 0 �C, 1 h, 75% yields from 14; (e)
Pd/C, H2, MeOH, rt, 24 h, 100%.
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Previous results associated with the use of a large excess
of a pyrophoric reagent, led us to envisage the reduction
of the thiolactam via its methyl thioiminium salt.23 Benz-
ylic ester 1724 was prepared from 10 in order to release
b-proline 1 after a single hydrogenolysis step in the final
optimized route (Scheme 4). Thiolactam 1825 reacted
with an excess methyl iodide in dichloromethane quan-
titatively to afford the thioiminium salt intermediate as
a colorless foam, which was immediately treated with
NaBH4 in methanol to afford amino ester 19 with a
reproducible 75% overall yield.26 Finally, palladium
mediated debenzylations released pure (S)-b-proline 1
quantitatively.27 Under similar conditions, the lactam
diasteromer 9 afforded (R)-1 with comparable yields
for each steps (72% overall yield from 9).

In conclusion, we have reported the shortest synthesis of
b-proline 1 starting from easily available lactams 9 or 10
prepared from the cheap methyl itaconate and (R)-a-
methylbenzylamine. The key step involved the chemo-
selective reduction of a methyl thioiminium salt in the
presence of a benzylic ester. This high yielding practical
synthesis can be carried out on a multigram scale and
provides in a single four step procedure both enantio-
mers of b-proline 1 in 72% overall yield.
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