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SUMMARY

Metabolic decoys are synthetic analogs of naturally
occurring biosynthetic acceptors. These compounds
divert cellular biosyntheticpathwaysby acting as arti-
ficial substrates that usurp the activity of natural en-
zymes. While O-linked glycosides are common, they
are only partially effective even at millimolar concen-
trations. In contrast, we report that N-acetylglucos-
amine (GlcNAc) incorporated into various thioglyco-
sides robustly truncate cell surface N- and O-linked
glycan biosynthesis at 10–100 mM concentrations.
The >10-fold greater inhibition is in part due to the
resistance of thioglycosides to hydrolysis by intracel-
lular hexosaminidases. The thioglycosides reduce
b-galactose incorporation into lactosamine chains,
cell surface sialyl Lewis-X expression, and leuko-
cyte rolling on selectin substrates including inflamed
endothelial cells under fluid shear. Treatment of gran-
ulocytes with thioglycosides prior to infusion into
mouse inhibited neutrophil homing to sites of acute
inflammation andbonemarrowby�80%–90%.Over-
all, thioglycosides represent an easy to synthesize
class of efficient metabolic inhibitors or decoys.
They reduce N-/O-linked glycan biosynthesis and in-
flammatory leukocyte accumulation.

INTRODUCTION

Glycans are a complex post-translational modification that regu-

late virtually all biological processes (Laine, 1994; Neelamegham

and Mahal, 2016; Varki, 2017). Commonly, cell surface carbohy-

drates appear either as O- or N-linked glycans on glycoproteins,

glycosphingolipids (GSLs), or glycosaminoglycans (GAGs). Such

structures are formed by the sequential action of glycosyltrans-
Cell Che
ferases (GTs) that transfer mono- or oligo-saccharides from

various donors to growing carbohydrate chains, and by glycosi-

dases that hydrolyze individual monosaccharides to trim gly-

cans. Small molecules developed to modify GT/glycosidase

activity can lead to novel strategies to regulate glycan structures,

cell function, and treat diseases.

While a number of small-molecule inhibitors of glycosidase ac-

tivity have been developed, fewer molecules disrupt GT activity

(Gloster and Vocadlo, 2012; Hudak and Bertozzi, 2014). In this

regard, most small-molecule GT inhibitors developed fall into

one of three categories: (1) acceptor analogs of nucleotide-sugar

donors or transition state mimetics of the acceptor-donor pair.

While such reagents haven been shown to be effective in

in vitro enzymology assays, their inability to permeate cell mem-

branes limits their biological utility (Schworer and Schmidt, 2002;

Zhu et al., 1995). (2) Modified monosaccharides that are cell

permeable. This large set of compounds, include monosaccha-

ride analogs where selected hydroxyl or other groups are re-

placed by halogen, deoxy, thiol, or methyl substituents (Goon

and Bertozzi, 2002). Such molecules are often converted into

their corresponding nucleotide-sugar analogs within cells, at

high concentrations (Gloster et al., 2011). This results in deple-

tion of selected, natural nucleotide-sugars, and global depres-

sion in the activities of entire families of related GTs (Rillahan

et al., 2012; van Wijk et al., 2015). Thus, this approach may

lack specificity. (3) Surrogate acceptors that act as artificial sub-

strates for specific biochemical pathways (Brown et al., 2007;

Sarkar et al., 1997). These molecules compete with and reduce

carbohydrate biosynthesis on the natural glycoconjugate by

acting as alternate substrates for the GTs. Such decoys may

be designed to target specific pathways. However, to effectively

compete with natural substrates, they are typically applied at

relatively high concentrations. For example, peracetylated

benzyl-a-GalNAc (or ‘‘GalNAc-OBn’’) is added at 2–4 mM into

cell culture medium to inhibit O-linked glycosylation (Alfalah

et al., 1999; Huet et al., 1998; Kuan et al., 1989; Tsuiji et al.,

2003), and xylosides are similarly used at 1–2 mM for inhibiting

GAG biosynthesis (Fritz et al., 1994; Okayama et al., 1973; Victor
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Figure 1. Thio/S- and O-Glycosides as Metabolic Decoys
(A) Structures 1–6 correspond to S-glycosides; 7–12 are O-glycosides. Control molecules, GlcNAc with sulfhydryl group at anomeric position (13, ‘‘SH’’) and

GlcNAc (14), are also shown.

(B and C) Potential mechanism of S-glycoside (B) and O-glycoside (C) action as metabolic decoys. In both cases, peracetylated glycosides or decoys are taken

up by cells and deacetylated by cellular esterases. These compounds are processed through the Golgi where they form biosynthetic products, including Lewis-X

and sialyl Lewis-X-type structures. These glycosides divert natural biosynthetic pathways and truncate cell surface glycan biosynthesis. S-Glycosides are more

effective acceptor-decoys, compared with O-glycosides. Unlike the O-glycosides, they are not spontaneously hydrolyzed by cellular hexosaminidases.

See also Supplemental Information, compound characterization.
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et al., 2009). At lower concentrations (�10–100 mM), these de-

coys have little or no inhibitory activity, and thus are used as mo-

lecular probes that report on the cellular O-glycan (Kudelka et al.,

2016; Stolfa et al., 2016) or GAG biosynthesis pathways (Victor

et al., 2009).

In the current study, using a panel of N-acetylglucosamine

(GlcNAc)-basedmetabolic decoys,weobserved that the efficacy

of surrogate acceptors/decoys can be tuned by modifying the

linkage between the carbohydrate and aglycone. In particular,

the studyexamined theeffect ofmodifying theacetal group found

in traditional O-glycosides, to thioacetals in S-glycosides (Fig-

ure 1A). In this regard, previous enzymology investigations

suggest that selected S-aryl glycosides are susceptible to cleav-

age by hexosaminidases, albeit at lower rates compared with

O-glycosides (Macauley et al., 2005). In contrast, we report,

here, a set of S-glycosides that are more stable with minimal

breakdown by cytoplasmic, lysosomal, and nuclear hexosa-

minidases (Figures 1B and 1C). Due to this property, the S-glyco-

sides function in cell-based assays to disrupt cellular lactos-

amine biosynthesis on N- and O-linked glycans at �10-fold

lower concentrations compared with O-glycosides. In particular,

many of the studies were performed with peracetylated com-

pounds where the 2-naphthalenemethanol (NAP) group was

linked to GlcNAc via an S-glycosidic linkage to yield ‘‘SNAP’’
2 Cell Chemical Biology 25, 1–14, December 20, 2018
(compound 1) or O-linkage to yield ‘‘ONAP’’ (7). When added to

human leukocytes, SNAP more effectively reduced expression

of the sialyl Lewis-X (sLeX, Siaa2-3Galb1-4(Fuca1-3)GlcNAc)

epitope on cells, compared with ONAP. SNAP also reduced cell

adhesion to E-selectin, the major human selectin which binds

sialofucosylated epitopes on leukocyte O-glycans, N-glycans,

and GSLs (Mondal et al., 2016; Stolfa et al., 2016). In mouse,

SNAP-treated leukocytes exhibited reduced migration to sites

of inflammation and bone marrow. Overall, this report demon-

strates the use of thioglycosides as a class of novel, potent inhib-

itors that can disrupt lactosamine biosynthesis on cellular O- and

N-glycans.

RESULTS

Thioglycosides Reduce Cell Surface Sialyl Lewis-X
Expression and E-Selectin Binding
A panel of GlcNAc-based thio/S- (1–6) and O-glycosides (7–12)

were synthesized (Figure 1A, Supplemental Information). The

aglycone in these entities was varied. While some of the com-

pounds contained NAP (SNAP 1, 2, ONAP 7, 8), benzyl (6, 12),

or bromooctane (5) aglycones, others contained derivatives of

natural products, geranyl (3, 4, 11) or methoxyphenyl (9, 10).

Several of the compounds were peracetylated (1, 3, 5, 6, 7, 9)
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to enhance cell permeability (Sarkar et al., 1997). The acetyl

groups are removed by esterases inside cells to yield free carbo-

hydrates (Figures 1B and 1C).

We determined if any of the compounds alter cell surface gly-

cans important for inflammatory cell adhesion (Figure 2). Here,

treatment of HL-60 promyelocytic leukemia cells with 100 mM

of all S-glycosides for 40 hr reduced cell surface sialyl Lewis-X

(sLeX) expression by 60%–90%, as measured using mAb

HECA-452 (Figure 2A). The results with O-glycosides was

more variable, with (11) and (7) reducing the sLeX epitope by

20% and 40%, and (10) augmenting sLeX by 30%. Upon

comparing the GlcNAc-b-SNAP in its peracetylated (SNAP, 1)

with free (2) form, it is apparent that peracetylation is not critical

for inhibition function although it improves efficacy. Thus the

NAP group exhibits sufficient hydrophobicity for cell perme-

ability, and additional acetylation of glycan hydroxyl groups

only has a marginal contribution. S-Glycosides were effective

at concentrations as low as 10 mM with maximum effectiveness

above 50 mM (Figure 2B).

As sLeX is a critical determinant for selectin-dependent leuko-

cyte adhesion, the effect of the S- and O-glycosides on soluble

human selectin-immunoglobulin G (IgG) protein binding to HL-

60s was assayed. Here, consistent with the HECA-452measure-

ments, all S-glycosides reduced E-selectin IgG binding, with the

blocking pattern being remarkably similar to the changes in sLeX

expression (Figures 2C and 2D). TheO-glycosides did not exhibit

this property. Similar to E-selectin, many of the S-glycosides

(1–3, 5, 6) also downregulated L-selectin binding although the ef-

fect was smaller (Figure 2E). None of the glycosides affected

P-selectin binding (Figure 2F). The core-2 sLeX epitope at the

N terminus of PSGL-1 is the major P-selectin ligand on human

leukocytes (Lo et al., 2013; Wilkins et al., 1996), and this struc-

ture is apparently not fully disrupted by the compounds. Func-

tion-blocking anti-selectin mAbs and vehicle controls confirm

the specificity of the measured interaction. Cytometry histo-

grams suggest that these observations are true for the entire

cell population, and not limited to a sub-population of HL-60s

(Figure S1).

Similar to the undifferentiated HL-60s, SNAP also reduced

sLeX expression and E-selectin binding to neutrophils obtained

by terminal-differentiation of HL-60s using DMSO (Figure S2).

These differentiated cells expressed five times greater cell sur-

face CD11b levels compared with undifferentiated HL-60s,

with CD11b expression being unaffected by the glycoside treat-

ment (Figure S2A). Thus, the glycosides do not alter the overall

cell phenotype. Here, also, SNAP (S-glycoside) reduced sLeX

expression by 70% (Figure S2B), E-selectin binding by 85% (Fig-

ure S2C), and L-selectin IgG recognition by 30% (Figure S2D),

without altering P-selectin (Figure S2E). Neither SNAP nor

ONAP altered leukocyte surface expression of putative selectin

ligand scaffolds: CD11b, CD43, CD44, CD45, or CD162 (data

not shown). Overall, the S-glycosides are potent modifiers of

glycan biosynthesis.

Thio/S-Glycosides Reduce Leukocyte Adhesion under
Hydrodynamic Shear
Among the compounds tested, many of the studies contrasted

the effectiveness of SNAP (1) with respect to ONAP (7) since

both molecules are peracetylated, and they are prototypic mem-
bers of the S- andO-glycoside families. Neither compound, up to

200 mM, affected cell viability or proliferation based on trypan

blue exclusion, LDS-751 live cell staining, hemocytometer

counts, or the tetrazolium salt-based XTT assay (data not

shown). Also, none of the treatments promoted apoptosis based

on Annexin-V binding (data not shown).

Microfluidics-based leukocyte adhesion measurements

determined if the reduced selectin binding observed in the static

assays, translate to physiologically relevant fluid shear condi-

tions (Figure 3). Here, glycoside or control treatments did not

alter the density of rolling or adherent cells on substrates

composed of E-selectin bearing interleukin-1b-simulated human

umbilical vein endothelial cells (HUVECs) (Figure 3A), immobi-

lized E-selectin (Figure 3B), L-selectin (Figure 3C), or P-selectin

(Figure 3D). However, SNAP increased the median cell-rolling

velocity on E-selectin bearing stimulated HUVEC monolayers

by 4.5-fold (from 1 to 4.5 mm/s, Figure 3E), on E-selectin sub-

strates by 2-fold (from 2.4 to 4.33 mm/s, Figure 3F), and on

L-selectin by 3-fold (from 18 to 53 mm/s, Figure 3G). The glyco-

side did not affect rolling on P-selectin (Figure 3H). These obser-

vations were confirmed at multiple glycoside concentrations,

25–100 mM (Figures S2F and S2G). Overall, SNAP reduced

leukocyte interactions on E-selectin and stimulated endothe-

lial cells.

SNAP Abrogated Neutrophil Homing to Sites of
Inflammation and the Bone Marrow in Mice
Previous studies show that increased rolling velocity on selectins

ex vivo may be sufficient to reduce leukocyte accumulation

in vivo (Marathe et al., 2010; Morikis et al., 2017). To determine

the anti-inflammatory potential of the S-glycosides, a murine thi-

oglycollate peritonitis model was used to contrast the effect of

SNAP versus ONAP (Figure 4). Here, murine bone marrow cells

(mBMCs) obtained from donor C57BL/6 were cultured ex vivo

with either ONAP, SNAP, or vehicle for 40 hr (Figure 4A). These

cells were then differentially labeled with either a green fluores-

cent dye (CMFDA), red dye (CMTMR), or both, to result in three

differentially stained cell populations. The populations were

mixed in equal proportion. Peritonitis was induced in recipient

C57BL/6 using thioglycollate intraperitoneal injection for 1 hr,

and then the labeled cell mixture was introduced intravenously.

At 20 hr, 20%–30% fewer ONAP-treated cells were observed

in the bone marrow and inflamed peritoneum, compared with

vehicle treatment (Figures 4B–4D). SNAP caused a more dra-

matic decrease, with cell accumulation being consistently

reduced by�80%–90%. Deficiency in E- and L-selectin-depen-

dent cell adhesionmay contribute to the observed reduced hom-

ing to sites of inflammation.

Upregulation of PNA and ECL Lectin Binding upon
Treatment with S-Glycosides
Flow cytometry-based lectin binding studies were performed, to

identify reagents that quantitatively report on the effect of glyco-

side treatment in heterologous cell types (Figure 5). Here, SNAP

augmented peanut agglutinin (PNA) binding to HL-60s by

�30-fold, suggesting the alteration of O-linked glycan biosyn-

thesis, and the increased expression of the Galb1,3GalNAc

epitope (Figure 5A). A �5-fold increase in Erythrina cristagalli

lectin (ECL) binding (Figure 5B) and doubling of PHA-L binding
Cell Chemical Biology 25, 1–14, December 20, 2018 3



Figure 2. Static Selectin IgG Binding and CLA Expression Altered by O- and S-Linked Decoys

HL60 cells were cultured with 0–100 mM GlcNAc decoys for 40 hr

Flow cytometry measured the binding of: (A and B) anti-cutaneous lymphocyte-associated antigen (CLA) mAb HECA-452, (C and D) E-selectin IgG, (E) L-selectin

IgG, and (F) P-selectin IgG to the cells. Dose-dependent data for HECA-452 expression and E-selectin IgG binding are presented in (B), (D) anti-E-selectin (clone

P2H3, B), L-selectin; Dreg-56 (C) and P-selectin (G1) (D), blocking mAbs confirm selectin IgG binding specificity. NC, negative-control (secondary antibody

alone); IC, isotype control; VC, vehicle control.

*p < 0.05 with respect to VC. S-Glycosides reduced E-selectin IgG binding and CLA expression more dramatically compared with the O-glycosides. All

S-glycosides, except 4, also partially reduced L-selectin IgG binding. Structures 1 (SNAP), 7 (ONAP), and 13 (SH) are indicated in the different panels as they are

the focus of subsequent studies.

See also Figures S1 and S2.
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Figure 3. Effect of SNAP on Cell Adhesion under Flow

HL60s were cultured with SNAP, ONAP, SH, or VC (0.2% DMSO) for 40 hr. Cells were then perfused at wall shear stress of 1 dyne/cm2 over substrates bearing:

(A and E) interleukin-1b stimulated HUVEC monolayers, (B and F) recombinant human E-selectin IgG, (C and G) L-selectin IgG, or (D and H) P-selectin IgG.

Interacting cells were classified into rolling or firmly adherent cells (top panels). Cell-rolling velocity was also recorded in the cumulative line plots (bottom panels).

Blocking antibodies used were against E-selectin (P2H3), L-selectin (Dreg-56), or PSGL-1 (KPL-1). SNAP increased cell-rolling velocity on stimulated HUVECs,

E-selectin IgG, and L-selectin IgG substrates, as indicated by red median velocity markings in (E–G).

*p < 0.05 for total interacting cells with respect to VC, SNAP, ONAP, and SH, except as indicated in (A).
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(Figure 5C) was also measured indicating potential perturbations

in N-glycan structures, particularly the Galb1,4GlcNAc lactos-

amine chains. In addition, anti-LeX mAb binding was marginally

decreased (Figure 5D). More prominent changes in lectin binding

accompanied SNAP treatment, compared with ONAP (Figure 5).

In such studies, PNA, ECL, and PHA-L lectin binding to O- and

N-glycans is typically augmented upon de-sialylation (Stolfa

et al., 2016). However, the MAL-II binding data indicate that

the overall expression of a2,3 sialic acid terminated glycans

remains unchanged.

In general, the entire panel of S-glycosides exhibited a pattern

of carbohydrate epitope alteration similar to SNAP, albeit to vary-

ing degrees depending on the aglycone (Figure S3). All O-glyco-

sides were similar to vehicle control except for ONAP (7), which

displayed some carbohydrate modification potential, although

low relative to SNAP. The increased PNA-lectin binding upon

SNAP treatment was observed across multiple cell lines,

including human embryonic kidney HEK293T, breast cancer

T47D and ZR75-1, and prostate PC-3 cells (Figure S4A). Similar
to undifferentiated HL-60s, HL-60s differentiated to neutrophils

also exhibited >10-fold increase in PNA binding following culture

with SNAP (Figure S4B). Significantly, the concentration range

where selectin binding function was altered in Figures 2, 3,

and 4 was similar to that necessary for PNA-lectin binding alter-

ation (20–100 mM, Figure S4C). Thus, all S-glycosides appear to

alter cellular glycosylation via similar molecular mechanisms.

Truncation of O-Glycan Biosynthesis by S-Glycosides
The increased PNA-lectin binding suggests that the S-glycosides

may modify cell surface O-glycans. This was confirmed using a

panel of CRISPR-Cas9 knockout cell lines since PNA-lectin bind-

ing to leukocyteswasabolished in cells lackingO-glycansunder a

variety of conditions, including upon SNAP treatment (Figures

S5A andS5B). In addition, theS-glycoside reduced themolecular

massof twoprominent leukocyteglycoproteins,PSGL-1,which is

the major L-/P-selectin ligand (Figure 5E), and CD43/leukosialin

(Figure 5F). Both mucin glycoproteins displayed a �20% reduc-

tion in molecular mass upon SNAP, but not ONAP, treatment.
Cell Chemical Biology 25, 1–14, December 20, 2018 5



Figure 4. Murine Model of Acute Inflammation

(A) Bone marrow cells (mBMCs) were collected from 10- to 12-week-old wild-type C57BL/6 mice. These were cultured with 100 mM ONAP, SNAP, or 0.25%

DMSO (VC) for 40 hr ex vivo, differentially labeled with fluorescence reporters, mixed in approximately equal proportion, and then injected into recipient mice.

Peritonitis was induced 1 hr before injection. Twenty hours later, samples from the peritoneal lavage and bone marrow were collected and analyzed using

cytometry

(B) In ‘‘Mix 1,’’ ONAP-, SNAP-, and VC-treated cells were labeled with either green, red, or green and red dyes, respectively. The dyes were swapped in ‘‘Mix 2’’

and ‘‘Mix 3.’’ Panel presents raw cytometry data showing distinct labeled cell populations at the top-left, bottom-right, and top-right quadrants. Reduced cell

numbers upon SNAP treatment are indicated by blue arrows.

(C and D) In both the peritoneum (C) and bonemarrow (D), the number of labeled 1A8/Gr-1+ cells was reduced dramatically (>90%) in the case of SNAP treatment

compared with either ONAP or VC. *p < 0.05 between indicated treatments.
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To determine the biosynthetic steps affected by SNAP,

radioactivity-based ppGalNAc-transferase (Figure S5C) and

b1,3GalT (Figure 5G) enzymology assays were undertaken.

Here, lysates of cells cultured with decoys or controls served

as the enzyme source. Cell lysates were mixed with radioactive

donor (UDP-[14C]GalNAc or UDP-[14C]Gal) along with synthetic
6 Cell Chemical Biology 25, 1–14, December 20, 2018
substrates, N-terminal PSGL-1 peptide for ppGalNAcT and

GalNAc-O-Bn for GalT. Enzymatic transfer of radioactivity

from donor to substrate was then measured. Here, the transfer

of [14C]GalNAc to the peptide substrate was similar in all ly-

sates, suggesting that the glycosides may not alter ppGalNAcT

activity.



Figure 5. Truncation of O-Glycan Biosynthesis by SNAP

(A–D)Wild-type HL-60swere cultured with 80 mMONAP, SNAP, or vehicle controls for 40 hr. Flow cytometrymeasured cell surface carbohydrate structures using

either fluorescent antibodies or lectins: PNA (binds Galb1,3GalNAc) (A), ECL (bindsGalb1,4GlcNAc) (B), PHA-L (binds complex N-glycans) (C), andCD15/Lewis-X

(mAb HI98) (D). Data in inset are mean fluorescence intensity ± SD for >3 independent experiments. *p < 0.05 with respect to VC. SNAP increased PNA, ECL, and

PHA-L bindings. ONAP has a smaller effect.

(E and F). Cell lysates run under standard reducing conditions, were probed with mAbs against mucinous proteins, anti-human PSGL-1 mAb TB5 (E) and anti-

human CD43 mAb L60 (F). SNAP reduced molecular mass of both glycoproteins indicating truncation on O-glycans.

(G) HL-60s were treated with 80 mMglycosides or vehicle control. Cell lysates were incubated with 10,000 dpm UDP-[14C]Gal (donor) in the presence or absence

of 0.5 mM GalNAc-OBn (acceptor). [14C]Gal is preferentially added to SNAP present in cell lysates rather than GalNAc-OBn (left half). Even in the absence of

GalNAc-OBn, radioactive products are formed on SNAP and ONAP (right half).

(H–J) HL-60s were cultured with 80 mMONAP, SNAP, or GalNAc, with 100 mMGalNAc-OBn being added after 8 hr in some cases. Products secreted into culture

medium over 2 days were collected and quantitatively analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). SNAP, and to a lesser

extent ONAP, reduces glycan biosynthesis on GalNAc-OBn (H). Extended carbohydrate chains grew on SNAP (I) and ONAP (J). All assignments were verified by

MS/MS.

*p < 0.05, **p < 0.01 with respect to GalNAc; ynot detected. See also Figures S3–S5.
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In the GalT assay, however, two distinct products were

observed using thin-layer chromatography when the lysates con-

tained ONAP or SNAP (left half, Figure 5G). One migrated identi-

cally to [14C]Galb1,3GalNAc-O-Bn, while the second migrated

faster. This second product is likely [14C]Gal-GlcNAc-S-NAP

(lane 2) and [14C]Gal-GlcNAc-O-NAP (lane 3) formed using unpro-

cessed SNAP and ONAP available in cell lysates, as these same

entities were also prominently observed upon omitting GalNAc-

O-Bn in the reaction mixture (right half, Figure 5G). The extent of

[14C]Gal transfer to SNAP was �2-fold greater than that to ONAP

based on the more intense radioactive product. Even when

GalNAc-O-Bn was present in the reaction mixture (left half, Fig-

ure 5G), [14C]Gal-GlcNAc-S-NAP was the dominant product in

the SNAP runs, while equal amounts of [14C]Gal-GlcNAc-O-NAP

and [14C]Galb1,3GalNAc-O-Bn were formed in the ONAP run. In-

dependentMS-based enzymology studies suggest that these ob-

servations are not simply because SNAP is a superior acceptor for

galactose compared with ONAP (Figure S5D). In these runs, Gal

transfer to ONAP was also diminished in the presence of SNAP,

suggesting a potential inhibitory function for the S-glycoside

(Brockhausen et al., 2006). Overall, the S-glycosides may act

both as acceptors of galactose and inhibitors of related enzymes.

Mass spectrometry studies were undertaken to determine the

effect of SNAP and ONAP on O-glycosylation using the cellular

O-glycan reporter assay (Kudelka et al., 2016). Here, peracety-

lated GalNAc-O-Bn was fed to cells in the presence of glyco-

sides or control, and products formed on these substrates was

quantified using MS by assaying the culture medium (Figures

5H–5J, all structures validated using tandem MS [MS/MS]).

Here, 38% of the GalNAc-O-Bn substrate was converted to

other products when the medium contained GalNAc/control

(Figure 5H). Products formed included Galb1-3GalNAc-OBn/T-

antigen, mono- and di-sialylated T-antigen, and core-2 glycans.

The fraction of GalNAc-O-Bn converted to product was reduced

to 14% upon culture with ONAP and 2.5% upon SNAP addition.

Thus, T-antigen biosynthesis was inhibited by the S-glycoside

decoy. Consistent with this notion, VVA lectin binding (recog-

nizes GalNAca on O-glycans) to HL-60s treated with the entire

panel of S-glycosides was augmented by 3- to 100-fold (Fig-

ure S6). The effect of the O-glycosides was small, in comparison.

In addition to GalNAc-O-Bn, a variety of glycan products were

also elaborated on SNAP (Figure 5I) and ONAP (Figure 5J),

including sLeX structures, and extended LacNAc chains some-

times containing terminal fucose and sialic acid. Whereas elab-

orated glycans were observed on 23% of the SNAP substrate

in the culture medium, this was lower at 17% for ONAP.

SNAP Truncates N- and O-Glycan Biosynthesis, with a
Smaller Effect on Glycolipids
MALDI-TOF MS glycome profiling was undertaken to determine

the precise N- and O-glycans, and GSLs that are altered by

SNAP (Figure 6). Here, we observed an increased abundance

of GlcNAc-terminated (agalactosylated, truncated) carbohy-

drate chains and LacNAc antennas with reduced sialic acid

abundance (red peaks in Figure 6A, lower panel). These charac-

teristic desialylated peaks that appear at m/z 2,530, 2,734, etc.,

may explain the increased ECL binding in Figure 5B. N-Glycans

from SNAP-treated HL60s also displayed the absence of the

sLeX epitope (Figure 6B), consistent with the reduced expression
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of the HECA-452 epitope (Figure 2A). Notably, bi- and tri-antenn-

ary glycans with the sLeX epitope (m/z = 3,140 and 3,950) are

apparent in the vehicle, but not SNAP-treated cells.

The effect of SNAP on the GSLs was small compared with that

on the N-glycans. Here, a majority of the GSL glycans were

similar in vehicle versus SNAP. However, a few truncated gly-

cans were also apparent at m/z=1,188, 1,566, and 2,087 (red

peaks in Figure 6C, lower panel). Sialylated GSL glycans were

also reduced upon SNAP treatment compared with vehicle con-

trol, e.g., the peak ratio atm/z 1,304/943 was reduced from 1.64

in vehicle to 0.56 upon SNAP treatment; and at m/z 1,753/1,392

from 1.28 in vehicle to 0.92 for SNAP (Figure 6C, upper and lower

panels). Finally, consistent with the observations using GalNAc-

O-Bn, O-glycans from SNAP-treated HL60s revealed a loss of

core 1 and core 2 structures (Figure 6D).

SNAP Is a More Potent Surrogate Acceptor-Decoy
Compared to ONAP
The more potent inhibitory effect of SNAP compared with ONAP

could be due to the inherent intracellular stability of S-glycosides.

In this regard, O-glycosides are commonly used to assay the ac-

tivity of hexosaminidases, and it is known that mammalian cells

have lysosomal, nuclear, and cytoplasmic hexosaminidases that

maycleave such substrates (Stutz andWrodnigg, 2016). Todeter-

mine if such hexosaminidase activity is prominent in HL-60 cells,

we measured the high-performance liquid chromatography

elution profile of 2-napthelenemethanol (HONAP [hydrolyzed

ONAP]) and 2-naphthalenemethanethiol (HSNAP) standards

spiked into the HL-60 cell culture supernatant (Figure 7A). This

profile was compared with that of cells cultured with vehicle (Fig-

ure 7B), ONAP (Figure 7C), and SNAP (Figure 7D). Here, a promi-

nent peak with retention time corresponding to HONAP was

observed in Figure 7C upon culturewithONAP, but not one corre-

sponding toHSNAP in Figure 7DwhenSNAPwas present. Based

on area under the curve, recoveries, and absorbance calibration

curves generated with chemical standards, we estimate that

�30% of ONAP may be cleaved within cells. Neither liquid chro-

matography-MSnor gas chromatography-MSwere able to ionize

underivatized HONAP for MS detection, and thus dansylated-

HONAPstandardswere prepared (Figures 7Eand7F). In addition,

NAP products secreted into cell culture medium were also deriv-

atized with dansyl chloride (Figure 7G). Here, ESI-Q-TOF MS/MS

was able to verify the formation of HONAP by HL-60s, based on

retention time compared with chemical standards (Figure 7F

versus 7G, left panels), mass, and also fragmentation spectra

(right panels). Overall, ONAP and/or its derivatives are partially

hydrolyzed in cells, while SNAP is not.

To determine the nature of competition between the glyco-

sides, equal amounts of peracetylated ONAP and SNAP were

mixed and fed to HL-60 cell culture medium. At 40 hr, glycoside

products were purified from culture supernatants (Figure 7H) and

cell pellets (Figure 7I). They were permethylated and quantified

based on product ion counts using high-resolution liquid chro-

matography-MS/MS. As seen, the total prevalence of extra-

and intracellular glycoside products was greater in the presence

of SNAP compared with ONAP, suggesting a role for hydroly-

sis in regulating relative glycan biosynthesis. In particular, the

concentration of SNAP substrate was 2.8-fold higher in the pellet

compared with ONAP. In addition, whereas a variety of products



Figure 6. Whole-Cell Glycomics Profiling Following SNAP Treatment

(A and B) N-linked glycans, (C) glycosphingolipids, and (D) O-linked glycans isolated from HL60 cells that were cultured with 60 mM of vehicle control (upper

panels) or SNAP (lower panels). (B) MALDI-TOF MS spectra of N-glycans of the zoomed scan m/z 3,134–3,155 and of m/z 3,945–3,964 molecular ion clusters

derived either from vehicle control (upper panels) or SNAP (lower panels) of (A). Red peaks on SNAP-treated N-linked glycans and glycosphingolipids spectra

correspond to GlcNAc-terminated (agalactosylated) structures that appear upon SNAP treatment. Isolated glycans were permethylated and analyzed byMALDI-

TOF MS. All molecular ions are [M+Na]+. Putative structures are based on composition, tandem MS and biosynthetic knowledge. Structures that show sugars

outside a bracket have not been assigned.
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were synthesized when ONAP was fed to cells alone (Figure 5J),

glycan elaboration on this substrate was diminished in mixed

systems that contained SNAP (Figures 7H and 7I). Eight- to

14-fold higher levels of glycans were formed on SNAP compared
with ONAP. Similar observations were made in independent vali-

dation runs performed using ESI-Q-TOF MS (Figure S7). Overall,

the hydrolysis of O-glycosides may partially explain the reduced

efficacy of such compounds, compared with the S-glycosides.
Cell Chemical Biology 25, 1–14, December 20, 2018 9



Figure 7. Hydrolysis of O-Glycosides in Cells

(A–D) HL60s were cultured with 80 mM SNAP, ONAP, or vehicle control. After 40 hr, the medium was extracted and analyzed using high-performance liquid

chromatography (224 nm detection). Standards were created by spiking culture media with 2-naphthalenemethanol (HONAP) and 2-naphthalenemethanethiol

(HSNAP) standards at 1:1 ratio (A). These compounds eluted at 17 and 29 min, respectively. Media with vehicle control had no peaks (B). Peak corresponding to

HONAP retention time was seen in supernatants from cells cultured with ONAP, black arrowhead in (C). Cells cultured with SNAP did not have product cor-

responding to HSNAP (D).

(E–G) HONAP was derivatized by dansyl chloride to serve as an MS standard (chemical reaction in schematic). No peak was observed in vehicle control (E).

Dansyl derivatizationwas performed for products extracted from cell culturemedium in runswithONAP, SNAP, and VC. DansylatedHONAPwas only observed in

runs withONAP (G) and this was verified byMS/MS,with respect to synthetic standard in (F). The equivalent product was not observed in cells culturedwith SNAP

or vehicle. Thus, ONAP, but not SNAP, was hydrolyzed within cells.

(H and I) Cells were co-treated with amix of 80 mMSNAP together with ONAP for 40 hr. Glycosylated products formed onONAP and SNAP present in supernatant

(H) and cell pellet (I) were analyzed using LC-MS/MS. Larger glycan products were formed on SNAP comparedwith ONAP. ‘‘NAPX’’ is used to denote both O- and

S-glycosides. All structures were verified by MS/MS.

*p < 0.05, **p < 0.01, ***p < 0.01 with respect to ONAP; ynot detected.
See also Figure S7.
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DISCUSSION

This study demonstrates that thioglycosides or S-glycosides effi-

ciently disrupt cellular biosynthetic pathways important for in-

flammatory processes by functioning as metabolic decoys.

This was observed in multiple cell types including leukocytes

(HL-60s and primary leukocytes), breast (T47D, ZR75-1) cells,
10 Cell Chemical Biology 25, 1–14, December 20, 2018
and prostate (PC3) cells. Such decoys were effective at low con-

centrations of�10–100mM. Incontrast, themore commonO-gly-

cosides are only functional at >10-fold higher doses. The

enhanced functional efficacy of S-glycosides was noted in all as-

says, and it was most apparent in the competition/co-culture

assay where SNAP and ONAP were simultaneously fed to cells.

Here, MS analysis of biosynthetic products present in culture
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mediumandcell pellet showed that extendedglycosylationprod-

ucts formed on SNAP with 8- to 14-fold greater efficacy

comparedwithONAP. Indeed,while there is literature on the syn-

thesis of S-glycosides, and alkyl/aryl 1-thioglycosides are used

as donors during the chemical synthesis of carbohydrates, rela-

tively fewer studies have applied such compounds in cell-based

assays (Macauley et al., 2005; Miura et al., 1999). The current re-

sults suggest that thismaybe a valuable avenue for investigation,

as it can yield entities that can modify cellular biosynthetic path-

ways and related glycan structures. The scale up of such com-

pounds is cost effective.

All S-glycosides used in this study truncate lactosamine chain

extensions on N- and O-glycans, although their relative efficacy

varied depending on the aglycone. In this regard, SNAP affected

both type III Galb1,3GalNAc chains on O-glycans based on the

increased binding of VVA and PNA, and type II Galb1,4GlcNAc

chains on N-glycans based on alterations in ECL binding (Stolfa

et al., 2016). MS-based glycomics profiling also showed an in-

crease in GlcNAc-terminated N-glycans and reduction in sialyl-

lactosamine structures on N-glycans. These glycomics profiles

are reminiscent of previous cases of congenital disorders of

glycosylation (Boztug et al., 2014; Hayee et al., 2011). The sLeX

structure was prominently absent in the SNAP samples. Lactos-

amine extensions on O-glycans were also reduced upon

S-glycoside treatment as the carbohydrates synthesized on

theGalNAc-O-Bn substrate were small. Immunoblotting showed

that the molecular mass of two mucinous proteins, PSGL-1 and

CD43, was reduced upon S-glycoside addition. Thus, the overall

glycan mass on extended O- and N-glycans was reduced. The

effect of the compound on GSLs was relatively small.

Regarding the mechanism of action, the data suggest that the

thioglycosides may be superior decoys due to their enhanced

stability in cells, and reduced susceptibility to degradation by

mammalian b-hexosaminidases (EC 3.2.1.52). In addition, these

glycosides may inhibit specific GalT activity (Brockhausen et al.,

2006), although the mechanism for this process and specificity

toward differentmembers of this enzyme class remains unsolved

(Gao et al., 2010). Consistent with the dual role for S-glycosides

as decoys and inhibitors, while equal amounts of [C14]Gal were

transferred to ONAP and GalNAc-O-Bn in the GalT assay,

SNAP acted as an efficient decoy to take up almost �90% of

the [C14]Gal and it dramatically reduced [C14]Galb1,3GalNAc-

OBn formation. In this regard, hexosaminidases in cells are pre-

sent in the lysosomal, cytoplasmic, and nuclear compartments

inhumansandmaycontribute to thedegradationofO-glycosides

and their products, including those containing terminal GlcNAc

and GalNAc (Mahuran, 1999). Here, the lysosome contains

various isoenzymes (HexA,HexB, andHexS) that are synthesized

by the homo- or hetero-dimerization of two subunits: a encoded

by HEXA and b by HEXB. Mutations in HEXB often results in

Sandhoff disease, while mutations in HEXA decreases GM2

ganglioside degradation and causes Tay-Sachs disease (Sandh-

off and Harzer, 2013). HEXC encodes for O-GlcNAcase (OGA)

which acts as a nucleocytoplasmic b-hexosaminidase that re-

moves O-GlcNAc modification on various proteins (Gao et al.,

2001). Mammalian cells also contain a fourth hexosaminidase

HexD in the nucleus and cytoplasm, encoded byHEXDC (Gutter-

nigg et al., 2009), which prefers to hydrolyze GalNAc compared

with GlcNAc (Alteen et al., 2016). Additional studies are needed
to determine which of the hexosaminidases act on ONAP and

other O-glycosidase substrates as this may be a key mitigating

factor that reduces the efficacy of such compounds.

The mammalian lactosamine motif is a common unit that is

part of the molecular recognition epitope of various lectins,

including selectins, siglecs, and galectins (Neelamegham and

Mahal, 2016; Varki, 2017). As GlcNAc-based S-glycosides

truncate the growth of this common motif on different types

of glycoconjugates, these small molecules may be broadly

useful as inhibitors for a variety of studies, although this may

come at the cost of reduced specificity. To demonstrate

such biological utility, we tested the ability of SNAP and

ONAP to reduce selectin-dependent cell adhesion with focus

on E-selectin, an endothelial lectin that binds sialofucosylated

glycans such as sLeX on all common glycoconjugate-types:

O-glycans, N-glycans, and GSLs (Stolfa et al., 2016). Here,

all S-glycosides dramatically reduced cell surface leukocyte

sialyl Lewis-X expression on leukocytes, and E- and L-selectin

binding under static and flow conditions. These compounds

also increased leukocyte rolling velocity on stimulated endo-

thelial cell monolayers, and treatment of leukocytes with these

compounds abolished transplanted cell homing to the bone

marrow and sites of inflammation in the mouse. This effect of

small molecules to reduce inflammation by altering leukocyte

rolling rates is similar to results noted using two different sialyl

Lewis-X analogs that completed phase II trials, GMI-1070 (Riv-

ipansel) (Morikis et al., 2017) and TBC-1269 (Hicks et al., 2005),

and also the monosaccharide analog 4F-GalNAc (Marathe

et al., 2010). In the case of Rivipansel, a molecule currently in

phase III trials for reducing vaso-occlusive crisis following

sickle cell disease, the partial reduction of E-selectin binding

interactions is considered to reduce cell activation via selectin

ligand interactions (Morikis et al., 2017). This alteration in cell

activation rather than the complete abrogation of selectin

ligand interaction is considered to be the mechanism of molec-

ular action. Consistent with this notion, SNAP also dramatically

reduced cell migration to sites of inflammation and the bone

marrow in the current study, by modifying leukocyte rolling in-

teractions in flow assays. Additional studies are needed in vivo

to complete the pharmacological characterization of the S-gly-

cosides, compare their blocking efficacy to other small-mole-

cule selectin antagonists (Dimitroff et al., 2003; Marathe

et al., 2010; Rillahan et al., 2012; Sarkar et al., 1997; Zandberg

et al., 2012), and to test their inhibitory efficacy in relevant dis-

eases models.

In conclusion, this study suggests that thioglycosides may

be suitable for a broad range of basic science and trans-

lational investigations, due to their enhanced efficacy within cells

compared with the O-glycosides. Using SNAP as a prototypic

entity, it may be possible to vary the aglycone group to create

molecular entities with varying specificity for diverse applica-

tions. Advancing this concept, the glycan/GlcNAc entity of

SNAP may also be changed to target other glycan biosynthetic

pathways. Finally, it may be valuable to also vary the anomeric

linkage in order to further enhance functional effects. Such mod-

ifications to the glycan, linkage, and aglycone may result in novel

tools for biomedical research and drug candidates with favor-

able pharmacological activity to target leukocyte adhesion,

inflammation, and cancer metastasis.
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SIGNIFICANCE

There is active interest in rationally designing small-molecule

inhibitors of cellular glycosylation. One such approach uses

metabolic decoys that function as mimetics of naturally

occurring glycoEnzyme (glycosylating enzyme) substrates.

When introduced into cells, such decoys attract the activity

of the glycoEnzymes and thus the natural glycoconjugates

are left under glycosylated. This manuscript demonstrates

that thesimplechemicalmodificationof theanomeric linkage

of metabolic decoys, from acetal in traditional O-glycosides

to thioacetal group in thio/S-glycosides, dramatically en-

hances the stability of these compounds within cells and im-

proves inhibitor efficacyby>10-fold. This strategy to improve

metabolic decoy design may enhance their application in

basic science studies, and also clinical investigations as

anti-inflammatory, anti-metastasis and anti-viral therapies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

HECA-452 (anti-human CLA) BD Biosciences RRID: AB_396243

D12 (anti-human CD11b) BD Biosciences RRID: AB_400112

HI98 (anti-human CD15) BD Biosciences RRID: AB_395801

KPL-1 (anti-human CD162) BD Biosciences RRID: AB_396324

DREG-56 (anti-human CD62L) BD Biosciences Cat#: 555544

L60 (anti-human CD43) BD Biosciences RRID: AB_394204

TB5 (anti-human CD162) GeneTex RRID: AB_377146

IA8 (anti-mouse Ly-6G) BioLegend RRID: AB_1877163

P2H3 (anti-human E-selectin) Thermo Fisher Scientific RRID: AB_11219468

G1 (anti-human CD62P) Ancell Cat#: 252-820

ECL lectin (Galb1,4GlcNAc) Vector Laboratories RRID: AB_2336437

PHA-L lectin (binds complex glycan epitope:

Galb1,4GlcNAc b1,6(GlcNAc b1,2Mana1,3)Man a1,3)

Vector Laboratories RRID: AB_2336655

MAL II lectin (binds a2,3sialic acid) Vector Laboratories RRID: AB_2336569

PNA lectin (binds Galb1,3GalNAc) Vector Laboratories RRID: AB_2336458

VVA lectin (binds GalNAca) Vector Laboratories RRID: AB_2336854

Chemicals, Peptides, and Recombinant Proteins

LC/MS solvents and common chemicals Sigma-Aldrich

L-selectin R&D Systems 728-LS-100

E-selectin R&D Systems 724-ES-100

P-selectin R&D Systems 137-PS-050

IL-1b R&D Systems 201-LB-025/CF

PSGL-1 peptide (Custom synthesis) GenScript

Glycosides Syntheses described in

current manuscript

Experimental Models: Cell Lines

HL-60 ATCC RRID: CVCL_0002

HL-60 Knock-outs Stolfa, G. et al Sci. Rep.

2016, 6:30392

PC-3 ATCC RRID: CVCL_0035

T-47D ATCC RRID: CVCL_0553

ZR-75-1 ATCC RRID: CVCL_0588

HUVEC ATCC RRID: CVCL_2959

Experimental Models: Organisms/Strains

mice Envigo RMS Catalog 44 C57BL/6 wild-type

Software and Algorithms

DrawGlycan-NSFG Cheng et al., 2017 https://github.com/kaichengub/DrawGlycan-SNFG

https://VirtualGlycome.org/drawglycan

GlycoWorkbench Ceroni et al., 2008 https://github.com/alternativeTime/glycoworkbench
CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Sriram

Neelamegham (neel@buffalo.edu). Chemical compounds will be provided via TumorEnd LLC.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

10-12 week-old C57BL/6 wild-type mice of either sex were used. Animals were randomized prior to experimentation. All animal

studies were approved by the Roswell Park Cancer Institute Animal Care and Use Committee (RPCI-IACUC). HL-60 cells (female

promyeloblasts, RRID:CVCL_0002), T47D (female ductal carcinoma, RRID: CVCL_0553) and ZR-75-1 (female epithelial ductal car-

cinoma, RRID: CVCL_0588), and metastatic prostate PC-3 cells (male adenocarcinoma, RRID: CVCL_0035) were obtained from

ATCC. Human Umbilical Vein Endothelial Cells (HUVECs, cat #CC-2519A) were from Lonza.

METHODS DETAILS

Chemical Synthesis
The synthesis of GlcNAc derivatives is described below. These include a series of thio/S-glycosides: peracetylated GlcNAc-b-S-NAP

(1, abbreviated ‘SNAP’), GlcNAc-b-S-NAP (2), peracetylated GlcNAc-b-S-geranyl (3), GlcNAc-b-S-geranyl (4), peracetylated

GlcNAc-b-S-bromooctane (5) and peracetylated GlcNAc-b-S-benzyl (6). The O-glycosides include peracetylated GlcNAc-b-O-

NAP (7, abbreviated ‘ONAP’), GlcNAc-b-O-NAP (8), peracetylated GlcNAc-b-O-methoxyphenyl (9), GlcNAc-b-O-methoxyphenyl

(10), GlcNAc-b-O-geranyl (11) and GlcNAc-b-O-benzyl (12). Control molecules used are peracetylated GlcNAc-b-SH (13, abbrevi-

ated ‘SH’); and GlcNAc (14).

GlcNAcbZ (O-glycosides) Synthesis

2-Acetamido-2-deoxy-D-glucopyranose (1.77 g, 8.0 mmol) was suspended in acetyl chloride (AcCl, 8 mL) at 0�C under nitrogen and

the mixture was stirred at room temperature (r.t.) overnight (Horton and Wolfrom, 1962; Orth et al., 2010). The solvent was removed

under vacuum, then the residue was diluted with dichloromethane (15 -25 mL) and extracted with ice water until the pH value of the

aqueous layer was neutral. The organic layer was dried and concentrated. The 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy glucopyra-

nosyl chloride obtained was a colorless solid. In the second step, the chloride (365 mg, 1.0 mmol) was stirred with 2-naphthalene-

methanol (158 mg, 1.0 mmol), and freshly prepared molecular sieves 4Å (500 mg) in CH2Cl2 (8 mL) for 6-8 h. To this mixture, InCl3
(110 mg, 0.5 mmol) was added and the reaction was stirred for additional 16-20 h at room temperature (Mukherjee et al., 2001).

The progress of the formation of the product was examined by TLC (ethylacetate/hexane 1:1 or dichloromethane/acetone 4:1).

The reaction mixture was then diluted with CH2Cl2 (8 mL), filtered over celite and washed with saturated sodium bicarbonate solution

(3 times), and dried over Na2SO4. It was filtered and concentrated in vacuo. The desired product was purified using silica gel flash

chromatography using solvent gradients ethylacetate/hexane 1:2 or acetone/dichloromethane 1:10. In most cases, compounds

were obtained as solid materials. 2-naphthalenemethanol was replaced by other aglycon alcohols to obtain other O-glycosides,

except for 9 & 10. Detailed reaction scheme is shown below (Matta, 2016).

 

Synthesis of Acetylated GlcNAcbSZ

For preparation of thiourea salt (Horton and Wolfrom, 1962; Ibatullin et al., 2001), thiourea (3.8 g, 5 mmol) was added to a mixture of

2-acetamido-3,4,6-tri-O-acetyl-2-deoxy glucopyranosyl chloride (1.83 g, 5 mmol) in acetonitrile (10 mL). The reaction was refluxed

for 10min. Then the solvent was evaporated. After crystallization from acetone, product was obtained as white solid. In the next step,

2-(bromomethyl)naphthalene (442 mg, 2 mmol) was added to a solution of thiourea salt (885 mg, 2 mmol) in acetonitrile (10 mL),

followed by TEA (0.7 mL, 5 mmol) (Ibatullin et al., 2001). The reaction was stirred at r.t. for 1 day, and then concentrated in vacuo.

The crude product was purified by flash chromatography using acetone /dichloromethane which afforded a white solid product.

In an alternate method reported earlier (Matta et al., 1973), the urea salt treated with potassium pyrosulfite in refluxing mixture of

water and chloroform gave 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-1-thio-b-glycopyranose 13 (Matta et al., 1973). The latter on

treatment with alkyl bromide in acetone in the presence of anhydrous potassium carbonate in acetone (Claeyssens et al., 1970)

can give alkyl-thio glycosides. 2-(bromomethyl)naphthalene was replaced by other aglycone halides (Z-halide) in the above reaction

to furnish the remaining acetylated GlcNAcbSZ compounds from 13. The full reaction scheme is shown below.
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Synthesis Procedure for p-methoxyphenyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-b-D-glucopyranoside 9

To a solution of b-D-glucosamine pentaacetate (10 g, 25 mmol) and p-methoxyphenol (9.5 g, 75 mmol) in CH2Cl2 (180 mL) chilled in

salt ice bath, was added BF3$OEt2 (4.7 mL, 37.5 mmol) dropwise (Fettke et al., 2009). The reaction was stirred at room temperature

for 24 h, and then was washed with water, NaHCO3 solution, and brine. The organic layer was dried (MgSO4) and concentrated. The

residue was purified with flash chromatography which afforded product as white solid. Compound 10was obtained by deacetylation

of 9.

De-O-acetylation

Thio andO-glycosides were deacetylated using sodiummethoxide in methanol. Typically, to a solution of 1 mmol starting material in

MeOH (10 mL), 5-10 drops NaOMe/MeOH 0.5 M solution was added. The reaction was allowed to stir for overnight. When reaction

was complete, the solution was filtered through a short pack of Dowex 50W resin, and concentrated. The resulted white solid was

washed with small amount of cold MeOH and filtered.

For large scale preparation of GlcNAc-bONAP has already been reported from Matta’s group (Xue et al., 2009) wherein one-step

b-selective glycosylation of N-acetylglucosamine (Vauzeilles et al., 2001) with NAP-bromide in presence of lithium bromide and so-

dium hydride was found to be effective in providing the target compound as solid material.

Cell Culture and Chemical Treatment
All cell lines were cultured according to ATCC (Manassas, VA), unless otherwise mentioned. HUVECs were cultured in EBM-2 media

(Lonza). Isogenic HL-60 clones lacking extended O-glycans ([O] cells), N-glycans ([N]) and glycolipids ([G]) were available from a pre-

vious study (Stolfa et al., 2016). These cells lack the genes COSMC (core-1 b3 galatoctosyltransferasemolecular chaperone), MGAT1

(mannosyl a1,3-glycoprotein b1,2-N-acetylglucosaminyltransferase) and UGCG (UDP-Glucose Ceramide Glucosyltransferase),

respectively.

For cell treatment, all GlcNAc-based glycosides were dissolved in DMSO to make 40 mM stocks, and stored at -20�C until use. In

typical runs, the GlcNAc O- and S-glycosides were added to 0.5-13106 cells/mL at 0-200 mM in normal culture medium for 2-days

(�40 h). All runs included control compounds (13, 14) and/or vehicle control (typically 0.2-0.25% DMSO). In some runs, HL-60s were

differentiated to terminal neutrophils by culturing cells with 1.3% DMSO over 5 days (Marathe et al., 2008). Here, on day-3, 80 mM

SNAP, ONAP, SH or 0.2%DMSO (vehicle) was added to the culture medium. Cells analysis was performed on day-5. In other cases,

100 mMperacetylated a-benzyl GalNAc (abbreviated ‘GalNAc-O-Bn’), available from a previous study (Stolfa et al., 2016), was added

along with ONAP or SNAP for subsequent MS analysis. In each case, at the treatment end-point, the cells were harvested and re-

suspended in HEPES buffers (30 mM HEPES, 110 mM NaCl, 10 mM KCl, 2 mM MgCl2, 10 mM glucose, pH 7.3) containing 0.1%

HSA (human serum albumin) and 1.5 mM Ca2+. Cell surface glycan analysis and functional assays were then performed using

flow cytometry, microfluidics based cell adhesion assays, Western blotting and enzymology as described previously ((Buffone

et al., 2013; Marathe et al., 2008; Mondal et al., 2015), see below).

Antibodies and Lectins
Antibodies employed for cytometry analysis include fluorescent rat anti-Cutaneous Lymphocyte Antigen/CLA mAb HECA-452 (IgM)

which recognized sialyl Lewis-X/sLeX and related antigens, mouse anti-human CD11b mAb D12 (IgG), mouse anti-CD15/Lewis-X

mAb HI98 (IgM), and isotype controls. Function blocking mAbs used include anti-human PSGL-1 mAb KPL-1, anti-P-selectin

mAb G1, anti-E-selectin mAb P2H3, and anti-L-selectin mAb DREG-56. Lectins used in this study include fluorescein-conjugated

Peanut agglutinin (PNA; binds the T-antigen or Galb1,3GalNAc), Erythrina cristagalli lectin (ECL; binds N-acetyl lactosamine

Galb1,4GlcNAc), Phaseolus vulgaris Leucoagglutinin (PHA-L; binds Galb4GlcNAcb6(GlcNAcb2Mana3)Mana3 on N-glycans), and

biotinylated Maackia amurensis lectin II (MAL-II; binds a(2,3) linked sialic acid). Recombinant human L-/CD62L, E-/CD62E and

P-/CD62P selectin IgG fusion proteins were also used.

Flow Cytometry
Typically, cells suspended in HEPES buffer with 0.1%HSA (human serumalbumin) and 1.5mMCa2+were incubatedwith 1-10 mg/mL

of fluorescent monoclonal antibodies or lectins for 20 min on ice prior to flow cytometry analysis using either a FACSCalibur or

LSRFortessa X-20 instrument (BD Biosciences). In the case of MAL-II binding measurements, FITC-conjugated anti-biotin Ab was

also added in a second incubation step as this lectin was biotinylated. For static selectin binding assays, 3 mg/mL human selec-

tin-IgG was first complexed with 10 mg/mL PerCP-conjugated anti-human Fc Ab (Jackson ImmunoResearch, West Grove, PA) in

HEPES buffer containing 1% goat serum and 1.5 mM Ca2+ for 10 min at r.t. In some cases, 5-10 mg/mL anti-selectin blocking

mAbs were also added in this step. The selectin-PerCP Ab complex was then incubated with 13106 HL-60 cells/mL for 10 min

at r.t., prior to 10-fold dilution of the mixture in HEPES buffer (with 0.1% HSA and 1.5 mM Ca2+) and cytometry analysis.

Microfluidics Based Leukocyte Adhesion Assay
Cell adhesion studies were performed as described previously (Buffone et al., 2013), using a 100 mm3 400 mmcross-section custom

microfluidic flow cell placed on the stage of a Zeiss AxioObserver Z1 microscope. Here, the flow cell substrate was composed of

either 4 h IL-1b stimulated HUVEC monolayers, or recombinant L-, E- or P-selectin IgG at physiological levels (Mondal et al.,

2015). Control or glycoside treated HL-60s at 23106 cells/mL resuspended in HEPES buffer contained 1.5 mM Ca2+ and 0.1%

HSAwere perfused over these substrates at a wall shear stress of 1 dyn/cm2. Cell rolling density, firm adhesion density and cell rolling
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velocity wasmeasured as described previously. Ten mg/mL function blockingmAbswere applied in some cases to block the function

of either the immobilized selectins on the flow cell substrate or the selectin-ligand PSGL-1 on the leukocytes.

Western Blot Analysis
HL-60 cells were cultured with 80 mMSNAP, ONAP, SH or 0.2%DMSO (vehicle). These cells were washed and resuspended in 90 mL

Laemmli sample buffer (Bio-rad) containing b-mercaptoethanol. After denature by boiling at 95�C for 5 min, debris was pelleted by

centrifugation. 20 mL supernatant was resolved using 4-20% gradient SDS-PAGE. Next, the proteins were transfer onto 0.2 mmnitro-

cellulose membrane, and probed with either anti-human PSGL-1 mAb TB5 (GeneTex, Irvine, CA) or anti-human CD43 mAb L60 (BD

Biosciences). A secondary horse-radish peroxidase (HRP) coupled anti-mouse Ab was incubated with the membrane prior to chem-

iluminescence development using ECL substrate (Thermo-Pierce).

Galactosyltransferase Assay
107 HL-60 cells with different treatments (80mMSNAP, ONAP, SH, or 0.2% DMSO) were lysed using either RIPA buffer or sonication

(3 cycles of 10s on and 10s off, 40% amplitude), both in the presence of HaltTM protease inhibitor (Thermo). The cell debris was pel-

leted by centrifugation at 18,000 g for 15 min, and the supernatant was collected. In some runs, a 25 mL reaction was prepared with

60 mg lysate-supernatant and 10,000 dpm UDP-[C14]Gal (258.00 mCi/mmol uridine di-phosphate-galactose, PerkinElmer, Boston,

MA) in reaction buffer (100 mM HEPES, 7 mM ATP, 20 mM manganese acetate), either with or without the substrate 0.5 mM Gal-

NAc-O-Bn (de-acetylated). Following overnight reaction, 1 mL reaction mixture spots were placed on thin layer chromatography/

TLC plates (Selecto Scientific, Suwanee, GA). Radioactive product was resolved from unreacted C-14 nucleotide-sugar using

CHCl3:CH3OH:H2O (5:4:1) solvent, and TLC image was recorded using a Storm 860 phosphorimager (GE Healthcare). In other

runs, 60 mg of vehicle-treated lysate was mixed with 500 mM ONAP/SNAP substrate and 1 mM UDP-Gal in reaction buffer in the

same reaction buffer (25 mL volume). Following overnight reaction, proteins were precipitated by addition of 1 mL 70% acetonitrile

and vortexing. Supernatant collected following centrifugation (14,000 g x 5 min) was evaporated under high vacuum, resuspended in

50 mL 50%MeOH and injected into LC-MS (Thermo Scientific�QExactive�Hybrid Quadrupole-OrbitrapMass Spectrometer) using

C18 separation.

ppGalNAcT Assay
The enzymatic reaction was performed in 20 mL reaction buffer (100 mMHEPES, 7 mMATP, 20 mMmanganese acetate, HaltTM pro-

tease inhibitor) containing 60 mg lysate-supernatant, 50,000 dpm UDP-[C14]GalNAc (55 mCi/mmol, ARC Inc., St. Louis, MO) and

50 mg PSGL-1 N-terminal peptide substrate (AQTTPRAATEAQTTRLRATESHHHHHH, GenScript, Piscataway, NJ). Following over-

night reaction at r.t., reaction volume was increased 10-fold using 500 mM NaCl in phosphate-buffered saline (PBS) and mixed

with 10 mL MagneHisTM Ni-Particles (Promega, Madison, WI) for 45 min at r.t. Followed 5-wash cycles in washing buffer (100 mM

NaCl, 10 mM imidazole in PBS) using magnetic separation at each step, the entire mixture was brought up to 200 ml in the washing

buffer andmixed with 4mL scintillation cocktail. The UDP-[C14]GalNAc radioactivity associated with the peptide immobilized with the

beads was quantified using a standard scintillation counter.

Animal Studies
Mouse bone marrow cells (mBMCs) were isolated from the tibia and femur of 10-12 week old C57BL/6 donor mice. These mBMCs

were cultured ex vivo, with 100 mMONAP, SNAP or vehicle (0.25%DMSO) in IMDMmedia containing 10 ng/mL G-CSF, 1 ng/mL IL-3

and 10% FBS. Following culture for 40 h, the cells were labeled using the green fluorescent dye CMFDA (1 mM) (Setareh Biotech,

Eugene, OR), orange dye CMTMR (5 mM) or both dyes together by incubating the dye with the cells for 15 min at 37�C. The exact

dye used for individual cell types was varied to ensure that dye labeling did not influence the study findings. Following this, the three

labeled cell types were mixed in approximately equal amounts and infused i.v. into recipient mouse injected with 4% thioglycollate

i.p. to induce peritonitis (Marathe et al., 2010). Samples from the peritoneal lavage and bone marrow were collected 20h thereafter.

Granulocytes in the collected samples were identified based on their characteristic forward-side scatter profile, and labeling with

APC conjugated anti-mouse Ly-6G clone 1A8 (BioLegend, San Diego, CA). Granulocytes tagged with green and/or red fluorescent

dyes were enumerated using a BD LSR-II flow cytometer. Final data are normalized with respect to the cell ratio in the injected

mixture.

MALDI TOF MS/MS Glycomics Profiling
N-linked, O-linked and GSL derived glycans were extracted from vehicle control and SNAP treated HL60s as described previously

(Mondal et al., 2015). All glycans were permethylated prior to MALDI-TOF MS and MALDI-TOF-TOF MS/MS analysis. Released gly-

cans from GSLs were deuteroreduced prior to permethylation. Data were annotated using the glycobioinformatics tool, GlycoWork-

Bench (Ceroni et al., 2008). The proposed assignments for the selected peaks were based on 12C isotopic composition together with

knowledge of the biosynthetic pathways. The proposed structures were confirmed using MS/MS.

LC-MS/MS Glycan Analysis
HL-60s (0.33106/mL) were cultured for 48 h in advance-DMEM without phenol red (ADMEM). In some cases, 60-100mM SNAP,

ONAP, or peracetylated benzyl-a-GalNAc was added alone to the culture medium, while in other cases two compounds were mixed
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and added together. 0.2% DMSO served as vehicle. Cell culture medium was purified using Sep-Pak C18 columns (Waters, Milford,

MA), with glycosides being released by elution with 50-75% MeOH. The released product was permethylated prior to MS analysis

(Stolfa et al., 2016). In some cases, to examine glycans formed within cells, cell pellets were collected in the above runs, and lysed

using 75% MeOH followed by sonication. Following removal of cell debris by centrifugation at 18,000 g for 15 min, the supernatant

was dried using a CentriVap centrifugal evaporator. Three mL ADMEM was added to resuspend the glycans. Separation using C18

Sep-Pak and permethylation was performed as above.

For LC-MS analysis, the above samples were filtered through 0.2 mmPES (Polyethersulfone) syringe filters, centrifuged at 16,000 g

at 4�C for 15 min to remove any debris, and the supernatant was analyzed. Two instruments were used: i. An Orbitrap-XL MS

(Thermo) equipped with a nano-LC column (PepMap C18 2 mm; 75 mm3150 mm, Thermo) and ESI (electrospray ionization) source;

ii. A 6530 Accurate Mass Dual Agilent Jet Stream ESI-Q-ToF (quadrupole-time-of-flight) with a Phenomenex Gemini C18 column

(5 mm, 4.6 x 50 mm). In the Orbitrap-XL runs, the mobile phases were, A: water and B: acetonitrile (CH3CN), both containing 0.1%

(v/v) formic acid. Data were acquired over 80 min at a flow rate of 300 nL/min using the following linear gradient: (i) increase from

0% to 20% B (0-5 min); (ii) 20% to 40% B (5-45 min); (iii) 40% to 70% B (45-65 min); (iv) 70% to 100% B (65-75 min); and (v) isocratic

elution at 100%B (75-80 min). MS1 data were acquired using the Orbitrap detector (60,000 resolution), and MS/MS in CID mode (ion

trap with 30% collision energy). For ESI-Q-ToF separation, the mobile phases were, A: 10% CH3CN and B: 90% CH3CN, both with

0.1% formic acid and 0.1% ammonium formate. Flow rate was set to 0.5 mL/min. MS analysis started at isocratic 100% A (0-5 min),

linear ramp to 100% B (5-40 min) and finally isocratic 100% B (40-50 min). MS data were collected over 50-1700m/z in positive ESI

mode at high resolution. Targeted LC-MS/MS analyses were carried out by varying collision energies from 0-75 eV. Data were an-

notated using the glycoinformatics tools DrawGlycan-SNFG (Cheng et al., 2017).

2-Napthalenemethanol Detection and Analysis
In a variation of the Folch method (Folch et al., 1957), 1.8 mL of HL-60 culture media was transferred to a glass vial and mixed with

methanol and chloroform in a ratio 3:4:8 (media:methanol:chloroform). The mixture was vortexed for 1 min and allowed to settle for

1 min, with this vortex-settling cycle being repeated thrice. In the final step, the sample was centrifuged at 500 g for 10 min, and

4.4 mL of the chloroform layer was collected and vacuum-dried.

In one experiment, this product was resuspended in 500 mL MeOH and resolved using an Agilent 1100 HPLC equipped with a

reversed-phase ZORBAX Eclipse XDB-C18 column (5 mm, 4.6 mm 3 150 mm). Mobile phase A: water and B: methanol, both con-

taining 0.1% (v/v) formic acid. Flow rate was 0.5mL/min and detector wavelength was 224 nm. Data were acquired over 40min using

the following gradient: (i) isocratic at 40% B (0-3 min), (ii) increase from 40% to 70%B (3-13 min); (iii) isocratic 70% B (13-23 min); (iv)

increases from 70% to 85% B (23-25 min); (v) isocratic 85% B (25-35 min), (vi) decrease from 85% to 40% B (35-37 min), and finally

(vii) isocratic 40%B (37-40min). Pure 2-naphthalenemethanol and 2-napthalenemethanethiol (Sigma) added to culturemedia served

as standards for this run. Calibration curves were linear over the 5–150 mM range for HONAP (r2 = 0.9997) and HSNAP (r2 = 0.9985).

The limits of detection (LoD) and quantification (LoQ) were 3.8 mM and 11.4 mM for HONAP and 9.1 mM and 27.6 mM for HONAP.

Quantifications were carried out in triplicates.

In another experiment, dansyl derivatization was performed by resuspending the above vacuum-dried sample with 100 mL of an

amine mixture (0.4% v/v triethylamine or TEA and 6 mg/mL 4-dimethylaminopyridine or DMAP). After vortexing for 1 min, 100 mL of

dansyl chloride (6 mg/mL) were added and the reaction was stirring at 600 rpm for 1 h at r.t. in dark. The solvent and triethylamine

were then eliminated under high vacuum and the residue was resuspended in 750 mL MeOH. This sample was injected into an

LC-ESI-Q-ToF system (Agilent) using LC and MS parameters listed in the previous section. 2- Napthalenemethanol was dansyl

derivatized to serve as MS standard.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data are presented as Mean ± S.D (nR3). Individual data points are plotted in each panel to give a measure of n in each group/

condition. Two-tailed Student’s T-test was used for dual-comparisons. Analysis of variance (ANOVA) followed by the Student-

Newman-Keuls post-test was used for multiple comparisons. P<0.05 was considered to be statistically significant.

DATA AND SOFTWARE AVAILABILITY

Two software are used to annotate MS spectra: GlycoWorkBench and DrawGlycan-SNFG. Both resources are provided open-

source at github (see Key Resources Table).
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