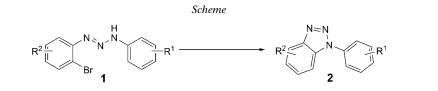
A Novel and Regiospecific Synthesis of 1-Aryl-1*H*-benzotriazoles *via* Copper(I)-Catalyzed Intramolecular Cyclization Reaction


by Qi-Lun Liu, Di-Di Wen, Chen-Chen Hang, Qiu-Lian Li, and Yong-Ming Zhu*

School of Pharmacy, Soochow University, Suzhou, 215123, P. R. China (phone: +86-512-62880109; fax: +86-512-67166591; e-mail: zhuyongming@suda.edu.cn)

1-Aryl-1*H*-benzotriazole derivatives were synthesized *via* intramolecular cyclization of easily obtained triazenes, using CuI as the catalyst, DMSO as the solvent, *t*-BuONa as the base, and 1,10-phenanthroline as the ligand, in up to 97% yield. The synthesis is regiospecific and functional group-tolerant.

Introduction. –The structure of 1-aryl-1*H*-benzotriazole is an important moiety in compounds that possess antibacterial [1], antimalarial [2], and potassium channel-activating properties [3], and in selective small-molecule agonists of the human orphan G-protein-coupled receptor GPR109b (HM74) [4]. In addition, the special characteristics, due to the tautomerism of the molecule, had attracted many researchers' and entrepreneurs' attention [5]. Some methodologies for the synthesis of these 1-aryl-1*H*-benzotriazoles have been developed; the most important are: 1) reaction of benzotriazoles with aryl halides [6], 2) diazotization and then coupling of benzene-1,2-diamines [7], and 3) azide – benzyne cycloaddition [8]. Either harsh reaction conditions or hazardous materials are employed in the above strategies, and difficulties in directing the newly introduced substituents as a result of the tautomerism of benzotriazoles still exist.

Recently, transitional metal-catalyzed coupling reactions have gained much interest due to their high regiospecificity and broad compatibility regarding functional groups [9]. *Zimmermann* and *Bräse* [10] obtained a wide range of benzotriazoles by a combinatorial-chemistry approach using the *Hartwig–Buchwald* amination reaction. However, the strategy has to be performed on solid supports and is thus confined to academic uses. This, together with our previous efforts [11] at the construction of heterocycles *via* Cu¹ catalyzed intramolecular cyclization reactions, prompted us to investigate the feasibility of establishing a regiospecific benzotriazole synthesis strategy using the corresponding triazenes (*Scheme*).

© 2010 Verlag Helvetica Chimica Acta AG, Zürich

Results and Discussion. - To explore the feasibility of the proposed reaction, we first focused on a brief optimization of the reaction conditions for the synthesis of 2a from **1a** (*Table 1*), which was easily obtained according to the protocols described in [12]. In the light of the work of Bulgakova and Gornostaev [13], we considered it possible to obtain benzotriazoles from the corresponding triazenes. However, no target compound was obtained, when the reaction was carried out in the absence of either catalyst or ligand (*Entries 13* and 14). When Pd(OAc)₂ was utilized as the catalyst, only small amounts of product were identified (Entry 12). Addition of Cu improved the yield significantly (*Entry 3*), suggesting that Cu^I was a catalyst superior to Pd, and CuI was much more efficient than CuBr (Entries 1 and 7). To improve the yield further, we surveyed a series of reaction conditions, and found that all ligands gave 2a in as good a yield as with 1,10-phenanthroline (La; *Entries* 8-11). Among the solvents employed, DMSO gave the best result (*Entries 1*, 5, and 6) due to its better solubility. The base used played a critical role in the present coupling reaction. When weaker bases were utilized, 1-(2-bromophenyl)-1H-benzotriazole was isolated apart from the desired product. The mechanism remains unclear. However, its ratio decreased with increasing base strength, and the optimal result was achieved with *t*-BuONa (*Entries* 1-4).

	Ta	Table 1. Optimization of the Reaction Conditions ^a)					
Entry	Base	Catalyst	Solvent	Ligand ^b)	Yield [%]		
1	t-BuONa	CuI	DMSO	La	90		
2	K_2CO_3	CuI	DMSO	La	52		
3	Cs_2CO_3	CuI	DMSO	La	58		
4	КОН	CuI	DMSO	La	60		
5	t-BuONa	CuI	Toluene ^c)	La	73		
6	t-BuONa	CuI	1,4-Dioxane ^c)	La	75		
7	t-BuONa	CuBr	DMSO	La	80		
8	t-BuONa	CuI	DMSO	Lc	50		
9	t-BuONa	CuI	DMSO	Ld	80		
10	t-BuONa	CuI	DMSO	Le	85		
11	t-BuONa	CuI	DMSO	Lf	83		
12	Cs_2CO_3	$Pd(OAc)_2$	Toluene ^c)	Lb	18		
13	K_2CO_3	CuI	DMSO	_	_		
14	K_2CO_3	-	DMSO	La	-		

^a) Reaction conditions: a mixture of **1a**, catalyst, ligand, base (1:2.5%:5%:2) reacted at $135-140^{\circ}$ under Ar for 10 h. ^b) **La**: 1,10-phenanthroline, **Lb**: bis[2-(diphenylphosphino)phenyl]ether. **Lc**: L-proline, **Ld**: ethane-1,2-diamine, **Le**: *N*,*N'*-dimethylethane-1,2-diamine, **Lf**: (\pm) -*trans*-cyclohexane-1,2-diamine. ^c) Reflux.

On the basis of the above results, the scope of the reaction was explored with different substrates. As shown in *Table 2*, the catalyst system was of quite general character and tolerant of a wide range of functionalities. The yield was almost

quantitative where R^2 was 4-Me, followed by where R^1 was 4-Cl, H, and 4-Br (*Entries* 1-3 and 8). Interestingly, where R^1 was 4-Cl, only intramolecular cyclization product was isolated, and no intermolecular coupling product was identified, whereas traces of intermolecular coupling product were detected, when R^1 was 4-Br. This observation was indicative of and in accord with the reported reactivity order of I-Ar > Br-Ar > Cl-Ar [14]. *Entries* 1-8 suggested that electron-donating or electron-withdrawing functional groups were also well-tolerated. However, the yields dropped drastically with a F-substituent in either of the rings (*Entries* 9 and 12) due to its special electronic features. As can be seen from *Entries* 10, 11, and 13, steric hindrance led to slightly lower yields.

$R^{2} \xrightarrow[H]{} N \xrightarrow[H]{} N \xrightarrow[H]{} R^{1} \xrightarrow[La (5\% equiv.)]{} La (5\% equiv.)]{} La (5\% equiv.)]{} R^{2} \xrightarrow[H]{} R^{1} \xrightarrow[La (5\% equiv.)]{} R^{2} \xrightarrow[H]{} R^{1} \xrightarrow[H]{} R^{1}$									
Entry	Substrate	\mathbb{R}^1	\mathbb{R}^2	Product	Yield [%]				
1	1 a	Н	Н	2a	90				
2	1b	4-Cl	Н	2b	92				
3	1c	4-Br	Н	2c	88				
4	1d	3-NO ₂	Н	2d	73.5				
5	1e	3-Me	Н	2e	75.3				
6	1f	Н	x-MeO ^c)	2f	65.7				
7	1g	Н	x-Br ^c)	2g	72.1				
8	1h	Н	x-Me ^c)	2h	97				
9	1i	Н	x-F ^c)	2i	40				
10	1j	2-Me	Н	2j	88				
11	1k	4-Cl, 2-Me	Н	2k ^d)	63.6				
12	11	4-F	Н	21	41.8				
13	1m	2-Me, 4-NO ₂	Н	2m	78				

Table 2. Cyclization of Triazenes^a)

Conclusions. – A new protocol that involves CuI-catalyzed intramolecular amination cyclization in DMSO in the presence of 1,10-phenanthroline and t-BuONa for the synthesis of benzotriazoles is reported. As a regiospecific synthetic strategy, the present methodology, using easily accessible starting materials, shows wide functional group tolerance.

Experimental Part

General. Reagents and chemicals were purchased from commercial suppliers and used without further purification. Flash chromatography (FC): silica gel (SiO₂; 200–300 mesh) from *Qingdao Ocean Chemicals*, P. R. China. TLC: Silica-gel *GF254* plates. M.p.: *XT5* Digital melting-point apparatus from *Beijing Keyi Elec-opti Instrument Factory*; uncorrected. IR: *ProStarLC240*; KBr pellets; $\tilde{\nu}$ in cm⁻¹. NMR

^a) Reaction condition: **1** (0.5 mmol), **La** (25 μ mol), *t*-BuONa (1 mmol), CuI (12.5 μ mol), DMSO (5 ml). ^b) **La**: 1,10-Phenanthroline. ^c) For **1**, x = 4; for **2**, x = 6. ^d) 15 h.

Spectra: UNITY INOVA 400 MHz, CDCl₃ soln., unless otherwise noted; δ in ppm and J in Hz. MS: Micromass.

General Procedure. A mixture of **1** (0.5 mmol), CuI (2.4 mg, 12.5 μ mol), *t*-BuONa (96.0 mg, 1 mmol), 1,10-phenanthroline (4.5 mg, 25.0 μ mol), and anh. DMSO (5 ml) in a flask filled with Ar was stirred at 135–140° for 10 h. After removal of the solvent, the cyclized product **2** was obtained by FC (hexane/AcOEt). For anal. data for compounds **2a**, **2b**, **2c**, and **2l**, see [10].

1-(3-Nitrophenyl)-IH-benzotriazole (2d). Pale brown solid (88 mg, 73.5%). M.p. 187–189°. IR: 3069, 1598, 1501, 1468, 1270, 1061, 927, 814, 755, 690. ¹H-NMR: 8.72 (*s*, 1 H); 8.37 (*d*, J = 8.26, 1 H); 8.24 (*d*, J = 8.06, 1 H); 8.20 (*d*, J = 8.38, 1 H); 7.80–7.87 (*m*, 2 H); 7.66 (*t*, J = 7.67, 1 H); 7.51 (*t*, J = 7.67, 1 H). ¹³C-NMR ((D₆)DMSO): 148.7; 145.9; 137.1; 131.73; 129.26; 128.74; 125.1; 123.2; 119.9; 117.5; 110.9. HR-MS: 240.0646 (M^+ , $C_{12}H_8N_4O_2^+$; calc. 240.0647).

*1-(3-Methylphenyl)-1*H-*benzotriazole* (**2e**). Pale yellow liquid (78 mg, 74.3%). IR: 3058, 2921, 1612, 1593, 1496, 1064, 786, 746, 693. ¹H-NMR: 8.14 (d, J = 8.35, 1 H); 7.74 (d, J = 8.37, 1 H); 7.39–7.63 (m, 5 H); 7.31 (d, J = 7.53, 1 H); 2.49 (s, 3 H). ¹³C-NMR: 146.9; 140.6; 137.3; 132.8; 130.0; 129.9; 128.6; 124.8; 124.0; 120.7; 120.3; 110.9; 21.9. HR-MS: 209.0953 (M^+ , $C_{13}H_{11}N_3^+$; calc. 209.0953).

*6-Methoxy-1-phenyl-1*H-*benzotriazole* (**2f**). White solid (74 mg, 65.7%). M.p. $65-67^{\circ}$. IR: 3058, 2968, 2839, 1494, 1460, 1265, 1051, 833, 804, 761. ¹H-NMR: 7.98 (d, J = 9.05, 1 H); 7.75 (d, J = 7.49, 2 H); 7.62 (t, J = 7.84, 2 H); 7.51 (t, J = 7.44, 1 H); 7.04 – 7.09 (dd, J = 9.06, 2.21, 1 H); 7.01 (d, J = 1.75, 1 H); 3.87 (s, 3 H). ¹³C-NMR: 160.5; 141.6; 136.9; 133.3; 129.7; 128.4; 122.8; 120.7; 116.4; 90.5; 55.7. HR-MS: 225.0902 (M^+ , C₁₃H₁₁N₃O⁺; calc. 225.0902).

*6-Bromo-1-phenyl-1*H-*benzotriazole* (**2g**). White solid (99 mg, 72.1%). M.p. $129-130^{\circ}$. IR: 3068, 1599, 1501, 1469, 1269, 1061, 814, 755, 691. ¹H-NMR: 8.02 (d, J = 8.81, 1 H); 7.93 (s, 1 H); 7.75 (d, J = 8.04, 2 H); 7.64 (t, J = 7.81, 2 H); 7.50 – 7.58 (m, 2 H). ¹³C-NMR: 145.1; 136.3; 133.2; 129.9; 128.9; 128.0; 122.8; 122.5; 121.3; 113.1. HR-MS: 272.9903 (M^+ , $C_{12}H_8$ BrN $_3^+$; calc. 272.9902).

*6-Methyl-1-phenyl-1*H-*benzotriazole* (**2h**). White solid (104 mg, 97%). M.p. $126-127^{\circ}$. IR: 3057, 2974, 2858, 1597, 1505, 1089, 1058, 804, 766, 697. ¹H-NMR: 8.01 (d, J = 8.53, 1 H); 7.78 (d, J = 7.59, 2 H); 7.58–7.65 (t, J = 7.83, 2 H); 7.48–7.54 (m, 2 H); 7.24–7.29 (m, 1 H); 2.54 (s, 3 H). ¹³C-NMR: 144.9; 138.8; 136.9; 132.5; 129.6; 128.3; 126.4; 122.7; 119.5; 109.4; 21.9. HR-MS: 209.0953 (M^+ , C₁₃H₁₁N₃⁺; calc. 209.0953).

*6-Fluoro-1-phenyl-I*H-*benzotriazole* (**2i**). Pale yellow solid (43 mg, 40%). M.p. $102 - 104^{\circ}$. IR: 3103, 1625, 1506, 1487, 1450, 1249, 1148, 1112, 762, 694. ¹H-NMR: 8.11 (*dd*, *J* = 9.04, 4.66, 1 H); 7.75 (*d*, *J* = 7.93, 2 H); 7.63 (*t*, *J* = 7.81, 2 H); 7.53 (*t*, *J* = 7.38, 1 H); 7.40 (*dd*, *J* = 8.11, 2.14, 1 H); 7.22 (*dt*, *J* = 9.03, 2.16, 1 H). ¹³C-NMR: 163.9; 161.5; 143.2; 136.5; 132.7; 132.5; 129.9; 128.8; 122.6; 121.7; 121.6; 114.4; 114.1; 96.3; 96.0. HR-MS: 213.0702 (*M*⁺, C₁₂H₈FN₃⁺; calc. 213.0702).

*1-(2-Methylphenyl)-1*H-*benzotriazole* (**2j**). White solid (92 mg, 88%). M.p. 66–67°. IR: 3059, 3030, 2918, 2855, 1502, 1269, 1079, 787, 754. ¹H-NMR: 8.15 (d, J = 8.33, 1 H); 7.24–7.59 (m, 7 H); 2.13 (s, 3 H). ¹³C-NMR: 145.3; 135.0; 134.9; 133.6; 131.4; 129.8; 127.8; 126.8; 126.6; 123.9; 119.8; 109.9; 17.5. HR-MS: 209.0952 (M^+ , $C_{13}H_{11}N_3^+$; calc. 209.0953).

*1-(4-Chloro-2-methylphenyl)-1*H-*benzotriazole* (**2k**). White solid (77 mg, 63.6%). M.p. 86–88°. IR: 3065, 2980, 2856, 1602, 1497, 1454, 1272, 1078, 825, 756. ¹H-NMR: 8.15 (d, J = 8.33, 1 H); 7.53 (t, J = 7.57, 1 H); 7.43–7.48 (m, 2 H); 7.41 (m, 2 H); 7.37 (t, J = 7.45, 1 H); 2.11 (s, 3 H). ¹³C-NMR: 145.4; 135.8; 133.6; 133.5; 132.6; 132.1; 129.9; 128.2; 126.8; 124.2; 120.1; 109.7; 17.3. HR-MS: 243.0563 (M^+ , $C_{13}H_{10}ClN_3^+$; calc. 243.0563).

*1-(2-Methyl-4-nitrophenyl)-1*H-*benzotriazole* (**2m**). Pale yellow solid (99 mg, 78%). M.p. 153–154°. IR: 3065, 2925, 1585, 1519, 1348, 1053, 747, 737. ¹H-NMR: 8.38 (d, J = 2.15, 1 H); 8.29 (dd, J = 8.63, 2.46, 1 H); 8.20 (d, J = 8.35, 1 H); 7.57–7.66 (m, 2 H); 7.50 (t, J = 7.64, 1 H); 7.40 (d, J = 8.31, 1 H); 2.36 (s, 3 H). ¹³C-NMR: 142.9; 140.6; 135.1; 131.9; 128.1; 123.7; 122.3; 121.8; 119.6; 117.1; 115.3; 104.5; 13.3. HR-MS: 254.0805 (M^+ , $C_{13}H_{10}N_4O_2^+$; calc. 254.0804).

HELVETICA CHIMICA ACTA - Vol. 93 (2010)

REFERENCES

- [1] P. P. Dixit, P. S. Nair, V. J. Patil, S. Jain, S. K. Arora, N. Sinha, Bioorg. Med. Chem. Lett. 2005, 15, 3002.
- [2] N. Mishra, P. Arora, B. Kumar, L. C. Mishra, A. Bhattacharya, S. K. Awasthi, V. K. Bhasin, Eur. J. Med. Chem. 2008, 43, 1530.
- [3] G. Biagi, V. Calderone, I. Giorgi, O. Livi, V. Scartoni, B. Baragatti, E. Martinotti, *Il Farmaco* 2001, 56, 841.
- [4] G. Semple, P. J. Skinner, M. C. Cherrier, P. J. Webb, C. R. Sage, S. Y. Tamura, R. Chen, J. G. Richman, D. T. Connolly, J. Med. Chem. 2006, 49, 1227.
- [5] M. D. Santa María, R. M. Claramunt, M. Á. García, J. Elguero, Tetrahedron 2007, 63, 3737.
- [6] I. P. Beletskaya, D. V. Davydov, M. Moreno-Mañas, Tetrahedron Lett. 1998, 39, 5617.
- [7] N. Nonoyama, H. Oshima, C. Shoda, H. Suzuki, Bull. Chem. Soc. Jpn. 2001, 74, 2385; A. E. Siegrist, Helv. Chim. Acta 1981, 64, 662; P. K. Sasmal, S. Sridhar, J. Iqbal, Tetrahedron Lett. 2006, 47, 8661.
- [8] S. Chandrasekhar, M. Seenaiah, C. L. Rao, C. R. Reddy, *Tetrahedron* 2008, 64, 11325; M. Juríček,
 P. H. Kouwer, J. Rehák, J. Sly, A. E. Rowan, *J. Org. Chem.* 2009, 74, 21; H. Ankati, E. Biehl, *Tetrahedron Lett.* 2009, 50, 4677; F. Shi, J. P. Waldo, Y. Chen, R. C. Larock, *Org. Lett.* 2008, 10, 2409;
 F. Zhang, J. E. Moses, *Org. Lett.* 2009, 11, 1587.
- [9] S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1439; A. de Meijere, F. Diederich, 'Metal-Catalyzed Cross-Coupling Reactions', 2nd ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Vol. 1, 2004; J. Tsuji, 'Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis', John Wiley & Sons, Ltd., Chichester, 2000.
- [10] V. Zimmermann, S. Bräse, J. Comb. Chem. 2007, 9, 1114.
- [11] Y.-M. Zhu, L.-N. Qin, R. Liu, S.-J. Ji, H. Katayama, *Tetrahedron Lett.* 2007, 48, 6262; R. Liu, Y. Zhu, L. Qin, S. Ji, *Synth. Commun.* 2008, 38, 249; R. Liu, Y.-M. Zhu, L.-N. Qin, S.-J. Ji, H. Katayama, *Heterocycles* 2007, 71, 1755.
- S. Kruger, J. Chem. Soc. 1953, 700; A. Chin, M.-H. Hung, L. M. Stock, J. Org. Chem. 1981, 46, 2203;
 W. B. Smith, O. C. Ho, J. Org. Chem. 1990, 55, 2543.
- [13] N. A. Bulgakova, L. M. Gornostaev, Russ. J. Org. Chem. 2001, 37, 1351.
- [14] R. A. Altman, S. L. Buchwald, Org. Lett. 2006, 8, 2779.

Received November 3, 2009