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MO	� Monoolein
TG	� Triglycerides
TO	� Triolein
ZIF	� Zeolitic imidazolate framework

Introduction

The conversion of low-cost and abundant renewable raw 
materials into valuable chemical products is a signifi-
cant scientific and technological challenge with a major 
environmental and economic impact. Extensive research 
has been carried out to develop green technologies for 
the utilization of glycerol, a by-product of the biodiesel 
industry [1, 2]. An important application is the conver-
sion of glycerol to valuable monoglycerides (MG) that 
provide a wide range of applications such as emulsifi-
ers in food, pharmaceutical and cosmetic, detergents and 
lubricants [3]. The methods of preparation and produc-
tion of mono- and diglycerides (DG) by esterification, 
transesterification and other reactions and their applica-
tions were reviewed recently [4]. Industrially, MG are 
produced by glycolysis of fats, oils and fatty acids in 
presence of inorganic bases (NaOH or Ca(OH)2) at 220–
260  °C. The product contains 45–55  % MG, 38–45  % 
DG and 8–12  % triglycerides (TG) (Fig.  1) [3]. Many 
catalytic, homogeneous and heterogeneous, as well as 
enzymatic methods have been studied. Processes with 
strong acid catalysts such as H2SO4 and H3PO4 operated 
at 240–250 °C [5] yield 40–55 % MG. Operation at such 
high temperatures, especially for food applications, may 
also degrade the taste, aroma and color. The methods 
employed for purification of MG, e.g., distillation, are 
very complex, expensive and energy consuming while 
reusing the catalyst is not feasible.
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Stable and active heterogeneous catalysts such as zeo-
lites, sulfonated mesoporous silica, ion-exchange res-
ins, enzymes and metal–organic frameworks [6, 7] were 
employed in preparation of MG by esterification of fatty 
acids with glycerol at lower temperatures. Corma et al. [8] 
reported the transesterification of triolein with glycerol on 
solid basic catalysts sepiolite-Cs, MCM-41-Cs, MgO and 
hydrotalcites. MgO yielded 97  % triolein conversion and 
75 % monoolein selectivity after 5 h at 240 °C.

Glycerol and oleic acid are essentially immiscible liq-
uids. A detailed study of this system [9] found that the 
glycerol solubility in the phase composed of oleic acid, 
monoolein (MO), diolein (DO) and triolein (TO) at 170 °C 
was 4–5 wt%, essentially independent of composition. The 
oleic acid solubility in glycerol was negligible. Therefore, 
the reaction takes place only in the oleic acid phase. Fur-
thermore, it is expected that, given the great excess of oleic 
acid, the formed MO reacts further to DO and TO thus 
reducing selectivity with increasing oleic acid conversion. 
Although the esterification is reversible, the conversion 
of oleic acid measured in the batch reactor at 140–160 °C 
[9] reached >90 %, since the water produced in the reac-
tion was transferred to the glycerol phase. The selectivity 
to the three products changed little with oleic acid conver-
sion, being very close to its equilibrium values. Enhancing 
solubility is expected to improve selectivity. A recent patent 
application [10] proposes to use water as co-solvent at high 
temperatures (250 °C). The patent claims that a high yield 
of MG of up to 90 % was measured. Recently, we reported 
100 % selective synthesis of MO at 57 % oleic acid conver-
sion over hierarchical ZIF-8 catalyst at 150 °C after 24 h in 
the presence of t-butanol [6, 7].

In spite of the many studies published on this impor-
tant topic, little progress has been made in improving 
the performance, especially the selectivity to MG. The 
esterification reaction of oleic acid with glycerol is an 

acid catalyzed reaction. The oleic acid substrate itself 
is a catalyst. The esterification reaction of carboxylic 
acid with glycerol has also been reported previously 
by Jacobs and co-workers [11]. The ionization constant 
of the fatty acid chain is very much dependent on the 
reaction temperature. Given the fact that the reaction is 
autocatalytic with respect to oleic acid, using a solvent 
that dissolves both reactants forming a homogeneous 
solution is a viable and promising route. Thus the com-
position can be adjusted so as increase the selectivity to 
MG and the conversion of the fatty acid. The practical 
merits and drawbacks that would determine its commer-
cial application are expected to be done separately. Most 
studies published in the literature were performed in 
batch reactors. Tubular flow reactors are a preferred con-
figuration that are run at steady-state and could produce 
a high selectivity to MG at a relatively high conversion 
of oleic acid. The scope of this study is to explore for the 
first time the possibility of performing a homogeneous 
continuous, tubular-type process.

Experimental

The esterification was carried out in a bench-scale high-
pressure tubular reactor (Fig.  2), 0.65  cm ID and 132 cm 
total length, made of stainless-steel. The reactor was placed 
in a high temperature oven to ensure isothermal operation. 
The liquid was pumped from the feed tank upflow to the 
reactor by a HPLC pump. The residence time in the reactor 
was set by adjusting the liquid flow rate. The pressure in the 
reactor was kept at 35 atm by a backpressure regulator to 
avoid vaporization over the temperature range 200–240 °C. 
Most experiments were conducted in the empty reactor. In 
some runs, 30 % of the reactor was packed with 70–120 µm 
SiC inert particles.

Fig. 1   Esterification reaction of glycerol with oleic acid
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All experiments were carried with a mixture composed 
of oleic acid (Sigma-Aldrich, Belgium), glycerol (Bio-Lab 
Ltd, Israel) and tert-butanol (Alfa Aesar, UK) at a molar 
ratio of 1:6:14. The concentration of oleic acid was deter-
mined by organic acid–base titration (0.01 M KOH in etha-
nol, Merck, Belgium). Glycerol mono-, di- and triolein 
were analyzed by a well-established GC method [12] using 
BSTFA (Sigma-Aldrich, Belgium). 0.03 g of product were 
mixed with 0.03 g of tetradecane (internal standard). 0.7 g 
of BSTFA and 0.7 g of pyridine were added. After 20 min 
in oven at 80 °C the solution was injected immediately into 
the warm (50 °C) HP6890 GC equipped with injector and 
a flame ionization detector and 10 m × 0.32 mm ID fused-
silica capillary column coated with a 0.1 μm film of DB-5. 
The GC was programmed to heat from 60 to 190 to 420 °C, 
at a ramp rate of 50 °C/min to 190 °C and a second ramp 
rate of 6 °C/min to 420 °C.

Results and Discussion

Experiments were carried out at 200, 220 and 240 °C. The 
residence time in the reactor was varied over a wide range 
by changing the liquid flow rate. The performance at a 

particular residence time was measured after running the 
reactor for at least two times that residence time to ensure 
that a steady-state was reached. Indeed, measurements car-
ried out at several times on stream indicated that steady-
state was reached. No apparent effect of packing the reactor 
with inert SiC was recorded, as shown in Fig. 3.

The measured selectivity of MO was >0.95. The other 
product was DO Neither TO nor butyl ester was detected. 
There is no esterification reaction between oleic acid with tert-
butanol as the alcohol part is sterically hindered around the 
ester bond. This was expected since the molar ratio of glyc-
erol to oleic acid in the solution was 6. This is by far higher 
than the value in the heterogeneous system that contains only 
glycerol and oleic acid where the very low glycerol solubility 
limits this ratio to ≪1. Therefore, esterification of oleic acid 
with glycerol is very selective to MO, in contrast with other 
systems published in the literature. Therefore the analysis of 
the data will account only for the esterification to MO.

The equilibrium constants of the reaction at 220 and 
240  °C, calculated from the data measured at long resi-
dence times, are listed in Table 1. The two values indicate 
that the reaction over this temperature range is very mildly 
endothermic. The equilibrium constant at 200  °C, calcu-
lated by extrapolation of the two values, is 0.57.

Fig. 2   Experimental setup: (1) 
balance, (2) feed tank, (3) high 
pressure pump, (4) pressure 
controller, (5) thermocouple, (6) 
thermowell, (7) tubular reactor, 
(8) oven, (9) product tank, 
(10) pressure gauge, (11) back 
pressure regulator, (12) nitrogen 
cylinder
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The kinetic data are plotted in Fig. 3. Calculation of the 
Reynolds number from estimated density and viscosity of 
the tert-butanol yields values in the order of 10 meaning 
that the flow was laminar. Therefore the data were analyzed 
according the method developed for a laminar flow reactor 
given in expression (1) and assuming a second rate of reac-
tion as shown in Eq. (3):

where E(t) is defined as: 

The rate constant k is defined as:

(1)x =

∞

∫

θ
2

x(t)E(t)dt

(2)E(t) =
θ2

2 · t3
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dx

dt
= kC10
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2/K

)
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−
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)

x is the oleic acid conversion, θ is the residence time, E(t) is 
the residence time distribution, Ea is the activation energy, 
C10 is the oleic acid feed concentration and K is the chemi-
cal equilibrium constant. The solution [13] of Eq. (3) is:

The rate constant was calculated by fitting the calculated 
value of x from expression (1) to the measured values at 
each temperature. The goodness of fit, defined as ∑  (xexp–

xfitted)
2, varied from 2.5 × 10−3 at 220 °C to 6.5 × 10−5 at 

the other two temperatures. This is clearly illustrated by the 
curves in Fig. 3. The activation energy calculated from the 
plot in Fig. 4 is 81 kJ/mol, A is 5.3 × 107 L/mol/h and the 
coefficient of determination is r2 = 0.98.

Conclusions

The esterification of oleic acid with glycerol (molar ratio 
of 1:6) dissolved in tert-butanol was carried out in a tubu-
lar reactor at 35 atm and 200–240 °C. The residence time 
in the reactor was varied over a wide range to determine 
selectivity to monoolein, diolein and triolein, the reac-
tion kinetics and equilibrium constant. A high selectivity 
to monoolein of >95  mol% was measured. It was shown 
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Fig. 3   Second-order reaction 
expression displays a very good 
fit of kinetic data
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Table 1   Chemical equilibrium constants

Temperature (°C)Residence time 
(h)

Oleic acid con-
version

Equilibrium 
constant

220 17.6 0.8 0.62

240 6.4 0.81 0.67
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that in this system only the esterification of oleic acid with 
glycerol is significant. This is because of the great excess 
of glycerol in the homogeneous solution. Furthermore, the 
rates of reaction were high at 240 °C so that a conversion 
of 74 % was achieved at a residence time of 2.4 h. The con-
version is limited by chemical equilibrium to about 80 %. 
This conversion can be further increased by increasing the 
glycerol to oleic acid molar ratio. Fitting the data to a sec-
ond order reaction yielded an excellent fit with activation 
energy of 81 kJ/mol.
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