Ultrasound and ZnCl₂ Promoted Synthesis of Phthaloyl Derivatives of α-Amino Carboxamides

J. Richard Casimir,* Gilles Guichard, Jean-Paul Briand

Laboratoire de Chimie Immunologique, UPR 9021 CNRS, Institut de Biologie, Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg cedex, France

Fax +33(3)88610680; E-mail: R.Casimir@ibmc.u-strasbg.fr Received 28 May 2000; revised 4 September 2000

Abstract: A new, one-step and racemization-free synthesis of phthaloyl derivatives of α -amino carboxamides is described. Under ultrasound, α -amino carboxamides and dipeptide derivatives react with monomethyl phthalate in the presence of BOP, ZnCl₂ and *i*-Pr₂NEt to afford the corresponding N^{α} -phthaloyl α -amino carboxamides or dipeptides in good to excellent yields. Cyclization of the intermediate N^{α} -[(α -methoxycarbonyl)benzoyl]amino carboxamides to the desired products was very slow when the reaction was conducted either in the absence of ZnCl₂ and/or without sonication, but the process was greatly accelerated when both ZnCl₂ and ultrasound were used.

Key words: phthaloyl protection, zinc chloride, sonochemistry, α -amino carboxamides, monomethylphthalate, cyclization, peptides

Phthaloyl derivatives of carboxamides or peptides are often key intermediates in organic synthesis.^{1,2} Among the various groups used to protect the primary amino function of amino acids or peptide derivatives, the phthaloyl group offers the advantage of giving stable and easily recrystallizable compounds.^{3,4} Moreover, it can be easily cleaved by methylhydrazine,⁵ phenylhydrazine,⁶ or hydrazine.⁷

Although the phthaloylation of α -amino acids, α -amino esters, α -amino alcohols and α -amino nitriles is well documented,⁷⁻¹⁵ only few procedures have been reported in the literature for the synthesis of phthaloyl derivatives of

 α -amino carboxamides. Indeed, these compounds are usually prepared in a three-step procedure involving reaction of the corresponding acid chlorides or anhydrides with ammonia.^{16–19} One obvious disadvantage of this procedure is that byproducts resulting from partial cleavage of the phthaloyl group by ammonia are sometimes observed.¹⁶ Moreover, when aqueous ammonia solution is used, hydrolysis to the N^{α} -phthaloyl amino acid may also take place. In another procedure, Easton et al.²⁰ prepared the N^{α} -phthaloyl amino carboxamides by cleavage of the appropriate glycine ester derivative using nickel peroxide; however the products were isolated in rather low yields (21–54%).

In this paper, we report a new, one-step and racemizationfree synthesis of phthaloyl derivatives of carboxamides starting from α -amino amides. Our methodology is based on the BOP [benzotriazole-1-yl-oxytris(dimethylamino)phosphonium hexafluorophosphate]-mediated reaction of the α -amino carboxamides **2a**-**k** with monomethyl phthalate **1** followed by in situ cyclization of the intermediate phthalate esters **3a**-**k** under sonication in the presence of zinc chloride to afford the desired N^{α} -phthaloyl derivatives **4a**-**k** (Scheme 1).

The critical point of the synthesis is the cyclization of the intermediates $3\mathbf{a}-\mathbf{k}$ to the desired products $4\mathbf{a}-\mathbf{k}$. In an attempt to optimize this process, several reaction conditions

Reagents and conditions: a) MeCN/BOP/ZnCl₂/*i*-Pr₂NEt, sonication, 16 h Scheme 1 were tried with isoleucinamide hydrochloride (2f, Table 1). As expected, the formation of compound **4f** was very slow when the reaction was conducted without sonication and in the absence of ZnCl₂ (Table 1, Entries a and b), but the process was accelerated when ZnCl₂ was added to the reaction (Table 1, Entries c and d). On the other hand, when the reaction was conducted under sonication but without ZnCl₂, the proportion of **3f/4f** in the reaction mixture was found to be 29:71 after nine hours (Table 1, Entry k). Moreover, the reaction was almost complete after nine hours when both ZnCl₂ and ultrasound were used (Table 1, Entries e to h). It is worth mentioning that $ZnCl_2$ appeared to be a better catalyst for this cyclization process than CaCl₂, MgCl₂, AgCl or KCN and that the reaction worked better in acetonitrile (probably due to complexation of the zinc ions by the solvent) than in the usual organic solvents.²¹ Although there was no significant difference between the different bases tried, diisopropylethylamine gave slightly better results than triethylamine or N-methylmorpholine. Finally, it should be noted that the addition of one equivalent of HOBt (N-hydroxybenzotriazole) to the reaction did not accelerate the formation of 4f when BOP was used as coupling agent (Table 1, Entries 1 to n). Thus, N^{α} -phthaloylisoleucinamide (4f) was

 Table 1
 BOP-Mediated Reaction of Monomethylphthalate 1 with Isoleucinamide Hydrochloride 2f

Entry	Coupling Agent ^{a, b}	Catalyst ^c	Time (h)	Mixing ^d	3f/4f ^e
a	BOP/HOBt	_	9	Т	81:19
b	BOP/HOBt	_	24	Т	57:43
с	BOP/HOBt	$ZnCl_2$	9	Т	57:43
d	BOP/HOBt	$ZnCl_2$	24	Т	30:70
e	BOP/HOBt	$ZnCl_2$	2	S	57:43
f	BOP/HOBt	$ZnCl_2$	5	S	17:83
g	BOP/HOBt	$ZnCl_2$	7	S	10:90
h	BOP/HOBt	$ZnCl_2$	9	S	3:97
i	BOP/HOBt	-	5	S	53:47
j	BOP/HOBt	_	7	S	38:62
k	BOP/HOBt	_	9	S	29:71
1	BOP	$ZnCl_2$	5	S	17:83
m	BOP	$ZnCl_2$	7	S	9:91
n	BOP	$ZnCl_2$	9	S	3:97

^a For all reactions, a solution of isoleucinamide hydrochloride (**2f**; 1.0 mmol), monomethyl phthalate **1** (1.0 mmol) and diisopropylamine

(7.0 mmol) in MeCN (15 mL) was used.

^b 1.0 mmol of both BOP and HOBt.

^c 2.5 mmol of ZnCl₂ catalyst was used.

^dT: traditional stirring; S: sonication.

 $^{\rm e}$ Ratio determined by analytical $\rm C_{18}$ RP-HPLC analysis of the reaction mixture.

Synthesis 2001, No. 1, 75-80 ISSN 0039-7881 © Thieme Stuttgart · New York

conveniently prepared by sonicating isoleucinamide hydrochloride (**2f**), monomethyl phthalate **1**, BOP, ZnCl₂ and *i*-Pr₂NEt in acetonitrile. By applying this general condition to several α -amino carboxamides **2a**–**k**,^{22,23} the corresponding phthaloyl derivatives **4a**–**k** were obtained in good to excellent yields (Table 2). As shown, the process is compatible with several functional groups and gives good results with dipeptide esters or amides, and α , α -disubstituted, secondary, or tertiary amides.

To determine the extent of racemization during the reaction, N^{α} -Pht-(S)-Val-NH₂ (4d) and N^{α} -Pht-(S)-Ile-NH₂ (4f) were first treated with ethanolic hydrazine⁷ to give $H-(S)-Val-NH_2$ (5) and $H-(S)-Ile-NH_2$ (6) respectively (Scheme 2). Compound 5 was reacted with GITC (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate)²⁴ in the presence of triethylamine to afford GITC-Val-NH $_2$ (7) then, after one hour, the reaction mixture was analyzed by C₁₈ RP-HPLC at 250 nm. The isomers GITC-(S)-Val-NH₂ (7a) and GITC-(R)-Val-NH₂ (7b) in the mixture were identified by comparison of their retention time to those of the products obtained by the reaction of pure $H-(S)-Val-NH_2$. HCl (2d) and $H-(R)-Val-NH_2$, respectively, with GITC. The diasteroisomeric ratio of 7, and thus the enantiomeric ratio of 4d, was determined by integration of the peaks corresponding to the (S)- and (R)-isomers. Similarly, these operations were repeated with compound 6, using H(S)-Ile-NH₂·HCl (2f) and H(R)-Ile- NH_2 as references. In both compounds 7 and 8 only the (S)-isomer was observed, showing that no racemization takes place during our phthaloylation process.

Reagents and conditions: a) i. N_2H_4 /EtOH, reflux, 2 h, ii. AcOH/H₂O, 100 °C, 1 h;

b) i. GITC/Et₃N/MeCN, r.t., 1 h, ii. RP-HPLC at 250 nm

Scheme 2

In conclusion, we have disclosed in this paper a new, efficient and racemization-free procedure for the preparation of phthaloyl derivatives of α -amino carboxamides. Owing to its simplicity and the mild conditions used, our method

Product ^a	R ¹ (chirality)	R ²	R ³	\mathbb{R}^4	Purification ^b (Method)	Yield (%) ^c
4a	Н	Н	Н	Н	А	53 ^d
4b	Me (<i>S</i>)	Н	Н	Н	А	70
4c	yt (S)	Н	Н	Н	A	95
4d	پر ۲ (S)	Н	Н	Н	А	89
4e	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Н	Н	Н	А	85
4f	(S,S)	Н	Н	Н	А	91
4g	ج (<i>R</i> , <i>S</i>)	Me	Н	Н	В	83
4h	جد م رکز (<i>S</i>)	Н	**	Н	В	79
4i		Н	O ye ⁴ OMe	Н	В	92
4j		Н	- yet	Y at a	В	69
4k		Н	NH ₂	Н	В	63

Table 2Sonication and $ZnCl_2$ Promoted Synthesis of Phthaloyl Derivatives of α -Amino Carboxamides

^a All products are white solids.

^b The N^{α} -phthaloylcarboxamides or dipeptide derivatives were obtained pure after workup and purification by either Method A or B (see experimental section).

° Yields of isolated products.

^dThe moderate yield obtained in this case was due to partial solubility of the Pht-Gly-NH₂ in the aqueous solutions used for the workup.

might be very useful for the synthesis of the phthaloyl derivatives of a wide range of compounds.

All solvents were distilled before use. Sonochemical experiments were performed in a Bransonic 12 ultrasound cleaning bath. Melting points were measured on a Büchi 530 instrument and are not corrected. Optical rotations were determined at 27 °C on a Perkin-Elmer 241 polarimeter. IR spectra were recorded on a Spectrum One PerkinElmer FT-IR instrument using the attenuated total reflectance (ATR) principle and a Ge flat top-plate. Mass spectra (positive mode) were recorded on a linear MALDI-TOF instrument

(Bruker Bremen) using α -cyano-4-hydroxycinnamic acid as matrix. Exact mass measurements (EMM) were recorded at low resolution using electrospray ionization and a quadrupole VG Quattro II mass spectrometer (EI+, conevoltage 40) with poly(ethyleneglycol)monomethyl ether as standard.²⁵ 1D NMR spectra were recorded in DMSO-d₆ or CDCl₃ on a Bruker AC 200 MHz spectrometer. Analytical HPLC was recorded at 30 °C on a Nucleosil C₁₈ column (8 µm, 3.9 × 150 mm) by using a linear gradient of 0–100% of B (0.08% TFA in MeCN) in A (0.1% TFA in H₂O) for 20 min at a flow rate of 1.2 mL/min with UV detection at 214 nm, except for GITC experiments where a gradient of 20–50% of B in A was used with UV detection at 250 nm. TLC was performed on aluminum

77

sheets coated with silica gel 60 F₂₅₄ (Merck, Darmstadt) in eluents A: hexane/EtOAc/AcOH (70:30:5) and B: CHCl₃/MeOH/AcOH (40:2:1).

N^{α} -[(o-Methoxycarbonyl)benzoyl]-(S)-isoleucinamide (3f)

This compound was obtained as a white solid (0.27 g, 92%) by the reaction of **2f** (0.167 g, 1.0 mmol) with monomethylphthalate **1** (0.181 g, 1.0 mmol) in the presence of BOP (0.443 g, 1.0 mmol), HOBt (0.153 g, 1.0 mmol) and *i*-Pr₂NEt (0.68 mL, 4.0 mmol) in CH₂Cl₂ (25 mL) for 30 min followed by aqueous workup, drying (Na₂SO₄) and concentration in vacuo; mp 193–195 °C; TLC: R_f0.22 (A), 0.72 (B); HPLC: R_t10.28 min: $[\alpha]_D$ –4.7 (*c* = 1.0, MeOH).

IR ATR, Ge: $v = 3365, 3281, 3184, 2959, 2875, 1722, 1631, 1581, 1592, 1522, 1270, 1083, 799, 706, 665 cm^{-1}$.

¹H NMR (200 MHz, DMSO- d_6): $\delta = 0.86$ (t, J = 7.5 Hz, 3 H), 0.91 (d, J = 6.9 Hz, 3 H), 1.18 (m, 1 H), 1.52 (m, 1 H), 1.86 (m, 1 H), 3.74 (s, 3 H), 4.27 (m, 1 H), 7.13 (s, 1 H), 7.35 (s, 1 H), 7.46–7.78 (m, 4 H), 8.37 (d, J = 8.7 Hz, 1 H).

¹³C NMR (50 MHz, DMSO- d_6): δ = 11.0 (CH₃), 15.5 (CH₃), 24.3 (CH₂), 36.0 (CH), 52.1 (CH₃), 57.4 (CH), 127.8 (CH), 128.9 (CH), 129.3 (CH), 129.6 (C), 131.5 (CH), 138.0 (C), 167.2 (C), 167.9 (C), 172.8 (C).

MS: $m/z = 293 (M + H)^+$, 315 (M + Na)⁺, 331 (M + K)⁺.

EMM: m/z calcd for C₁₅H₂₀N₂O₄ 293.1501 (MH⁺), found 293.1404.

N-Phthaloylation of $\alpha\mbox{-}Amino\mbox{-}Carboxamides\mbox{-}and\mbox{-}Dipeptide\mbox{-}Esters\mbox{-}ters\mbox{-}or\mbox{-}Amides$

A solution of monomethyl phthalate **1** (0.49 g, 2.69 mmol), α -amino carboxamide **2** (2.69 mmol, 1.0 equiv), BOP (1.31 g, 1.1 equiv), ZnCl₂ (0.92 g, 2.5 equiv) and *i*-Pr₂NEt (4.6 mL, 10 equiv) in MeCN (40 mL) was sonicated for 16 h in an ultrasound cleaning bath. The solvent and *i*-Pr₂NEt were removed under reduced pressure, then the product was isolated by either Method A or B.

Method A: The residue was triturated in 1 N HCl (50 mL) and filtered. This operation was repeated 3 to 4 times in order to get rid of all the zinc salts. The crude product was washed with aq sat. NaHCO₃ (4 × 25 mL), brine (25 mL) and H₂O (2 × 25 mL), then dried in vacuo to afford the desired product as a white solid.

Method B: The residue was dissolved in EtOAc (100 mL), then the solution was successively washed with 1 N HCl (3×75 mL), aq satd NaHCO₃ solution (3×75 mL), brine (75 mL) and H₂O (75 mL). After evaporation and purification by flash chromatography in hexane/EtOAc, the product was obtained as a white solid.

N^{α} -Phthaloylglycinamide (4a)

Method A. White solid (0.291 g, 53%); mp 265 °C; TLC: $R_f 0.16$ (A), 0.15 (B); HPLC: $R_t 8.07$ min.

IR ATR, Ge: $v = 3407, 3314, 3275, 3207, 1769, 1706, 1676, 1614, 1470, 1416, 1383, 952, 733, 714 cm^{-1}$.

¹H NMR (200 MHz, DMSO- d_6): δ = 4.12 (s, 2 H), 7.22 (s, 1 H), 7.66 (s, 1 H), 7.80 (m, 4 H).

¹³C NMR (50 MHz, DMSO- d_6): δ = 39.9 (CH₂), 123.1 (CH), 131.7 (C), 134.4 (CH), 167.5 (C), 167.9 (C).

MS: $m/z = 205 (M + H)^+$, 227 $(M + Na)^+$, 243 $(M + K)^+$.

N^{α} -Phthaloyl-(S)-alaninamide (4b)

Method A. White solid (0.411 g, 70%); mp 202–203 °C; TLC: $R_f 0.26$ (A), 0.56 (B); HPLC: $R_t 9.16$ min; $[\alpha]_D + 0.31$ (c = 1.1, MeOH).

IR ATR, Ge: $v = 3421, 3174, 1774, 1706, 1675, 1610, 1465, 1387, 718, 690 \text{ cm}^{-1}$.

¹H NMR (200 MHz, DMSO- d_6): δ = 1.51 (d, J = 7.3 Hz, 3 H), 4.65 (q, J = 7.3 Hz, 1 H), 7.15 (s, 1 H), 7.53 (s, 1 H), 7.88 (m, 4 H).

¹³C NMR (50 MHz, DMSO-*d*₆): δ = 14.8 (CH₃), 48.0 (CH),122.9 (CH), 131.7 (C), 134.2 (CH), 167.4 (C), 170.5 (C).

MS: $m/z = 219 (M + H)^+$, 241 (M + Na)⁺, 257 (M + K)⁺.

N^{α} -Phthaloyl-(S)-phenylalaninamide (4c)

Method A. White solid (0.752 g, 95%); mp 221 °C; TLC: $R_f 0.27$ (A), 0.62 (B); HPLC: $R_t 12.52$ min; $[a]_D - 20.4$ (c = 1.0, MeOH).

IR ATR, Ge: $v = 3383, 3300, 3248, 3192, 3028, 2920, 1771, 1738, 1707, 1688, 1658, 1605, 1455, 1383, 1353, 720, 695 cm^{-1}$.

¹H NMR (200 MHz, DMSO- d_6): δ = 3.34 (dd, J = 11.8, 14.0 Hz, 1 H), 3.53 (dd, J = 4.8, 14.0 Hz, 1 H), 4.93 (dd, J = 4.8, 11.8 Hz, 1 H), 7.12 (m, 5 H), 7.32 (s, 1 H), 7.72 (s, 1 H), 7.80 (s, 4 H).

¹³C NMR (50 MHz, DMSO- d_6): δ = 33.7 (CH₂), 54.2 (CH), 122.9 (CH), 126.3 (CH), 128.2 (CH), 128.6 (CH), 131.2 (C), 134.4 (CH), 137.7 (C), 167.4 (C), 169.6 (C).

MS: $m/z = 295 (M + H)^+$, 317 (M + Na)⁺, 333 (M + K)⁺.

N^{α} -Phthaloyl-(S)-valinamide (4d)

Method A. White solid (0.589 g, 89%); mp 191 °C; TLC: $R_f 0.36$ (A), 0.72 (B); HPLC: $R_t 11.34$ min; $[\alpha]_D - 1.2$ (c = 1.1, MeOH).

IR ATR, Ge: v = 3396, 3200, 2959, 2927, 1773, 1705, 1693, 1644, 1471, 1387, 718, 694 cm⁻¹.

¹H NMR (200 MHz, DMSO- d_6): δ = 0.77 (d, J = 6.8 Hz, 3 H), 1.02 (d, J = 6.7 Hz, 3 H), 2.69 (m, 1 H), 4.29 (d, J = 8.6 Hz, 1 H), 7.11 (s, 1 H), 7.50 (s, 1 H), 7.88 (m, 4 H).

¹³C NMR (50 MHz, DMSO- d_6): δ = 19.2 (CH₃), 20.9 (CH₃), 27.1 (CH), 58.4 (CH), 123.1 (CH), 131.3 (C), 134.5 (CH), 167.6 (C), 169.4 (C).

MS: $m/z = 247 (M + H)^+$, 269 (M + Na)⁺, 285 (M + K)⁺.

N^{α} -Phthaloyl-(S)-leucinamide (4e)

Method A. White solid (0.595 g, 85%); mp 160–161 °C; TLC: $R_f 0.37$ (A), 0.64 (B); HPLC: $R_t 12.61$ min; $[\alpha]_D -2.4$ (c = 1.0, MeOH).

IR ATR, Ge: v = 3432, 3411, 3171, 2963, 2916, 1770, 1691, 1629, 1466, 1385, 715 cm⁻¹.

¹H NMR (200 MHz, DMSO- d_6): $\delta = 0.87$ (d, J = 6.6 Hz, 3 H), 0.88 (d, J = 6.5 Hz, 3 H), 1.37 (m, 1 H), 1.90 (m, 1 H), 2.20 (m, 1 H), 4.67 (dd, J = 4.3, 11.8 Hz, 1 H), 7.23 (s, 1 H), 7.62 (s, 1 H), 7.89 (m, 4 H).

¹³C NMR (50 MHz, DMSO- d_6): δ = 20.7 (CH₃), 23.1 (CH₃), 24.8 (CH), 36.5 (CH₂), 51.3 (CH), 123.1 (CH), 131.5 (C), 134.4 (CH), 167.7 (C), 170.4 (C).

MS: $m/z = 261 (M + H)^+$, 283 (M + Na)⁺, 299 (M + K)⁺.

N^{α} -Phthaloyl-(S)-isoleucinamide (4f)

Method A. White solid (0.637 g, 91%); mp 226 °C; TLC: R_f 0.41 (A), 0.67 (B); HPLC: R_t 12.43 min; $[\alpha]_D$ +4.4 (c = 0.9, AcOH).

IR ATR, Ge: $v = 3400, 3200, 2963, 2925, 1775, 1707, 1693, 1643, 1470, 1456, 1386, 719, 694 cm^{-1}.$

¹H NMR (200 MHz, DMSO- d_6): δ = 0.79 (t, J = 7.1 Hz, 3 H), 0.90 (m, 1 H), 0.99 (d, J = 6.7 Hz, 3 H), 1.38 (m, 1 H), 2.52 (m, 1 H), 4.36 (d, J = 8.99 Hz, 1 H), 7.14 (s, 1 H), 7.51 (s, 1 H), 7.89 (m, 4 H).

¹³C NMR (50 MHz, DMSO- d_6): δ = 10.6 (CH₃), 16.6 (CH₃), 25.2 (CH₂), 32.8 (CH), 57.9 (CH), 123.1 (CH), 131.2 (C), 134.5 (CH), 167.6 (C),169.5 (C).

MS: $m/z = 261 (M + H)^+$, 283 (M + Na)⁺, 299 (M + K)⁺.

N^{α} -Phthaloyl- α -allyl-(R, S)-alaninamide (4g)

Method A. White solid (0.576 g, 83%); mp 160–162 °C; TLC: $R_f 0.41$ (A), 0.67 (B); HPLC: $R_t 11.38$ min.

IR (ATR, Ge): v = 3424, 3303, 3171, 2983, 2924, 1774, 1711, 1682, 1641, 1619, 1466, 1387, 721, 698 cm⁻¹.

Synthesis 2001, No. 1, 75-80 ISSN 0039-7881 © Thieme Stuttgart · New York

¹H NMR (200 MHz, DMSO- d_6): $\delta = 1.78$ (s, 3 H), 2.61 (dd, J = 6.6, 14.1 Hz, 1 H), 3.00 (dd, J = 8.2, 14.1 Hz, 1 H), 4.96 (m, 2 H), 5.77 (m, 1 H), 7.00 (s, 1 H), 7.55 (s, 1 H), 7.84 (s, 4 H).

¹³C NMR (50 MHz, DMSO-*d*₆): δ = 22.4 (CH₃), 39.7 (CH₂), 63.3 (C), 118.8 (CH₂), 122.6 (CH), 131.4 (C), 133.4 (CH), 134.2 (CH), 168.3 (C), 173.7 (C).

MS: $m/z = 281 (M + Na)^+$, 297 $(M + K)^+$.

EMM: m/z calcd for $C_{14}H_{14}N_2O_3$ 259.1082 (MH+), found 259.1266.

N^{α} -Phthaloyl-O-benzyl-(S)-serinallylamide (4h)

Method A. White solid (0.774 g, 79%); mp 100–101 °C; TLC: $R_f 0.37$ (A), 0.86 (B); HPLC: $R_t 15.01$ min; $[\alpha]_D -2.1$ (c = 1.1, MeOH).

IR ATR, Ge: $v = 3302, 3063, 2925, 1777, 1712, 1640, 1540, 1383, 1092, 719, 697 \text{ cm}^{-1}$.

 ^1H NMR (200 MHz, CDCl₃): δ = 3.80–3.88 (m, 3 H), 4.39 (m, 1 H), 4.57 (s, 2 H), 4.97–5.19 (m, 3 H), 5.77 (m, 1 H), 6.97 (m, 1 H), 7.27 (m, 5 H), 7.64–7.79 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 42.0 (CH₂), 52.3 (CH), 67.8 (CH₂), 73.5 (CH₂), 116.4 (CH₂), 123.6 (CH), 128.0 (CH), 128.2 (CH), 128.7 (CH), 132.0 (C), 133.8 (CH), 134.3 (CH), 136.9 (C), 167.2 (C), 168.0 (C).

MS: $m/z = 365 (M + H)^+$, 387 (M + Na)⁺, 403 (M + K)⁺.

EMM: m/z calcd for $C_{21}H_{20}N_2O_4$ 365.1501 (MH⁺), found 365.1559.

Methyl N^{α} -Phthaloyl-O-(2,6-dichlorobenzyl)-(S)-tyrosineglycinate (4i)

Method B. White solid (1.34 g, 92%); mp 56–58 °C; TLC: $R_f 0.18$ (A), 0.77 (B); HPLC: $R_t 17.07$ min; $[a]_D - 1.2$ (c = 1.1, MeOH).

IR ATR, Ge: $v = 3288, 2955, 1776, 1754, 1715, 1644, 1509, 1437, 1379, 719 \text{ cm}^{-1}$.

¹H NMR (200 MHz, CDCl₃): δ = 3.49 (d, *J* = 8.4 Hz, 2 H), 3.67 (s, 3 H), 4.01 (m, 2 H), 5.45 (m, 1 H), 5.10 (s, 2 H), 5.11 (m, 1 H), 6.76–6.86 (m, 3 H), 7.05–7.29 (m, 4 H), 7.32–7.77 (m, 4 H).

¹³C NMR (50 MHz, CDCl₃): δ = 34.0 (CH₂), 41.5 (CH₂), 52.4 (CH), 55.8 (CH₃), 65.3 (CH₂), 115.4 (CH), 123.6 (CH), 128.4 (CH), 129.2 (C), 130.0 (CH), 130.4 (CH), 131.5 (C), 132.2 (C), 134.3 (CH), 136.9 (C), 157.9 (C), 168.0 (C), 168.9 (C), 170.0 (C).

MS: $m/z = 542 (M + H)^+$, 565 (M + Na)⁺, 580 (M + K)⁺.

EMM: m/z calcd for $C_{27}H_{22}Cl_2N_2O_6$ 541.0933 (MH⁺), found 541.1088.

N^{α} -Phthaloyl- δ -cyclohexyl-(S)-glutamylisopropylbenzylamide (4j)

Method A. White solid (0.910 g, 69%); TLC: $R_f 0.72$ (A), 0.89 (B); HPLC: $R_i 18.49$ min; $[\alpha]_D - 11.3$ (c = 1.5, MeOH).

¹H NMR (200 MHz, DMSO- d_6): δ = 1.02–1.74 (m, 16 H), 2.31 (m, 2 H), 2.52 (m, 2 H), 3.38 (s, 2 H), 4.39–4.65 (m, 3 H), 7.21 (m, 5 H), 7.84 (m, 4 H).

IR ATR, Ge: v = 2934, 2858, 1773, 1712, 1651, 1448, 1378, 717, 696 cm⁻¹.

¹³C NMR (50 MHz, DMSO-*d*₆): δ = 20.8 (CH₃), 23.1 (CH₂), 23.7 (CH₂), 24.7 (CH₂), 30.5 (CH₂), 30.9 (CH₂), 43.4 (CH₂), 47.9 (CH), 51.3 (CH), 71.9 (CH), 123.1 (CH), 123.2 (CH), 126.4 (CH), 128.0 (CH), 131.1 (C), 134.7 (CH), 139.9 (C), 167.8 (C), 168.1 (C), 171.6 (C).

MS: $m/z = 491 (M + H)^+$, 513 $(M + Na)^+$.

EMM: m/z calcd for $C_{29}H_{34}N_2O_5$ 491.2546 (M + H)⁺; found 491.2587.

N^{α} -Phthaloyl- γ -benzyl-(S)-aspartyl-(S)-isoleucinamide (4k)

Method A. White solid (0.788 g, 63%); mp 116–118 °C; TLC: $R_f 0.24$ (A), 0.69 (B); HPLC: $R_t 12.42$ min; $[\alpha]_D -3.1$ (c = 1.0, MeOH).

IR ATR, Ge: $v = 3443, 3346, 2964, 2928, 1777, 1705, 1607, 1467, 1382, 716, 690 \text{ cm}^{-1}$.

¹H NMR (200 MHz, DMSO- d_6): $\delta = 0.84$ (t, J = 7.5 Hz, 3 H), 1.01 (d, J = 6.7 Hz, 3 H), 1.12 (m, 1 H), 1.59 (m, 1 H), 2.48 (m, 1 H), 3.01–3.25 (m, 2 H), 3.37 (s, 2 H), 4.37 (d, J = 8.4 Hz, 1 H), 5.37 (dd, J = 6.5, 8.9 Hz, 1 H), 7.04 (s, 1 H), 7.31 (s, 5 H), 7.45 (s, 1 H), 7.90–8.01 (m, 4 H).

¹³C NMR (50 MHz, DMSO- d_6): δ = 10.8 (CH₃), 16.4 (CH₃), 24.6 (CH₂), 33.0 (CH), 33.1 (CH₂), 46.5 (CH), 58.4 (CH), 65.8 (CH₂), 123.0 (CH), 123.5 (CH), 127.7 (CH), 131.1 (C), 134.3 (CH), 134.9 (CH), 166.8 (C), 168.8 (C), 173.7 (C), 174.5 (C).

MS: $m/z = 488 (M + Na)^+$, 504 $(M + K)^+$.

EMM: m/z calcd for $C_{25}H_{27}N_3O_6$ 466.1978 (M + H)⁺; found 466.1833.

Cleavage of the Phthaloyl Group

The procedure reported by Sheehan et al.⁷ was applied to N^{u} -Pht-(*S*)-Val-NH₂ (**4d**) and N^{u} -Pht-(*S*)-Ile-NH₂ (**4f**) to afford H-(*S*)-Val-NH₂ (**5**, 96%, white solid) and H-(*S*)-Ile-NH₂ (**6**, 98%, white solid), respectively.

Derivatization and Separation Procedure²⁴

A sample of the α -amino carboxamide (5 mg) was dissolved in MeCN containing 0.2% (w/v) of Et₃N to give a volume of 5 mL. To a 200 µL aliquot of this solution was added a 0.5% solution (w/v) of GITC (200 µL) in MeCN. The resulting mixture was stirred at r.t. for 60 min, then a 5 µL aliquot was directly injected into the chromatograph (HPLC) and eluted at 30 °C with a linear gradient of 20–50% of B (0.08% TFA in MeCN) in A (0.1% TFA in H₂O) for 20 min at a flow rate of 1.2 mL/min with UV detection at 250 nm.

GITC-(*S*)-Val-NH₂ (**7a**): $R_t 10.54 \text{ min} (>99.9\%)$; GITC-(*R*)-Val-NH₂ (**7b**): $R_t = 11.15 \text{ min} (<0.1)$; GITC-(*S*)-Ile-NH₂ (**8a**): $R_t 12.78 \text{ min} (>99.9\%)$; GITC-(*R*)-Ile-NH₂ (**8b**): $R_t 13.30 \text{ min} (<0.1)$.

Acknowledgement

J.R.C. acknowledges financial support from the European Community. The authors thank Pr. Dr. D. Tourwé and Dr. G. Laus for exact mass measurements (EMM).

References

- Bose, A. K.; Manhas, M. S.; Sahu, D. P.; Hedge, V. R. *Can. J. Chem.* **1984**, *62*, 2498.
- (2) Flynn, G. A.; Giroux, E. L.; Dage, R. J. Am. Chem. Soc. 1987, 109, 7914.
- (3) Boissonnas, R. A. Adv. Org. Chem. 1963, 3, 159.
- (4) Bodansky, M. In *The Practice of Peptide Synthesis*; Hafner, K. Ed., Springer-Verlag: Berlin, 1993.
- (5) Kukolja, S.; Lammert, S. R. J. Am. Chem. Soc. 1975, 97, 5582.
 (6) Schumann, I.; Boissonnas, R. A. Helv. Chim. Acta. 1952, 35,
- 2235. (7) Sheehan, J. C.; Chapman, D. W.; Roth, R. W. *J. Am. Chem.*
- Soc. 1952, 74, 3822.
 (8) Billman, J. H.; Harting, W. F. J. Am. Chem. Soc. 1948, 70, 1473.
- (9) Nefkens, G. H. L; Tesser, G. I; Nivard, R. J. F. Recl. Trav.Chim. Pays-Bas **1960**, 79, 688.
- (10) McArthur, C.R.; Worster P.M.; Okon, A. U. Synth. Commun. **1983**, *13*, 311.

- (11) Hoogwater, D. A.; Reinhoudt, D. N.; Lie, T.S.; Gunneweg, J.J.; Beyerman, H.G. Recl. Trav. Chim. Pays-Bas 1973, 92, 819.
- (12) Sheehan, J. C.; Goodman, M.; Hess, G. J. Am. Chem. Soc. 1956, 78, 1367.
- (13) Reddy P. Y.; Kondo, S.; Toru, T.; Ueno, Y. J. Org. Chem. 1997, 62, 2652.
- (14) Aguilar, N.; Moyano, A.; Pericàs, M. A; Riera, A. Synthesis 1998, 313.
- (15) Damm, W.; Hoffmann, U.; Macko, L.; Neuburger, M.; Zehnder, M.; Giese, B. Tetrahedron 1994, 50, 7029.
- (16) Jenni, J.; Kühne, H.; Prijs, B. Helv. Chim. Acta. 1962, 45, 1163.
- (17) Bagley, M. C.; Buck, R. T; Hind, S. L.; Moody, C. J. J. Chem. Soc, Perkin Trans 1 1998, 591.
- (18) Peterson, P. E.; Niemann, C. J. Am. Chem. Soc. 1957, 79, 1389
- (19) Ried, W.; Schmidt, E. Liebigs Ann. Chem. 1966, 695, 217.

- (20) Easton, C. J.; Eichinger, S. K.; Pitt, M. J. Tetrahedron 1997, 53, 5609.
- (21) 2.5 Equivalents of CaCl₂ or MgCl₂, 1.0 equivalent of AgI and 0.2 equivalent of KCN were used for these experiments.
- (22) The α -allylalaninamide hydrochloride **2g** was prepared by phase transfer catalysis using the methodology originally described by M.J. O'Donnell.23
- (23) O'Donnell, M. J.; Boniece, J. M.; Earp, S. E. Tetrahedron Lett. 1978, 2641.
- (24) Nimura, N.; Ogura, H.; Kinoshita, T. J. Chromatogr. 1980, 202, 375.
- (25) Tyler, A. N.; Clayton, E.; Green, B. N. Anal. Chem. 1996, 68, 3561.

Article Identifier:

1437-210X,E;2001,0,01,0075,0080,ftx,en;Z04800SS.pdf